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Abstract

We present a first-person method for cooperative basket-

ball intention prediction: we predict with whom the cam-

era wearer will cooperate in the near future from unlabeled

first-person images. This is a challenging task that requires

inferring the camera wearer’s visual attention, and decod-

ing the social cues of other players. Our key observation

is that a first-person view provides strong cues to infer the

camera wearer’s momentary visual attention, and his/her

intentions. We exploit this observation by proposing a new

cross-model EgoSupervision learning scheme that allows

us to predict with whom the camera wearer will cooper-

ate in the near future, without using manually labeled in-

tention labels. Our cross-model EgoSupervision operates

by transforming the outputs of a pretrained pose-estimation

network, into pseudo ground truth labels, which are then

used as a supervisory signal to train a new network for a

cooperative intention task. We evaluate our method, and

show that it achieves similar or even better accuracy than

the fully supervised methods do.

1. Introduction

Consider a dynamic scene such as Figure 1, where you,

as the camera wearer, are playing basketball. You need to

make a decision with whom you will cooperate to maxi-

mize the overall benefit for your team. Looking ahead at

your teammates, you make a conscious decision and then

2-3 seconds afterwards you perform a cooperative action

such as passing the ball.

In a team sport such as basketball, an effective coopera-

tion among teammates is essential. Thus, in this paper, we

aim to investigate whether we can use a single first-person

image to infer with whom the camera wearer will cooperate

2-3 seconds from now? This is a challenging task because

predicting camera wearer’s cooperative intention requires

1) inferring his/her momentary visual attention, 2) decod-

ing dominant social signals expressed by other players who

want to cooperate, and 3) knowing who your teammates

are when the players are not wearing any team-specific uni-

First-Person  
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       Intention

     Ground Truth 

Cooperative Intention

Figure 1: With whom will I cooperate after 2-3 seconds?

Given an unlabeled set of first-person basketball images,

we predict with whom the camera wearer will cooperate 2

seconds from now. We refer to this problem as a cooperative

basketball intention prediction.

forms.

To make this problem even more challenging we ask

a question: “Can we infer cooperative basketball inten-

tion without manually labeled first-person data?”. Building

an unsupervised learning framework is important because

manually collecting basketball intention labels is a costly

and a time consuming process. In the context of a cooper-

ative basketball intention task, an annotator needs to have

highly specific basketball domain knowledge. Such a re-

quirement limits the scalability of the annotation process

because such annotators are difficult to find and costly to

employ.

However, we conjecture that we can learn cooperative

basketball intention in an unsupervised fashion by exploit-

ing the signal provided by the first-person camera. What

people see reflects how they are going to act. A first-

person camera placed on a basketball player’s head allows
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Figure 2: The illustration of our cross-model EgoSupervision training scheme. As our base model we use a multi-person

pose estimation network from [6], which predicts 1) pose estimates of all people in a given first-person image and 2) the

bounding boxes around each person. Next, we feed these outputs to an EgoTransformer, which transforms them such that the

transformed output would approximately capture the camera wearer’s attention and intentions. Then, we use such transformed

output as a supervisory signal to train the network for our cooperative basketball intention task.

us to indirectly tap into that person’s mind and reason about

his/her internal state based on what the camera wearer sees.

To do so we propose a novel cross-model EgoSupervi-

sion learning scheme, which allows us to learn the camera

wearer’s intention without the manually labeled intention

data. Our cross-model EgoSupervision scheme works as

follows. First we transform the output of a pretrained pose-

estimation network such that it would approximately reflect

the camera wearer’s internal state such as his/her visual at-

tention and intentions. Then, we use such transformed out-

put as a supervisory signal to train another network for our

cooperative basketball intention task. We show that such a

learning scheme allows us to train our model without man-

ually annotated intention labels, and achieve similar or even

better results as the fully supervised methods do.

2. Related Work

First-Person Vision. In the past, most first-person meth-

ods have focused on first-person object detection [29, 10,

40, 15, 2], or activity recognition [44, 43, 38, 31, 35, 13].

Several methods have employed first-person videos to sum-

marize videos [29, 34] while recently the work in [46] pro-

posed to predict the camera wearer’s engagement detection

from first-person videos. The work in [14] used a group

of people wearing first-person cameras to infer their social

interactions such as monologues, dialogues, or discussions.

The method in [37] predicted physical forces experienced

by the camera wearer, while the work in [26] recognized

the activities performed in various extreme sports. Several

recent methods [36, 45] also predicted the camera wearer’s

movement trajectories. Finally, first-person cameras have

also been used for various robotics applications [41, 18]

In comparison to these prior methods, we propose a

novel cooperative basketball intention prediction task, that

allows us to study cooperative behaviors of the basketball

players. Furthermore, we note that these prior first-person

methods (except [26]) rely on manually annotated labels

for their respective tasks whether it would be an object-

detection, activity recognition, intention prediction or some

other task. Instead, in this work, we demonstrate that we can

solve a challenging cooperative basketball intention predic-

tion task without using annotated first-person intention la-

bels, which are time consuming and costly to obtain.

Knowledge Transfer across Models. With the intro-

duction of supervised CNN models [27], there has been a

lot of interest in adapting generic set of features [11] for

different tasks at hand [22, 3, 16, 47, 39, 42]. Recently,

generic image classification features were successfully used

for the tasks such as edge detection [3, 47], object detec-

tion [16, 39, 42], and semantic segmentation [4, 32, 33, 7].

More related to our work, a recent line of research inves-

tigated how to transfer knowledge across different models

by a combination of parameter updates [1, 12, 24], transfor-

mation learning [28, 17], network distillation [21] or cross-

model supervision [23, 19]. The most similar to our work

are the methods in [23, 19] that use cross-model supervision

to transfer knowledge from one model to another.

All of the above methods focus on the third-person data.

In contrast, we show how to exploit a first-person view to

solve a novel camera wearer’s cooperative intention predic-

tion task without using manually labeled first-person data.
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3. Learning Cooperative Basketball Intention

The goal of our cooperative basketball intention task is to

predict with whom the camera wearer will cooperate in the

near future. Formally, we aim to learn a function g(Ii) that

takes a single first-person image Ii as an input and outputs

a per-pixel likelihood map, where each pixel indicates the

cooperation probability. Ideally, we would want such func-

tion to produce high probability values at pixels around the

person with whom the camera wearer will cooperate, and

low probability values around all the other pixels.

We implement g(Ii) via a fully convolutional neural net-

work based on the architecture of a multi-person pose esti-

mation network in [6]. Let ŷ denote a per-pixel mask that

is given to our network as a target label. We refer to ŷ as a

pseudo ground truth because we obtain it automatically in-

stead of relying on the manually annotated intention labels.

Then, we learn our cooperative basketball intention model

by optimizing the following cross-entropy loss objective:

L(i) = −
N
X

j=1

ŷ
(i)
j log gj(Ii) + (1− ŷ

(i)
j ) log (1− gj(Ii)) ,

(1)

where ŷ
(i)
j is the pseudo ground truth value of image Ii

at pixel j, gj(Ii) refers to our network’s output at pixel j,

and N denotes the number of pixels in an image. We now

explain how we obtain the pseudo ground truth data ŷ.

3.1. EgoTransformer

To construct a pseudo ground truth supervisory signal ŷ,

we transform the output of a pretrained multi-person pose

estimation network [6], such that it would approximately

capture the camera wearer’s internal state such as his/her vi-

sual attention, and intentions. We do so using our proposed

EgoTransformer scheme.

Let f(Ii) denote a pretrained fully convolutional net-

work from [6] that takes a first-person image as an input,

and outputs the 1) pose part estimates of every person in

an image, and 2) their bounding-box detections. We note

that the pretrained network f was never trained on any

first-person images. Then, formally, let B ∈ R
n×5 de-

note the bounding box of people detected by f . Each of

n detected bounding boxes is parameterized by 5 numbers

(x, y, h, w, c) denoting the top-left bounding-box coordi-

nates (x, y), the height h, and width w of the bounding

box, and its confidence value c. Additionally, let P ∈
R

n×18×2 denote the predicted (x, y) locations of 18 pose

parts (see [6]) for each of n detected people.

Then our goal is to come up with a transformation func-

tion T (B(i), P (i)) that takes these two outputs and trans-

forms them into a per-pixel pseudo ground truth mask ŷ(i)

for our cooperative basketball intention prediction task.

First-Person RGB Pseudo GT Ground Truth

Figure 3: Qualitative comparison of the pseudo ground truth

labels obtained via an EgoTransformer versus the actual

ground truth. Note that while the pseudo ground truth is

not always correct (see the third row), in most cases, it suc-

cessfully assigns high values around the player with whom

the camera wearer will cooperate (see the first two rows).

We do so by exploiting three different characteristics en-

coded in a first-person view: 1) egocentric location prior, 2)

egocentric size prior, and 3) egocentric pose prior. All of

these characteristics can be used to reason about the camera

wearer’s internal state.

For instance, the location where another person is de-

tected in a first-person image can be used to assess how

likely the camera wearer is looking at that person [31, 2].

The size of another person in a first-person image can be

used to infer how far the camera wearer is from that per-

son, and hence, how likely will the camera wearer inter-

act with that person (the nearer the more likely). Finally,

most person-to-person interactions involve people looking

at each other, which imposes a certain pose prior. We can

then use such a pose prior to predict whether two people

will cooperate with each other in the near future based on

whether another person is looking at the camera wearer at

present.

We express our pseudo ground truth data ŷ using these

three characteristics using what we refer to as an EgoTrans-

former scheme:

ŷ =
h

n
X

j=1

V (Bj , φsize(Bj)) · V (Bj , φpose(Bj))
i

· φloc(B)

(2)

where n denotes the number of detected bounding boxes

in a given image, Bj depicts a jth bounding box, V is a

function that takes two inputs: 1) a bounding box Bj , and 2)

a scalar value v, and outputs a H×W dimensional mask by

assigning every pixel inside this bounding box Bj to v, and
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Figure 4: The qualitative cooperative basketball intention prediction results. Despite not using any manually annotated

first-person labels during training, in most cases, our cross-model EgoSupervision method correctly predicts with whom the

camera wearer will cooperate (the first two rows). In the third row, we also illustrate two cases where our method fails to

produce correct predictions.

zeros to all the pixels outside Bj . Here, H and W depict the

height and the width of the original input image. Finally,

φsize(Bj) ∈ R
1×1 and φpose(Bj) ∈ R

1×1 are scalars that

capture the size and pose priors associated with a bounding

box Bj , while φloc ∈ R
H×W is a first-person location prior

of the same dimensions as the original input image.

Intuitively, the formulation above operates by first as-

signing a specific value to each of the detected bounding

boxes. This yields a H × W dimensional prediction map

where every pixel that does not belong to any bounding

boxes is assigned a zero value. Then, this prediction map

is multiplied with the location prior φloc ∈ R
H×W (us-

ing elementwise multiplication). Finally, all the values are

normalized to be in range [0, 1], which produces our final

pseudo ground truth labels. We now explain each of the

components in more detail.

Egocentric Location Prior. The location of the camera

wearer’s visual attention is essential for inferring his/her co-

operative intentions. We know that a first-person camera is

aligned with the person’s head direction, and thus, it cap-

tures exactly what the camera wearer sees. As a result, the

way the camera wearer positions himself with respect to

other players affects the location where these players will

be mapped in a first-person image.

Instead of assuming any specific location a-priori (e.g. a

center prior), as is done in [31, 29], we find the egocentric

location prior directly from the data. As before, Let B ∈
R

n×5 denote the bounding boxes detected by a pretrained

network. Then we can compute φloc ∈ R
H×W as follows:

φloc(B) =

n
X

j=1

V (B
(i)
j , c

(i)
j ) ·

1

N

N
X

i=1

n
X

j=1

V (B
(i)
j , c

(i)
j ))

where c
(i)
j is the predicted confidence of the jth bound-

ing box in the ith image. Intuitively, the first term
Pn

j=1 V (Bj , c
(i)
j ) depicts a H × W dimensional mask

that is obtained by assigning confidence values to all pix-

els in their respective bounding boxes in the current im-

age, and zero values to the pixels outside the bounding

boxes. The second term 1
N

PN

i=1

Pn

j=1 V (Bj , c
(i)
j )) also

depicts a H × W dimensional mask that is obtained us-

ing this same procedure but across the entire training train-

ing dataset rather than a single image. In other words, the

second term captures the locations in a first-person image

where the bounding box predictions are usually most dense.

We conjecture, that φloc(Ii) can then be used to approx-

imate the camera wearer’s visual attention location, which

is essential for inferring the camera wearer’s cooperative in-

tentions.

Egocentric Size Prior. Spatial 3D cues provides im-

portant information to infer the camera wearer’s inten-

tions [36, 45]. For instance, the camera wearer is more

likely to cooperate with a player who is near him/her. We

propose to capture this intuition, by exploiting an egocentric

size prior. We know that the size of a bounding box in a first-

person image is inversely related to the distance between the

camera wearer and the person in the bounding box. Thus,

let hj be the height of the bounding box Bj . Then we ex-

press the egocentric size prior φsize(Bj) ∈ R
1×1 for a given

bounding box as:

φsize(Bj) = exp (−
σ

hj

)

where σ denotes a hyperparameter controlling how much

to penalize small bounding boxes. Such a formulation al-

2358
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Figure 5: Several qualitative examples from the top 4 performing subjects in our conducted human study. Each subject

specified their prediction by clicking on the person, with whom he/she thought the camera wearer was going to cooperate.

We then placed a fixed size Gaussian around the location of the click. Note that based on these results, we can conclude that

some instances of this task are quite difficult even for humans, i.e. in these examples, there is no general consensus among

the subjects’ responses.

lows us to capture the intuition that the camera wearer is

more likely to cooperate with players who are physically

closer to him/her.

Egocentric Pose Prior. In basketball, people tend to

look at each other to express their intentions before actu-

ally performing cooperative actions. Detecting whether a

particular person is facing the camera wearer can be eas-

ily done by examining the x coordinates of the paired body

parts such as eyes, arms, legs, etc of a person detected in

a first-person image. For instance, if a particular person is

facing the camera wearer then, we will observe that for most

of his/her paired parts visible in a first-person image the fol-

lowing will be true: x(right_part) < x(left_part). In

other words, the right parts of that person’s body will have

smaller x coordinate value in a first-person image, than the

left parts. We use this intuition to encode the egocentric

pose prior φpose(Bj) ∈ R
1×1 for a given bounding box Bj

as follows:

φpose(Bj) =
1

|P|

X

p∈P

1{x(right_part) < x(left_part)}

where P is the set of all paired parts, and

1{x(right_part) < x(left_part)} is an indicator

function that returns 1 if the x coordinate of the right part

in a first-person image is smaller than the x coordinate of

the left part. The computed value φpose(Bj) can then be

viewed as a confidence that a person in the bounding box

Bj is facing the camera wearer, which is an important cue

for inferring the camera wearer’s cooperative intentions.

Pseudo Ground Truth. We then combine all the above

discussed components into a unified framework using the

Equation 2. Such a formulation allows us to automatically

construct pseudo ground truth labels from the outputs of a

pretrained multi-person pose estimation network. We illus-

trate several examples of our obtained pseudo ground truth

labels in Figure 3. Notice that while our computed pseudo

ground truth is not always correct, in many cases it correctly

captures the player with whom the camera wearer will coop-

erate in the near future. In our experimental section, we will

demonstrate that despite the imperfections of our pseudo

ground truth labels, we can use them to obtain a model that

is almost as good as the model trained in a fully supervised

fashion using manually annotated cooperation labels.

3.2. Cross-Model EgoSupervision

After obtaining the pseudo ground truth data ŷ, we train

our cooperative basketball intention FCN using the cross-

model EgoSupervision scheme as shown in Figure 2. We

employ a multi-person pose estimation network from [6] as

our base model, which is used to predict the 1) pose esti-

mates of all people in a given image and 2) their bounding

boxes. The parameters inside the base network are fixed

throughout the entire training procedure. At each iteration,

the outputs from the base network are fed to the EgoTrans-

former, which transforms them into the pseudo ground truth

cooperate intention labels. These pseudo ground truth la-

bels are then used as a supervisory signal to train our co-

operative basketball intention FCN using a sigmoid cross

entropy per-pixel loss as illustrated in Equation 1.

3.3. Implementation Details

For all of our experiments, we used a Caffe deep learn-

ing library [25]. As our base FCN model we used a multi-

person pose estimation network from [6]. Inspired by the

success of this method, we also used the same architec-

ture for our cooperative basketball intention FCN. During

training, we optimized the network for 5000 iterations with

a learning rate of 10−7, the momentum equal to 0.9, the

weight decay of 0.0005, and the batch size of 15. The

weights inside the base FCN network were fixed through-

out the entire training procedure. To compute the egocentric
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Human Subjects Accuracy

Subject-4 0.802

Subject-2 0.895

Subject-3 0.901

Subject-5 0.904

Subject-1 0.927

Table 1: Quantitative human study results on our coopera-

tive basketball intention task. We ask 5 subjects to predict

a player in the first-person image, with whom they think

the camera wearer will cooperate after 2 seconds. We then

compute the accuracy as the fraction of correct responses.

The results indicate that most subjects achieve the accuracy

of about 90%. We conjecture that Subject-4 may be less

familiar with the basketball game thus, the lower accuracy.

size prior mask we used σ = 10.

4. Cooperative Basketball Intention Dataset

We build upon the dataset from [5], which captures first-

person basketball videos of 48 distinct college-level players

in an unscripted basketball game. The work in [5] studies a

basketball performance assessment problem, and provides

401 training and 343 testing examples of basketball cooper-

ations among players from 10.3 hours of videos.

To obtain ground truth labels corresponding to the spe-

cific players, with whom the camera wearer cooperated, we

look at the video segments corresponding to all such coop-

eration. We then identify the player with whom the camera

wearer cooperated, go back to the frame about 2 seconds

before the cooperation happens, and label that player with

a bounding box. The ground truth data is then generated by

placing a Gaussian inside the bounding box, according to

the height and width of the bounding box.

Once again we note that these labels are only used for the

evaluation purposes, and also to train other baseline models.

In comparison, our method learns to detect the players with

whom the camera wearer will cooperate, without relying on

manually annotated intention labels.

5. Experimental Results

In this section, we present quantitative and qualitative

results for our cooperative basketball intention prediction

task. To compute the accuracy of each method, we select the

player in the image with the maximum predicted probability

as the the final prediction and then compute the fraction of

all the correct predictions across the entire testing dataset.

5.1. Human Study

First, to see how well humans can predict cooperative

basketball intention from first-person images, we conduct a

human study consisting of 5 human subjects. Each subject

Method Accuracy

DCL [30] 0.222

MPP-pretrained [6] 0.586

DeepLab‡ [9] 0.644

Pseudo GT 0.665

ResNet-50‡ [20] 0.675

PSPNet‡ [48] 0.695

ResNet-101‡ [20] 0.706

DeepLab-v2‡ [8] 0.757

MPP-finetuned‡ [6] 0.778

CMES 0.775

Table 2: The quantitative cooperative basketball inten-

tion results evaluated as the fraction of correct predictions.

We compare our Cross-Model EgoSupervision (CMES)

scheme with a variety of supervised methods (marked by

‡). These results indicate that even without using manually

annotated intention labels, our method outperforms most

supervised methods, and produces almost identical perfor-

mance as our main baseline “MPP-finetuned”.

is shown 343 testing images one at a time, and asked to

click on the player in an image, with whom he/she thinks

the camera wearer will cooperate 2 seconds from now. Then

the accuracy of each subject is evaluated as the fraction of

correct responses.

We present these results in Table 1, and demonstrate that

this task is not trivial even for humans: most of the subjects

achieve about 90% accuracy on our task, which is solid but

not perfect. We also point out that we did not collect in-

formation on how familiar each subject was with basket-

ball. However, based on the results, we conjecture that

Subject-4 who achieved almost 10% lower accuracy than

the other subjects was probably not very familiar with bas-

ketball, which contributed to his lower performance. In Fig-

ure 5, we also visualize the qualitative examples that human

subjects found the most difficult, i.e. in these instances, the

predictions among the subjects differed substantially.

5.2. Quantitative Results

In Table 2, we present quantitative cooperative basket-

ball intention results of our method and several other base-

lines. As our baselines, we use a collection of meth-

ods that were successfully used for other computer vi-

sion tasks such as image classification, semantic segmen-

tation or saliency detection. These include a 1) Deep Con-

trast Saliency (DCL) method [30], 2-3) several variations

of highly successful DeepLab semantic segmentation sys-

tems [9, 8] adapted to our task, 4-5) image classification

ResNets [20] adapted to our task, 6) one of the top perform-

ing semantic segmentation systems PSPNet [48], 7-8) a pre-

trained and finetuned multi-person pose estimation (MPP)

network [6], and 9) a pseudo ground truth obtained from
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Accuracy

Method pseudo GT Trained Model

no φloc 0.481 0.560

no φpose 0.557 0.694

no φsize 0.571 0.731

Ours-Full 0.665 0.775

Table 3: The quantitative ablation studies documenting

the importance of each component in our EgoTransformer

scheme. We separately remove each of φloc, φsize, φpose

and investigate how the accuracy changes. The second col-

umn in the table denotes the accuracy of a pseudo ground

truth, while the third column depicts the accuracy of our

trained model. Based on these results, we can conclude that

each component of our EgoTransformer is essential for an

accurate cooperative basketball intention prediction.

our EgoTransformer.

Note that our Cross-Model EgoSupervision (CMES)

method is based on an MPP network architecture [6], and

thus, as our main baseline we use the “MPP-finetuned”

method, which uses the manually labeled bounding box in-

tention labels to infer with whom the camera wearer will

interact. In contrast to this baseline, our CMES method is

only trained on the automatically generated pseudo ground

truth labels. We note that the supervised methods employ-

ing manually labeled data are marked with ‡. We now dis-

cuss several interesting observations based on these results.

Comparison with the Supervised Methods. Based on

the results, we observe that despite not using manually an-

notated bounding box intention labels, our method outper-

forms a number of supervised baselines and achieves almost

equivalent results to our main baseline “MPP-finetuned”,

which was trained using manually annotated cooperative in-

tention labels. Thus, these results indicatee the effectiveness

of our cross-model EgoSupervision scheme.

Comparison with the Pseudo Ground Truth. One in-

teresting and a bit surprising observation from Table 2, is

that our cross-model EgoSupervision model achieves sub-

stantially better accuracy than the pseudo ground truth,

which was used to optimize our model. We conjecture

that this happens due to the following reasons. The pseudo

ground truth labels are constructed using three different sig-

nals: 1) an egocentric location prior, 2) an egocentric size

prior, and 3) an egocentric pose prior. Note, that our con-

structed pseudo ground truth does not incorporate any vi-

sual appearance information, i.e. it does not consider how

the players look like. In contrast, during training, our net-

work, learns what are the visual appearance cues indicative

of the players with high pseudo ground truth values. Ar-

guably, such visual cues provide a stronger signal for a co-

operative intention recognition, which then leads to a sub-

stantially better performance than the pseudo ground truth

labels.

First-Person RGB FCN Activations Ground Truth

Figure 6: The visualization of the activation values inside

the second to last layer in our trained network. Note that the

network produces high activation values around the faces

of the players in the camera wearer’s field of view. This

makes intuitive sense, as facial expressions provide the most

informative cues for a cooperative basketball intention task.

5.3. Qualitative Results

In Figure 4, we present our qualitative results, where we

show that in most cases, our model successfully learns to

predict with whom the camera wearer will cooperate. Fur-

thermore, to gain a better understanding of what the net-

work learned, in Figure 6, we visualize the activations in-

side the second to last FCN’s layer. Note that our network

has high activation values around the faces of people with

whom the camera wearer intends to cooperate. This makes

intuitive sense, as face is probably the most useful cue to

recognize the camera wearer’s intention to cooperate.

5.4. Ablation Experiments

In Table 3, we present the results analyzing the behavior

of our EgoTransformer scheme. Earlier we discussed that

to implement our EgoTransformer scheme we exploit three

characteristics: 1) egocentric location prior φloc , 2) egocen-

tric size prior φsize , and 3) egocentric pose prior φpose. We

want to investigate how much each of these priors affect 1)

the quality of our generated pseudo ground truth data, and 2)

the quality of our model trained using such pseudo ground

truth. To do this, we run experiments with three baselines

where for each baseline we remove one of φloc, φsize, or

φpose components. We denote these three baselines as “no

φloc”, “no φsize” and “no φpose” respectively. Finally, we

include the results of our model using the full EgoTrans-

former scheme.

Based on the results in Table 3, we first observe that each

of these components have a significant impact to the quality
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of pseudo ground truth that we obtain. Specifically, using

our full model yields 9.4% better pseudo ground truth re-

sults than the second best baseline. Additionally, note that

the network trained to the pseudo ground truth of our full

model achieves 4.4% higher accuracy than the second best

baseline. These results indicate that each component in our

EgoTransformer scheme is crucial for learning a high qual-

ity cooperative intention model.

6. Conclusions

In this work, we present a new task of predicting coop-

erative basketball intention from a single first-person im-

age. We demonstrate that a first-person image provides

strong cues to infer the camera wearer’s intentions based

on what he/she sees. We use this observation to design a

new cross-model EgoSupervision learning scheme that al-

lows us to predict with whom the camera wearer will coop-

erate, without using manually labeled intention labels. We

demonstrate that despite not using such labels, our method

achieves similar or even better results than fully supervised

methods.

We believe that our proposed cross-model EgoSupervi-

sion scheme could be applied on various other first-person

vision tasks without the need to manually collect labels for

each of such tasks. In the long run, a learning scheme such

as ours could effectively replace the supervised methods,

which require costly and time consuming annotation pro-

cess.
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