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Abstract

We introduce SaltiNet, a deep neural network for scan-

path prediction trained on 360-degree images. The model is

based on a temporal-aware novel representation of saliency

information named the saliency volume. The first part of the

network consists of a model trained to generate saliency

volumes, whose parameters are fit by back-propagation

computed from a binary cross entropy (BCE) loss over

downsampled versions of the saliency volumes. Sampling

strategies over these volumes are used to generate scan-

paths over the 360-degree images. Our experiments show

the advantages of using saliency volumes, and how they

can be used for related tasks. Our source code and

trained models available at https://github.com/

massens/saliency-360salient-2017.

1. Motivation

Visual saliency prediction is a field in computer vision

that aims to estimate the areas of an image that attract the at-

tention of humans. This information can provide important

clues to human image understanding. The data collected for

this purpose are fixation points in an image, produced by a

human observer that explores the image for a few seconds,

and are traditionally captured with eye-trackers [30], mouse

clicks [13] and webcams [15]. The fixations are usually

aggregated and represented with a saliency map, a single

channel image obtained by convolving a Gaussian kernel

with each fixation. The result is a gray-scale heatmap that

represents the probability of each pixel in an image being

fixated by a human, and it is usually used as a soft-attention

guide for other computer vision tasks.

Traditionally, saliency maps have only described fixation

information with respect to the spatial layout of an image.

This type of representations only encode the probability of
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Figure 1: Scan-paths, saliency maps and temporally

weighted saliency maps can be generated from a saliency

volume.

each image pixel capture the visual attention of the user, but

with no information regarding the order in which these pix-

els may be scanned or the duration of the fixation. Recent

studies have raised the need for a representation that is also

temporal-aware [3]. We address the temporal challenge for

the particular case of 360◦ images, which contain the com-

plete scene around the capture point and allow the viewer to

choose the observation angle. Predicting the pattern that hu-

mans follow in 360◦ images is a topic of special interest for

VR/AR applications, as it facilitates an efficient encoding

and rendering on the display devices.

The main contributions of this paper are the following:

• the introduction of saliency volumes to capture the

temporal nature of eye-gaze scan-paths;

• the SaltiNet architecture to generate scan-paths from

a deep neural network that predicts saliency volumes

and a sampling strategy over them;

• this work has been awarded as the best scanpath solu-

tion at the Salient360! challenge from the IEEE Inter-

national Conference on Multimedia and Expo (ICME)

2017 [29].
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This paper is structured as follows. Section 2 reviews the

related literature in saliency prediction for eye fixations and

presents our work with respect to them. Section 3 presents

the whole architecture of the system, and Section 4 de-

scribes how the deep neural network was trained. Section

5 describes the experiments and results to assess the perfor-

mance of the model, while Section 6 draws the conclusions

and future work.

2. Related Work

2.1. Saliency prediction

The first models for saliency prediction were biolog-

ically inspired and based on a bottom-up computational

model that extracted low-level visual features such as in-

tensity, color, orientation, texture and motion at multiple

scales. Itti et al. [11] proposed a model that combines mul-

tiscale low-level features to create a saliency map. Harel et

al. [8] presented a graph-based alternative that starts from

low-level feature maps and creates Markov chains over var-

ious image maps, treating the equilibrium distribution over

map locations as activation and saliency values.

Though this models did well qualitatively, the models

had limited use because they frequently did not match ac-

tual human saccades from eye-tracking data. It seemed that

humans not only base their attention on low-level features,

but also on high-level semantics [3] (e.g., faces, humans,

cars, etc.). Judd et al. introduced in [14] an approach that

used low, mid and high-level image features to define salient

locations. This features where used in combination with

a linear support vector machine to train a saliency model.

Borji [1] also combined low-level features with top-down

cognitive visual features and learned a direct mapping to

eye fixations using Regression, SVM and AdaBoost calssi-

fiers.

Recently, the field of saliency prediction has made great

progress due to advance of deep learning and its applica-

tions on the task of image classification [16] [32]. The ad-

vances suggest that these models are able to capture high-

level features. As stated in [3], in March of 2016 there

where six deep learning models among the top 10 results

in the MIT300 saliency Benchmark [2].

The enormous amount of training data necessary to train

these networks makes them difficult to train directly for

saliency prediction. With the objective of allowing saliency

models to capture this high-level features, some authors

have adapted well-known models with good performance

in the task of Image Recognition. DeepGaze [17] achieved

state of the art performance by reusing the well-known

AlexNet [16] pretrained on ImageNet [7] with a network

on top that reads activations from the different layers of

AlexNet. The output of the network is then blurred, cen-

ter biased and converted to a probability distribution using

a softmax. A second version called DeepGaze 2 [19] used

features from VGG-19 [27] trained for image recognition.

In this case, they did not fine-tune the network. Rather,

some readout layers were trained on top of the VGG fea-

tures to predict saliency with the SALICON dataset [13].

This results corroborated that deep features trained on ob-

ject recognition provide a versatile feature space for per-

forming related visual tasks. A complete new architecture

designed and trained for saliency prediction was proposed

in [24], but the same work also observed the benefits of us-

ing deeper pre-trained models for image classification as a

basis. Other advances in deep learning such as generative

adversarial training (GANs) and attentive mechanisms have

also been applied to saliency prediction: SalGAN [23] is a

deep network for saliency prediction that measured the gain

in performance when using a universal adversarial training

in opposite to optimizing for a specific loss function. The

Saliency Attentive Model (SAM) [6] includes a Convolu-

tional LSTM that focuses on the most salient regions of the

image to iteratively refine the predicted saliency map.

In [28], Torralba et al. studied how the scene modules vi-

sual attention and discovered that the same objects recieve

different attention depending on the scene where they ap-

pear (i.e. pedestrians are the most salient object in only 10%

of the outdoor scene images, being less salient than many

other objects. Tables and chairs are among the most salient

objects in indoor scenes). With this insight, Liu et al. pro-

posed DSCLRCN [21], a model based on CNNs that also

incorporates global context and scene context using RNNs.

Their experiments have obtained outstanding results in the

MIT Saliency Benchmark.

Recently, there has been interest in finding appropiate

loss functions. Huang et al. [10] made an interesting contri-

bution by introducing loss functions based on metrics that

are differentiable, such as NSS, CC, SIM and KL diver-

gence to train a network (see [26] and [18]).

2.2. Scanpath prediction

Unlike with the related task of saliency map prediciton,

there has not been much progress in the task of scanpath

prediciton over the last years. Cerf et al. [4] discovered

that observers, even when not instructed to look for any-

thing particular, fixate on a human face with a probability

of over 80% within their first two fixations. Furthermore,

they exhibit more similar scanpaths when faces are present.

Recently, Hu et al. [9] have introduced a model capable

of selecting relevant areas of a 360◦ video and deciding

in which direction should a human observer look at each

frame. An object detector is used to propose candidate ob-

jects of interest and a RNN selects the main object at each

frame.
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Figure 2: Overall architecture of the proposed scanpath estimation system.

3. Architecture

The central element in the architecture of SaltiNet is a

deep convolutional neural network (DCNN) that predicts

a saliency volume for a given input image. This section

provides detail on the structure of the network, the loss

function, and the strategy used to generate scan-paths from

saliency volumes.

3.1. Saliency Volumes

Saliency volumes aim to be a suitable representation of

spatial and temporal saliency information for images. They

have three axes that represent the width and height of the

image, and the temporal dimension.

Saliency volumes are generated from information al-

ready available in current fixation datasets. First, the times-

tamps of the fixations are quantized. The length of the time

axis is determined by the longest timestamp and the quanti-

zation step. Second, a binary volume is created by placing

a ‘1’ at fixation points and a ‘0’ on the remaining positions.

Third, a multivariate Gaussian kernel is convolved with the

volume to generate the saliency volume. The values of each

temporal slice are normalized, converting the slice into a

probability map that represents the probability of each pixel

being fixated by a user at each timestep.

Figure 1 shows how saliency volumes are a meta-

representation of saliency information and how other

saliency representations can be extracted from them.

Saliency maps can be generated by performing an addition

operation across all the temporal slices of the volume, and

normalizing the values to ensure they add to one. A sim-

ilar representation are temporally weighted saliency maps,

which are generated by performing a weighted addition op-

eration of all the temporal slices. Finally, scan-paths can

also be extracted by sampling fixation points from the tem-

poral slices. Sampling strategies that aim to generate realis-

tic scan-paths are will be discussed in Section 5.3.

3.2. Convolutional Neural Network

We propose a convolutional neural network (CNN) that

adapts the filters learned to predict flat saliency maps to

predict saliency volumes. Figure 2 illustrates the architec-

ture of the convolutional neural network, composed of 10

layers and a total of 25.8 million parameters. Each con-

volutional layer is followed by a rectified linear unit non-

linearity (ReLU). Excluding the last layer, the architecture

follows the proposal of SalNet [24], whose first three lay-

ers are initialized from the VGG-16 model [5] trained for

image classification.

Our network was designed considering the amount of

training data available. Different strategies where intro-

duced to prevent overfitting. First, the model was previ-

ously trained on the similar task of saliency map predic-

tion, and the obtained weights were fine-tunned for the task

of saliency volume prediction. Second, the input images

where resized to [300 × 600], a much smaller dimension

than their initial size [3000 × 6000]. The last layer of the

network outputs a volume of size [12 × 300 × 600], with

three axis that represent time, height, and width of the im-

age.

3.3. Scan­path sampling

We take a stochastic approach to scan-path sampling1.

The generation of scan-paths from the saliency volumes re-

quires determining: 1) number of fixations of each scan-

path; 2) the duration in seconds of each fixation; and 3) the

location of each fixation point. The first two values were

sampled from their probability distributions learned from

the training data. The location of each fixation point was

also generated by sampling, this time from the correspond-

ing temporal slice from the predicted saliency volume. Dif-

1We also experimented with using an LSTM to directly predict scan-

paths from the training data. However, we found that this resulted in the

model regressing to the image center [22]. Future work will consider using

adversarial training to address this.
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Figure 3: Training curves for our model (binary cross en-

tropy loss.)

ferent strategies were explored for this purpose, presented

together with their performance in Section 5.

4. Training

We trained the CNN in SaltiNet over 36 images of the

40 training images from the Salient360 dataset [29], leaving

aside 4 images for validation. We normalized the values of

the saliency volumes to be in the interval of [0, 1]. Both the

input images and the saliency volumes were downsampled

to 600× 300 prior to training. The saliency volumes where

generated from fixations using a multivariate Gaussian ker-

nel with bandwidths [4, 20, 20] (time, height, width).

The CNN was trained using stochastic gradient descent

with cross entropy loss using a batch size of 1 image during

90 epoch. The binary cross entropy loss is defined as LBCE

in Eq. (1), where Sj and Ŝj correspond to the ground truth

and predicted values of the saliency map.

LBCE = −
1

N

N∑

j=1

Sj log(Ŝj) + (1− Sj) log(1− Ŝj).

(1)

During training, results on the validation set were

tracked to monitor convergence and overfitting problems.

The L2 weight regularizer (weight decay) was used to avoid

overfitting. Our network took approximately two hours to

train on a NVIDIA GTX Titan X GPU using the Keras

framework with the Theano backend. The learning rate was

set to α = 0.001 throughout training. Figure 3 shows the

learning curves.

5. Experiments

SaltiNet was assessed and compared from different per-

spectives. First, we assess the impact of different sam-

pling strategies to generate scan-paths from saliency vol-

umes. Second, we show quantitative performance results of

the model.

5.1. Datasets

Due to the small size of the training dataset, we per-

formed transfer learning to initialize the weights of the net-

work using related tasks. First, the network was trained to

predict saliency maps using the SALICON dataset [10] us-

ing the same architecture of SalNet [24]. Then, the network

was trained to predict saliency volumes generated from the

iSUN dataset [31] that contains 6000 training images. The

network was fine-tuned using the 60 images of the dataset

of head and eye movements provided by the University of

Nantes [25]. This dataset was acquired based on the images

displayed on the head mounted display (HMD) Oculus-

DK2. Eye gaze data was captured from a Sensomotoric

Instruments (SMI) sensor in the HMD, which transmitted

eye-tracking data binocularly at 60Hz. There were 40-42

observers, who could freely observe the scene with no task

instructed. Each 360 images were shown for 25 seconds

and there was a 5 second gray screen between two images.

5.2. Metric

The similarity metric used is a variation of the Jarodzka

algorithm [12] proposed by the authors of the 360 saliency

dataset [25]. The standard similarity criteria was slightly

modified to use equirectangular distances in 360 instead of

Euclidean distances. The generated and ground truth scan-

paths are matched 1 to 1 using the Hungarian algorithm to

obtain the minimum possible final cost. The presented re-

sults compare the similarity of 40 generated scan-paths with

the scan-paths in the ground truth.

5.3. Sampling strategies

Figure 4 shows the distribution of the number of fixa-

tions and the duration of each fixations for the training set.

During scan path generation, we sample the number of fix-

ations and their duration from these empirical distributions.

Regarding the spatial location of the fixation points,

three different strategies were explored. The simplest ap-

proach (1) consists of taking one fixation for each temporal

slice of the saliency volume. Through qualitative observa-

tion we noticed that scan-paths generated in this way were

unrealistic, as the probability of each fixation is not condi-

tioned on previous fixations. A more elaborated sampling

strategy (2) consists of forcing fixations to be closer to their

respective previous fixation. This is accomplished by mul-

tiplying a temporal slice (probability map) of the saliency
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Figure 4: Empirical distributions of the number of fixations

per scan-paths (top) and duration of each fixation (bottom).

Jarodzka↓

Random scan-paths 4.94

(1) Naive sampling strategy 3.45

(3) Avoiding fixating on same places 2.82

(2) Limiting distance between fixations 2.27

Sampling ground truth saliency map 1.89

Sampling ground truth saliency volume 1.79

Ground truth scan-paths 1.2e-8

Table 1: Comparison between the three considered spatial

sampling strategies. Lower values are better.

volume with a Gaussian kernel centered at the previous fix-

ation point. This suppresses the probability of positions that

are far from the previous fixation point. The third sampling

strategy (3) we assessed consisted of suppressing the area

around all previous fixations using Gaussian kernels. As

shown in Table 1, we found that the best performing model

was the one using sampling strategy (2).

5.4. Results

Scan-path prediction evaluation has received attention

lately and it is a very active field of research [20][12].

Table 1 presents the impact of different sampling strate-

gies over the saliency volume. We have compared our re-

sults with the accuracy that would be obtained by a model

that outputs random fixations, and a model that outputs the

ground truth fixations.

Table 2 compares our system with two other solutions

presented at the Salient360! Challenge [29] held at the 2017

IEEE ICME conference in Hong Kong. These figures were

provided by the organizers of the challenge. Results clearly

indicate the superior performance of our system with re-

Jarodzka↓

SaltiNet (Ours) 2.8697

SJTU 4.6565

Wuhan University 5.9517

Table 2: Comparison between three submissions to the

Salient360! Challenge. Lower values are better.

spect to the two other participants.

The performance of our model has also been explored

from a qualitative perspective by observing the generated

saliency volumes and scan-paths. Figure 5 compares a gen-

erated scan-path with a ground truth scan-path. Figure 6

shows two examples of ground truth and generated saliency

volumes.

6. Conclusions

In this work we have presented SaltiNet, a model ca-

pable of predicting scan-paths on 360◦ images. We have

also introduced a novel temporal-aware saliency represen-

tation that is able to generate other standard representations

such as scanpaths, saliency maps or temporally weighted

saliency maps. Our experiments show that it is possible to

obtain realistic scanpaths by sampling from saliency vol-

umes, and the accuracy greatly depends on the sampling

strategy.

We have also found the following limitations to the gen-

eration of scanpaths from saliency volumes: 1) the proba-

bility of a fixation is not conditioned to previous fixations;

2) the length of the scanpaths and the duration of each fixa-

tion are treated as independent random variables. We have

tried to address the first problem by using more complex

sampling strategies. Nevertheless, this three parameters are

not independently distributed and therefore our model is not

able to accurately represent this relationship. Future work

will aim at training a fully end-to-end neural network capa-

ble of prediction the scan-paths with no need of the sam-

pling module.

Our results can be reproduced with the source code and

trained models available at https://github.com/

massens/saliency-360salient-2017.
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(a) Example of predicted scan-path

(b) Example of ground truth scan-path

Figure 5: The top image shows a predicted scanpath, sam-

pled from a predicted saliency volume. The image at the

bottom shows a single ground truth scanpath.
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(b) Outdoor example
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