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Abstract

Egocentric action analysis methods often assume that in-
put videos are trimmed and hence they tend to focus on ac-
tion classification rather than recognition. Consequently,
adopted evaluation schemes are often unable to assess im-
portant properties of the desired action video segmentation
output, which are deemed to be meaningful in real scenarios
(e.g., oversegmentation and boundary localization preci-
sion). To overcome the limits of current evaluation method-
ologies, we propose a set of measures aimed to quantita-
tively and qualitatively assess the performance of egocen-
tric action recognition methods. To improve exploitability
of current action classification methods in the recognition
scenario, we investigate how frame-wise predictions can be
turned into action-based temporal video segmentations. Ex-
periments on both synthetic and real data show that the pro-
posed set of measures can help to improve evaluation and to
drive the design of egocentric action recognition methods.

1. Introduction

State of the art methods for egocentric action analysis
are generally designed to work on trimmed videos [25, 26,
37, 40, 52]. Under these settings, the original videos to
be analyzed are assumed to be pre-segmented and meth-
ods take a short video clip as input and predict a label for
it at inference time. While this scenario may be practi-
cal in the case of third person vision where video contents
are often edited and hence “easier” to segment, it is par-
ticularly unlikely in the context of egocentric videos. In-
deed, egocentric videos are often acquired in a continuous
fashion and tend to be long and unstructured [13, 34]. To
enable egocentric video understanding, methods should be
able to segment an unedited sequence of frames to high-
light the presence of specific actions. This includes de-
tecting the temporal boundaries of the action (i.e., starting
and ending frames), as well as its category. Moreover, as
a matter of fact, video datasets for egocentric action analy-
sis are generally collected in an “untrimmed” fashion, i.e.,
multiple subjects are asked to acquire a long video while
they perform a set of egocentric actions or complex activi-
ties. Afterwards, videos are broken and manually annotated
into labeled short segments (the trimmed videos) which
can be used for supervised learning. Different egocentric
video datasets have been acquired with this modality, e.g.,
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Figure 1. (a) Action classification versus (b) action recognition.

BEOID [1], GTEA [8] and ADL [33]. This data collection
scheme is generally different from the one employed for
third person datasets, which tend to be organized as a col-
lection of videos acquired from multiple sources [16, 42].
The former paradigm is akin to the one employed in the im-
age classification task in which a single label has to be pre-
dicted for a given input image [3, 21]. The latter paradigm
resembles object recognition, where objects have to be both
localized and recognized in the image [11, 35].

Reminiscent of the above distinction, in this paper we
will refer to the trimmed scenario as “action classification”
and to the untrimmed one as “action recognition”. Other
suitable terms for the action recognition scenario may be
“temporal action localization” and “action-based video seg-
mentation”. Figure 1 shows two examples of the considered
scenarios. We would like to emphasize that video segmen-
tation is the desirable output in real egocentric vision ap-
plications. In a real application the input video cannot be
reliably pre-segmented to proved trimmed clips to the ac-
tion classification methods.

It should be observed that the distinction between
trimmed and untrimmed scenarios is very well known in
the literature related to third person action analysis. In such
works, the two tasks are evaluated using different datasets
and measures [16]. Nevertheless, as it will be better dis-
cussed in Section 2, works on egocentric action analysis do
not generally account for the distinction. Even when there is
explicit reference to the video segmentation task, methods
are evaluated counting the number of correctly classified
trimmed clips [20] or using frame-based measures [34, 43].
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Such measures are not suitable to evaluate certain aspects
of the produced results which are significant in real appli-
cations, e.g., boundary localization precision, misclassifica-
tion, over-segmentation and under-segmentation [12].

We argue that lack of clarity in this regard can deceive
the design of egocentric algorithms, and lead to the adoption
of inconsistent evaluation approaches.

Our contribution to address the aforementioned issues is
twice: 1) We investigate how action recognition methods
should be evaluated both from a quantitative and qualita-
tive point of view; 2) Since many action classification meth-
ods can provide frame-wise predictions, we investigate how
their output can be exploited to obtain segment-based pre-
dictions and evaluate them properly using the considered
measures.

We carry out the analysis by performing several
experiments both in synthetic and real-world settings.
Results highlight that the choice of a suitable set
of evaluation measures is crucial to assess the ac-
tual performance of the considered methods and to
guide the design of future approaches. The code of
all considered measures is available at our web page
http://iplab.dmi.unict.it/EgoActionEvaluation/.

2. Related Work

Different works have tackled the tasks of action classi-
fication and recognition both in the third person and first
person scenarios.

Action Classification in Third Person Vision
Marszałek et al. [27] exploited scene context to improve ac-
tion classification. Wang et al. designed dense trajecto-
ries [45] and improved trajectories [46] to encode local mo-
tion patterns and appearance for action classification. More
recently, some notable action recognition methods based on
deep learning have been proposed. Karpathy et al. [19] pro-
vided an extensive empirical evaluation of Convolutional
Neural Networks (CNN) on large scale video classifica-
tion exploring multiple approaches for adapting CNNs to
videos. Simonyan et al. [39] designed a Two-Stream CNN
(TS-CNN) capable of encoding both motion and appearance
information to perform action classification. Feichtenhofer
et al. [10] explored ways to spatio-temporally fuse the two
streams to improve performance of the architecture. Wang
et al. [47] proposed a framework for video-based action
classification combining a sparse temporal sampling strat-
egy and video-level supervision to enable learning from the
whole action video.

All the aforementioned methods consider a pre-
segmented (i.e., trimmed) video containing a single action
as the basic unit of training and test. As result, most of these
methods require videos to be pre-segmented also at infer-
ence time. Consequently, evaluation is generally carried out
counting the number of correctly classified pre-segmented
videos and analyzing performance by reporting the accu-
racy score or a confusion matrix.

Action Recognition in Third Person Vision
Duchenne et al. [5] addressed weakly-supervised learn-

ing and temporal localization of actions from third person
videos. Action localization was evaluated using Average
Precision (AP). Hoai et al. [17] investigated action recog-
nition and automatic video segmentation as a join problem.
Segmentation and classification performances are assessed
jointly using fame-level accuracy. Qualitative assessment
is also obtained with color-coded segmentation diagrams.
Oneaţă et al. [30] exploited Fisher Vectors to aggregate a
small set of low-level descriptors combined with linear clas-
sifiers. Action localization is obtained using Non-Maxima
Suppression and results are measured in terms of mean Av-
erage Precision (mAP). Gaidon et al. [15] addressed the
problem of localizing actions in hours of video introduc-
ing atomic action units termed “actoms”. Performance is
evaluated using Precision Recall curves and Average Preci-
sion considering different overlap thresholds to determine
whether two segments constitute a correct match. Lea et
al. [24] proposed Latent Convolutional Skip Chain Condi-
tional Random Fields to learn a set of composable action
primitives for action classification and localization. To eval-
uate localization results they propose two evaluation metrics
which are designed to assess the influence of oversegmen-
tation and offset.

Recently, the action recognition task in third person vi-
sion has been standardized thanks to the spread of new
datasets and challenges. In particular the THUMOS chal-
lenge [16] defined the use of AP as a standard measure for
the action localization task. As result, the measure has been
largely adopted by recent methods [18, 38, 50].

Action Classification in First Person Vision

Most methods for action analysis in first person vision
have focused on the classification scenario assuming pre-
segmented videos as input [8, 7, 25, 26, 28, 37, 40, 48, 52].

Some authors used frame-based accuracy to evaluate
their methods. Fathi et al. [7] presented a method to ana-
lyze daily activities performing inference about activities,
actions, hands, and objects. Fathi et al. [8] also designed an
approach for simultaneously classifying daily actions and
predicting gaze.

Other authors evaluated performances in a trimmed sce-
nario by counting the number of correctly classified videos
and computing accuracy, average precision or confusion
matrices. Ryoo et al. [37] proposed pooled motion features
to encode several descriptors in a video-based representa-
tion for egocentric action classification. Li et al. [25] in-
vestigated a set of egocentric features and combined them
with motion and object features for egocentric action clas-
sificaiton. Zhou et al. [52] built a framework for egocentric
action classification which integrates feature maps based on
motion, hands and active object region. Ma et al. [26] de-
signed a CNN architecture to integrate several egocentric
cues such as, hand segmentation, motion and active object
detection to perform egocentric action and activity classifi-
cation.

Action Recognition in First Person Vision

As anticipated, in first person vision, the distinction be-
tween action classification and recognition is not as clear as
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Figure 2. Different types of error affecting temporal action seg-

mentation methods. GT stands for Ground Truth, while P stands

for Predicted. Different colors represent different classes.

in the case of third person vision. In particular, even meth-
ods explicitly using terms such as “temporal segmentation”
and “detection” are not evaluated using proper segment-
based measures as happening in the third person vision sce-
nario [9, 20, 33, 34, 36, 43, 49].

Spriggs et al. [43] explored the problem of inferring the
activity performed in an egocentric video and segmenting
each single action contained in the video. Pirsiavash et
al. [33] proposed to exploit object-based representations to
detect activities of daily living from egocentric videos. To
localize activities, the authors considered a “background”
class and employed a sliding window approach. Fathi et
al. [9] presented a model for egocentric action analysis
based on the changes in the state of objects and materials.
A method for temporal activity segmentation is also inves-
tigated. Poleg et al. [34] introduced a method to segment
long term activities such as running and standing from long
egocentric videos. The previous discussed approaches have
been evaluated using frame-based accuracy.

3. Egocentric Action Segmentation

Differently from algorithms working on a frame-by-
frame basis, egocentric action recognition methods should
output a consistent and temporally structured segmentation
of the input video. Such output should be in principle
very similar to the ground truth generally available for first-
person action datasets [1, 8, 33], i.e., a set of temporal seg-
ments characterized by a starting frame, an ending frame
and a class label. A confidence score is also generally as-
signed to each predicted segment.

Note that the output set of segments need not constitute
a partition over the input video, i.e., some frames could re-
fer to moments in which no action is being performed, in
which case they would not be associated to any segment.
Additionally, as noted by Spriggs et al. [43], especially
when complex activities are performed, it is possible to have
overlapping segments. Examples of these two properties
are shown in Figure 2(b) where segmentations can contain
“holes” (i.e., frames do not belonging to any segments) and
segments may overlap.

Given its structured nature, egocentric video segmenta-
tion suffers from specific types of errors which can lower
the quality of the obtained results. In particular, we consider
five main issues: reduced boundary localization precision,

false positive detections, missed detections, misclassifica-
tion and oversegmentation.

Reduced boundary localization precision occurs when
algorithms can recognize an egocentric action but predicted
boundaries do not exactly match those reported in ground
truth annotations. This phenomenon can be mild or severe
as depicted in Figure 2(a). Assessing this type of error is not
trivial since, as it has been noted by other authors [24, 48],
annotators do not always agree on the temporal boundaries
of specific action instances. However, this kind of evalu-
ation is encouraged by recent work showing that accurate
boundary localization [29] is important to perform correct
action classification and that the annotation procedure can
be standardized.

False positive detections consist in predicted action seg-
ments which do not match any ground truth segment. Ex-
amples of these errors are represented in Figure 2(b). Such
errors can occur in areas in which no ground truth segment
is present at all (“inactive” areas) or when additional over-
lapping segments are predicted.

Missed detections consist in ground truth segments
which are not matched by any predicted segment at all. This
is illustrated in Figure 2(c).

Misclassification occurs when a given action segment
is correctly localized but the wrong class is assigned to it.
An example of this error type is depicted in Figure 2(d).
This error type is a special case of missed detections which
may deserve particular attention as it allows to assess which
component of the method is underperforming.

Oversegmentation occurs when multiple predicted ac-
tion segments are contained within a single ground truth
segment. An illustrated example of oversegmentation is re-
ported in Figure 2(e). This error type is relevant in real
scenarios in which the number and temporal extent of pre-
dicted actions might be significant. It should also be noted
that, when the evaluation criterion allows a predicted seg-
ment to match only a single ground truth segment, this error
type is very related to missed and false positive detections.

4. Evaluation Measures

4.1. FrameBased Accuracy

Frame-Based accuracy is computed by predicting an ac-
tion label for each frame of the video and considering the
fraction of correctly classified frames. Since test videos
usually contain also unlabeled parts, a “background class”
is usually introduced, so that each frame can be assigned a
unique label. Given its simplicity, this measure has largely
been used to evaluate temporal segmentation results in past
works [7, 8, 33, 34, 43]. While this measure can give a
rough estimate on the percentage of times the method yields
a correct label, it totally discards the temporal structure of
the predictions and hence it is unfeasible to assess the actual
segmentation capabilities of methods (e.g., for real applica-
tions).

4.2. Average Precision

Average Precision (AP) is a standard measure which
can be used to evaluate recognition methods from an in-
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formation retrieval perspective. This measure is commonly
employed to evaluate object detection algorithms with re-
spect to both object classification and localization [6]. In
the context of temporal video segmentation, the measure is
computed in a similar way, the main difference being that
video segments are considered instead of bounding boxes
and overlap is computed between temporal segments. The
reader is referred to [6] for a review of the method in the
context of object recognition.

Precision Recall curves and Average Precision are com-
puted independently for each considered action class. A
mean Average Precision (mAP) score is hence considered
to summarize the performance of a given method. Given
the data imbalance characterizing egocentric action datasets
(i.e., some actions occur more often than others), in this
paper, we compute mAP performing a weighted average
of class-related AP scores. Weights are obtained consider-
ing the fraction of segments representing a given class con-
tained in the ground truth.

4.3. MOTAP Curves

A limitation of AP consists in the fixed matching over-
lap threshold used for evaluation, which is usually set to 0.5.
The choice of a fixed threshold allows to relax the constraint
of an accurate segmentation. In this sense, a prediction per-
fectly matching the ground truth is evaluated in the same
way as a prediction which retains an overlap of 0.5 with
a ground truth segment. This is convenient when ground
truth action boundaries are not reliable enough. However,
as already investigated in [15], it can be very informative
to inspect Matching Overlap Threshold - Average Precision
curves (MOTAP). A MOTAP curve plots Average Precision
against the overlap threshold used to match predicted and
ground truth segments and shows the behavior of methods
when different levels of boundary localization precision are
required. This evaluation is the most suitable to assess the
influence of different degrees of reduced boundary localiza-
tion precision, as illustrated in the two examples reported
in Figure 2(a). The Area Under an Overlap Threshold Av-
erage Precision curve (AUMOTAP) can be used to sum-
marize the performance of methods over different levels
of localization precision. Also in this case, mean MOTAP
curves and mean AUMOTAP values are obtained perform-
ing a weighted average of class-related scores.

4.4. Precision and Recall

Average Precision summarizes over precision and recall.
However, it might still be desirable to assess whether the
main source of error concerns false positive or missed de-
tections (Figure 2(b) and Figure 2(c)). Such two types of er-
ror are easily assessed computing precision and recall over
the segments matched during the computation of Average
Precision:

precision = # matched predicted segments

# predicted segments
(1)

recall = # matched gt segments

# gt segments
(2)

Specifically, precision is inversely proportional to the num-
ber of false positive detections, while recall is inversely pro-
portional to the number of missed detections. In this paper,
we do not consider confidence scores for the computation
of precision and recall values and use the standard match-
ing overlap threshold of 0.5.

4.5. Classification Precision

To assess the influence of misclassification (Figure 2(d)),
we propose the classification precision score. We define this
score as the ratio between the number of predicted segments
matched to a ground truth segment of the same class and the
number of predicted segments matched to a ground truth
segment of any class:

c.prec. =
#pred. seg. match. with correct class

#pred. seg. match. with any class
(3)

Also in this case, we do not consider confidence scores
for the computation and use the standard matching overlap
threshold of 0.5.

4.6. Inverse Oversegmentation Rate

Some authors have considered methods to assess and pe-
nalize the influence of oversegmentation in action recogni-
tion results. In particular, Lea et al. [24] proposed to use
the maximum overlap between ground truth and predicted
segments as a score. In case of oversegmentation, the max-
imum overlap between the ground truth segment and one of
the predicted ones will be reduced (see Figure 2(e) for an
example). To keep our measures within the framework of
Average Precision, we propose the Inverse Oversegmenta-
tion Rate. We first define the Oversegmentation Rate (OR)
as the ratio between the number of ground truth segments
matching more than one predicted segment and the number
of ground truth segments matching at least one predicted
segment. Intuitively, in the case of oversegmentation, a
given ground truth segment will be matched more than once
and the OR score will increase. Hence, we define the In-
verse Oversegmentation Rate (IOR) as follows:

IOR = 1−
#gt seg. matched more than once

#gt seg. matched at least once
(4)

In this case, we use 0 as matching overlap threshold and do
not use scores for the computation of matches. The choice
of the zero threshold is important to allow for the matching
of predicted segments which might be very small due to
oversegmentation.

5. Converting Frame-Wise Predictions into
Temporal Segments

Many action analysis methods can be used to produce
frame-wise predictions [10, 34, 39, 47]. When perfor-
mances are evaluated using trimmed segment-based accu-
racy, predictions obtained for one or more frames within
the segment are usually averaged to obtain a single posterior
probability over the video segment. The segment is finally
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classified by considering the label maximizing the poste-
rior probability and assigning the corresponding probability
value as confidence score.

To take advantage of such methods in the untrimmed sce-
nario, it is necessary to convert frame-wise predictions into
temporal segmentations. In the following sections, we dis-
cuss some available options to perform such conversion.

5.1. Segmentation by Connected Components (CC)

The most straightforward way to convert frame-wise pre-
dictions into temporal segments is to extract all connected
components from the output list of labels. Given an ex-
tracted temporal segment, a confidence score can be as-
signed to it by averaging all posterior probabilities within
the segment and selecting the maximum probability value.

5.2. Rejecting Negatives

In the untrimmed action recognition scenario, videos are
likely to contain “negative” frames, i.e., frames in which
no specific action is being performed. Egocentric action
recognition methods should be able to correctly localize and
classify actions and discard all negative frames or segments
where no action is performed. This is a key property for real
systems. This result can be achieved in different ways.

A simple strategy employed by some authors [33] is to
train the method to recognize a negative or “background”
class, by considering sequences where no action is per-
formed. This basically adds one more class to the set of
positive classes to be learned. After obtaining temporal
segments from frame-wise predictions (e.g., by considering
connected components), segments classified as belonging to
the negative classes are simply discarded.

Another strategy investigated in this paper is to train an
action classification method to discriminate between posi-
tive sequences (i.e., any sequence in which one of the con-
sidered classes is being performed) and negative ones (i.e.,
any other sequence). Once trained, the method can be used
to obtain a “positive vs negative” segmentation (e.g., by
considering connected components over frame-wise predic-
tions). Negative segments are hence discarded and posi-
tive ones are classified by considering the average posterior
probability over all frames contained in the segment.

Other approaches to reject negatives in temporal ego-
centric segmentation exist. For instance, in the con-
text of location-based temporal segmentation of egocentric
videos, some authors leveraged local entropy among pre-
dictions [14] or considered the use of heuristics [31, 32].

5.3. Enforcing Temporal Smoothing via a Hidden
Markov Model

We also investigate the possibility of enforcing tempo-
ral coherence between predictions using a Hidden Markov
Model (HMM). Since no general assumption between the
possible order of performed actions is assumed, a HMM
with a diagonal matrix is employed as done in [12, 44]. The
considered HMM depends on a single parameter ε which
controls the “amount of smoothing” induced in the state
transition probabilities. We set to ε = 10−4 in our experi-

ments. The role of the considered HMM is to enforce tem-
poral smoothing of the produced labels and avoid errors due
to random label changes which can lower the quality of seg-
mentations obtained considering connected components.

5.4. NonMaxima Suppression (NMS)

A fairly standard way to obtain segmentation from
frame-wise predictions is to employ Non-Maxima Suppres-
sion (NMS) [5, 30, 33]. In our experiments, we imple-
ment Non-Maxima Suppression as described by Oneaţă et
al. [30]. Specifically: 1) To reduce the tendency of NMS to
favor short windows, the proposed segments are re-scored
multiplying confidence scores by their duration prior to ap-
plying NMS; 2) Allowed overlap for segments of the same
class is set to 0 (versus common values of 0.2 or 0.5).
This allows to obtain a non-overlapping set of predicted
segments. However, it should be noted that, since non-
maxima suppression is applied separately for each class,
overlap between segments belonging to different classes is
still allowed. Considering the minimum and maximum du-
ration of ground truth segments, we produce proposals with
a minimum scale of 10 frames and a maximum scale of 240
frames. Scales and temporal positions of proposals are var-
ied with a stride of 1 frame.

6. Experimental Analysis

We performed two sets of experiments. The first one is
aimed at assessing the properties of the evaluation scores
discussed in Section 4 in controlled settings. Specifically,
we perform a series of experiments with simulated data in
which we artificially introduce errors of the types discussed
in Section 3. The second set of experiments is performed on
real data and is aimed at assessing the performance of the
different methodologies to convert frame-wise predictions
into temporal segments discussed in Section 5.

We considered the BEOID dataset [1] for our experi-
ments. The dataset contains 58 videos acquired by 8 dif-
ferent subjects in 6 different environments. The dataset is
provided with annotations for different actions performed
by the subjects. After removing actions represented by less
than 10 frames, we obtain a set of 29 different action labels.
To perform experiments with real data, the dataset is ran-
domly divided into three splits. We constrain the splits to
contain data from different subjects in order to avoid over-
fitting.

6.1. Experiments with Synthetic Data

To assess the properties of the considered evaluation
measures in controlled settings, we generate synthetic
data starting from the ground truth annotations of BEOID
dataset. Generated data takes the form of the output of a po-
tential system to be evaluated with respect to ground truth.

Synthetic data is obtained by first copying the set of
ground truth annotations for each video in the dataset, then
perturbing them according to the schemes discussed below.
Confidence scores are assigned to synthetic predictions by
drawing random numbers comprised between 0 and 1. Note
that this choice is considered to ensure that segments are

2377



sorted randomly in the computation of AP scores. To mimic
the presence of a specific error type, we build 5 differ-
ent sets of simulated predictions according to the following
schemes:

Reduced Boundary Precision. We first select a parame-
ter σ% ∈ [0, 1]. For each segment, each of the two temporal
boundaries b is modified by drawing a random number from
a Gaussian distribution centered at b and with standard de-
viation equal to σ = σ% · d, where d is the duration of the
segment.

False Positive Detections. Chosen a parameter n, syn-
thetic data is obtaining by introducing n new segments at
random positions and with random duration in each video
of the dataset. A random class is assigned to each newly
introduced segment.

Missed Detections. A parameter α% ∈ [0, 1] is first
chosen. For each video, n = α% ·m segments are deleted,
where m is the total number of segments in the video.

Misclassification. Similarly to the case of missed de-
tections, we choose a parameter α% ∈ [0, 1] and randomly
change the class of n = α% · m segments in each video,
where m is the total number of segments in the video.

Oversegmentation. Synthetic predictions are obtained
splitting a randomly selected segment in two parts. The op-
eration is repeated n times on each video. At each iteration,
the algorithm is allowed to choose a previously splitted seg-
ment.

Figure 3 reports the scores obtained with each consid-
ered measure on synthetic generated output segmentation
as described in the previous section. Each plot reports how
scores vary for different amounts of the considered pertur-
bation.

Figure 3(a)-left reports Matching Overlap Threshold -
Average Precision (MOTAP) curves for different choices
of parameter σ%. As can be observed, increasing lev-
els of boundary perturbation affect the decay of MOTAP
curves and hence the related values of area under the curve
which are reported in parenthesis in the legend. The plot
on Figure 3(a)-right summarizes the trend of all scores
with respect to different amounts of boundary perturbation.
Both mAP and mAUMOTAP scores decay for increasing
amounts of perturbation. However, mAP retains very high
values up to a significant amount of perturbation of about
σ% = 0.2. On the other hand, when σ% exceeds 0.4, the
mAUMOTAP score retains larger values than mAP, indi-
cating that, while segments are not accurately localized,
they still retain some small overlap with the ground truth.
Reduced boundary localization precision also affects preci-
sion and recall, which follow the trend of the mAP score.
Classification precision and IOR score retain large values
and hence are not significantly affected by the perturbation.
Note that this works as expected since the scores have not
been designed to respond to the specific error type under
analysis. Also frame-based accuracy is marginally influ-
enced by the perturbation under analysis.

Figure 3(b) reports results related to experiments con-
cerning false positive detections. As can be noted, the trend
of the precision score smoothly decays when the number
of insertions is increased. mAP and mAUMOTAP follow a

similar trend. Note that mAP and mAUMOTAP scores are
perfectly overlapped since boundaries are not perturbed in
this experiment. Similarly to Figure 3(a), scores related to
other error types (i.e., oversegmentation, classification pre-
cision and recall) are not affected by the perturbation as one
would expect.

Figure 3(c) reports results related to experiments on
missed detections. Recall values closely follow the trend of
mAP and mAUMOTAP and decay for increasing amounts
of perturbation. Other scores are not directly related to this
error type and hence they are not affected by the perturba-
tion.

Figure 3(d) reports results related to misclassification.
Classification precision and precision score are perfectly
overlapping and follow the trend of mAP and mAUMO-
TAP. Also recall is affected by the perturbation. However, it
should be noted that this is the only plot in which the classi-
fication precision score is significantly decreasing. IOR and
frame-based accuracy are not affected by the perturbation
as expected.

Figure 3(e) reports results related to experiments con-
cerning oversegmentation. Differently than previous cases,
the IOR score is significantly affected by the perturbation.
As it can be expected, this error type also affects overall
precision and, marginally, recall. mAUMOTAP and mAP
follow similar trends and decay with increasing amounts of
perturbation. Classification precision is not significantly af-
fected since the main source of error is not misclassification.
Frame-based accuracy is totally unable to capture this type
of error and hence always retains the maximum value.

In general, mAP and mAUMOTAP scores are affected
by all considered perturbations as one would expect. IOR
and classification precision are significantly affected only
by specific types of error, i.e., oversegmentation and mis-
classification respectively. This suggest that such scores can
be effectively used as indicators for the specific error types
they have been designed for. Precision and recall clearly re-
spond to the introduction of false positive and missed detec-
tions. However they are also sensitive to other related errors
which are special cases of false positive detections (e.g.,
oversegmentation) and missed detections (e.g., misclassi-
fication). Nevertheless, they are still suitable to assess what
is the primary cause leading to low mAP values. Frame-
based accuracy does not account for the temporal structure
of the predictions and hence it is unable to capture any of
the investigated error types.

6.2. Experiments with Real Data

We finally perform experiments with real data. These
experiments are aimed to assess the descriptiveness of the
introduced measures in a real scenario, as well as to com-
pare the different techniques to turn frame-wise predictions
into temporal segmentations discussed in Section 5.

To perform experiments on real data, we train the state-
of-the-art method proposed in [10] on the BEOID dataset.
The considered model has been designed to classify actions
in a trimmed scenario, but it can be used to obtain frame-
wise predictions. Specifically, we train three different mod-
els. The first model is trained to discriminate between the
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(a) Reduced Boundary Localization Precision
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(b) False Positive Detections
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(d) Miscalssification
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(e) Oversegmentation

Figure 3. Results related to the artificial introduction of different types of errors in the ground truth segmentations. In plot (a), mean area

under MOTAP curves is reported for each method in parenthesis in the legend.

Method mAUMOTAP mAP F-B Accuracy Precision Recall C. Precision IOR

CCC 21,74 23,16 82,38 24,36 34,57 63,85 81,18

CCC* 29,15 32,39 82,20 44,65 34,25 60,43 99,41

NMS 31,10 23,44 86,96 28,67 29,22 70,65 98,37

CC 43,79 47,23 86,96 25,11 52,15 84,13 72,63

CC* 45,32 53,12 86,97 65,20 57,70 83,56 99,97

Table 1. Results related to experiments performed on real data. Methods marked with “*” employ an HMM to smooth predictions. “F-B

accuracy” stands for Frame-Based Accuracy, while “C. Precision” stands for Classification Precision. Best scores are reported in bold.
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Cascade Connected Components (CCC) (21.74)

Cascade Connected Components* (CCC*) (29.15)

Non-Maxima Suppression (NMS) (31.10)

Connected Components (CC) (43.79)

Connected Components* (CC*) (45.32)

Figure 4. MOTAP curves related to experiments performed on real

data. Mean area under the MOTAP curve is reported for each

method in the legend. Methods marked with “*” employ an HMM

to smooth predictions.

29 positive classes of the BEOID dataset. The second model
is trained to discriminate between 30 classes including the
original 29 positive classes, plus one additional negative
class. The third one is trained to discriminate only be-
tween “positive” and “negative” sequences. We consider
a “positive” sequence as any temporal segment labeled in
the BEOID dataset and a “negative” as any other unlabeled
video segment. Each model is trained three times accord-
ing to the considered splits of the BEOID dataset in order to
obtain unbiased predictions for each video.

The obtained predictions are combined with the tech-
niques discussed in Section 5 to obtain the following meth-
ods:

Cascade Connected Components (CCC): positive vs
negative frame-wise predictions are turned into positive
vs negative segments applying the connected components
method. Negative segments are discarded and positive ones
are classified considering the predictions produced by the
model trained on the 29 positive classes.

Cascade Connected Components* (CCC*): similar to
the CCC method with the exception that the HMM is used
to obtain initial positive vs negative frames.

Non-Maxima Suppression (NMS): predictions ob-
tained using the model trained on the 30 classes (29 pos-
itive classes, plus a “negative” class) are turned into seg-
ments using non-maxima suppression. Negative segments
are discarded.

Connected Components (CC): predictions obtained us-
ing the model trained on the 30 classes are turned into seg-
ments using the connected components method. Negative
segments are discarded.

Connected Components* (CC*): similar to the CC
method with the exception that the HMM is used to obtain
labels before the extraction of connected components.

Figure 4 reports MOTAP curves related to experiments
performed on real data. CCC is the least accurate method.
Introducing an HMM to temporally smooth predictions al-
lows to obtain an improvement of about 0.08 in terms of

mAUMOTAP score. NMS performs better than the afore-
mentioned methods especially for smaller matching over-
lap threshold values. This suggests that some segments are
correctly detected by the method but not accurately local-
ized. CC and CC* methods retain the best performances as
compared to all competitor methods. Also in this case, the
introduction of a Hidden Markov Model allows to improve
overall localization accuracy.

Table 1 reports results according to the different con-
sidered evaluation measures. Interestingly, rankings ob-
tained using mAUMOTAP and mAP scores do not always
agree. This is, for instance, the case of the NMS method
which outperforms CCC* only according to the mAUMO-
TAP. This is explainable by observing how MOTAP curves
related to the two methods cross at a matching overlap
threshold of about 0.4 in Figure 4. Observing the curve,
it is evident how the NMS method actually dominates the
competitor CCC* and hence how the mAUMOTAP score
summarize the difference in performance better than mAP.

Also in this case, frame-based accuracy does not capture
the difference in performance significantly. The introduc-
tion of the HMM allows to greatly improve precision (com-
pare CCC* to CCC and CC* to CC) while keeping simi-
lar recall values and slightly decreasing classification pre-
cision. The introduction of the HMM allows to boost the
IOR score (from 81.18 to 99, 41 for CCC and from 72, 63
to 99, 97 for CC). The main limits of non-maxima suppres-
sion seem to be related to reduced recall (i.e., many detec-
tions are missed) and reduced classification precision (i.e.,
many detection are assigned the wrong class).

7. Conclusion

We have investigated how egocentric action recognition
methods should be evaluated. To overcome the limits of
current evaluation schemes, we have proposed a set of dif-
ferent measures aimed to provide both qualitative and quan-
titative performance assessment of egocentric action recog-
nition approaches. To better exploit current action classifi-
cation methods, we have also investigated how frame-wise
predictions can be turned into temporal segmentations. Ex-
periments on both synthetic and real data have shown that
the considered measures are highly descriptive and can be
used to get qualitative insights on the performance of meth-
ods. Future works will be devoted to extend experiments to
more egocentric datasets and state of the art methods.
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