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Abstract

We describe a new image dataset, the Egocentric, Man-

ual, Multi-Image (EMMI) dataset, collected to enable the

study of how appearance-related and distributional proper-

ties of visual experience affect learning outcomes. Images

in EMMI come from first-person, wearable camera record-

ings of common household objects and toys being manu-

ally manipulated to undergo structured transformations like

rotation and translation. We also present results from ini-

tial experiments, using deep convolutional neural networks,

that begin to examine how different distributions of train-

ing data can affect visual object recognition, and how the

representation of properties like rotation invariance can be

studied in novel ways using the unique properties of EMMI.

1. Introduction

Humans are fundamentally egocentric learners. Ev-

erything we learn comes in through our first-person senso-

rimotor systems. For example, the experiences that make

up our “training data” to learn a task like object recognition

are, for the most part, first-person views of our immediate

surroundings. (The advent of television and the Internet has

altered this somewhat, as we now have ready access to ar-

bitrary images, but at least for many thousands of years of

human existence, visual learning was necessarily driven by

direct, first-person views of the world around us.)

First-person views can be characterized, and indeed

are constrained, in two important ways. First, there

are appearance-related properties inherent to first-person

views, i.e., properties that are intrinsic and local to the views

themselves. In contrast to distal views, for example, first-

person views often contain close-ups of objects held by the

viewer, with hands clearly visible [4, 19, 6, 17, 10].

Second, there are distributional properties of first-person

views, i.e., non-local properties that involve relationships

among all of the various first-person views experienced by a

Figure 1. Structure of Egocentric, Manual, Multi-Image (EMMI)

dataset, to support research on how appearance-related and distri-

butional properties of first-person visual experience affect visual

learning. (EMMI images brightened for PDF viewing.)

learner. For example, in contrast to distal views, which may

have arbitrary distributions of content, first-person views

will contain many views of the same objects or places, due

to the fact that the viewer exists as a physical entity at a

particular time and place in the world [11, 9].

Developmental psychology has begun to study how both

types of properties play a role in human learning. For ex-

ample, several studies now use wearable cameras to capture

first-person views from young children in age ranges typi-

cally characterized by massive increases in object recogni-

tion ability [27]. These studies have found, for example,

that toddlers obtain wonderfully clear, close-up, and un-

obstructed views of single objects—an appearance-related

property—because they are old enough to reliably hold

objects but young enough that their arms are quite short,

which automatically brings the object close to the child’s

eyes [26]. Another study of infants in home settings found

that views of objects are not uniformly distributed across

object categories but instead strongly favor early-learned

categories—a distributional property [9].

Of course, observing such properties in the first-person

visual experiences of children, and even matching these
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Figure 2. Top: Subset of EMMI objects. Bottom: Mug rotating around the Y + axis. (EMMI images brightened for PDF viewing.)

properties to individual learning outcomes, does not by it-

self prove that these properties affect learning; observa-

tional studies can show correlation but not causation. Alter-

nately, experimental studies with children (e.g., in lab set-

tings) can manipulate children’s experiences and then ob-

serve effects on learning in order to establish causal links,

but are typically limited in ecological validity; lab studies

can explain short-term learning scenarios but are harder to

generalize to long-term childhood development.

A third approach is to use machine learning as an exper-

imental platform to study relationships between properties

of first-person visual experience and learning. While such

computational experiments cannot directly tell us about pro-

cesses of human learning, they can tell us something about

the sufficiency of different combinations of representations,

algorithms, and data for producing certain learning out-

comes. Moreover, through systematic experimentation, we

can begin to quantify the effects that these properties have

on learning. Results will not only help us better understand

visual learning in people but also will advance the state of

the art in machine learning and computer vision.

Here, we describe a new image dataset collected to

enable the study of how appearance-related and distri-

butional properties of visual experience affect learning

outcomes, called the Egocentric, Manual, Multi-Image

(EMMI) dataset. Images in EMMI come from first-person,

wearable camera recordings of common household objects

and toys being manually manipulated to undergo structured

transformations. What is unique about EMMI compared to

many existing object recognition datasets is the number of

distinct views generated per object (∼6,000 image frames

per object), combined with the coherence of views con-

tained in these images (e.g., continuously varying, known

rotations along different axes, etc.). Taken across a diver-

sity of objects (30 objects per category) and categories (12

categories), this comes to over 2 million images in total.

We also present results from initial experiments that

combine EMMI with convolutional neural networks to

examine how different distributions of training data can af-

fect visual object recognition, and how properties like rota-

tion invariance can be studied in novel ways.

In particular, we investigate how the number of train-

ing images available per object, and the number of objects

available per category, affect recognition performance, and

how, at classification time, continuously varying views of

the same object (e.g., a mug) smoothly alter the recognition

behavior of the network (e.g., when the handle is in view

vs. when it is hidden).

2. Related work

Many common object recognition datasets (e.g., Ima-

geNet, Microsoft COCO, etc.) contain only one image per

real-world object, a.k.a. the “Google image search” style

of dataset. While these datasets have driven much excit-

ing research in computer vision in recent years, they are,

by their construction, limited in their applicability for sup-

porting experiments on the effects of appearance-related or

distributional properties of training inputs, such as the num-

ber of images or types of views available per object.

Several existing datasets do begin to fill this gap, as listed

in Table 1. Each of these datasets contains more than one

naturally captured image per object. We do not include syn-

thetic image manipulations in this table, such as artificially

skewing or scaling original images to create new ones.

The Egocentric, Manual, Multi-Image (EMMI) dataset

presented in this paper continues and extends these prior

efforts by providing a more structured and more dense sam-

pling of viewpoints for objects in a variety of common cat-

egories. While other datasets have captured viewpoint vari-

ations (e.g., COIL, NORB, RGB-D, iLab-20M, etc.), many

of these datasets have captured only a discrete collection of

viewpoints, using, for example, a turntable turned to every

3◦. EMMI contains images captured continuously at 30fps

spanning full object rotations along all three rotational axes,

as well as horizontal, vertical, and front-to-back (i.e., zoom-

ing) object translations.

Also, while at least one other dataset has captured

manually performed, continuously varying rotations (e.g.,

iCubWorld-Transformations), these rotations are labeled

only by broad type of rotation (e.g., in-plane or in-depth),

and thus for a given image frame, specific pose information

is not immediately available (i.e., would need be annotated).
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Table 1. Review of image datasets that contain multiple real (i.e., not synthetically generated) images of the same physical object.

Dataset Categories (labels) Objs/cat
Rotated

views/obj
Other variants Imgs/obj Total imgs

COIL-100 [20] 100 (household: mug, cup, can, bubblegum,

block house, etc.)

∼1 72 n/a 72 7,200

SOIL-47 [8] 47 (household: cereal, crackers, mug, lightbulb,

etc.)

∼1 21 lighting 42 1,974

NORB1 [16] 5 (four-legged animal, human figure, airplane,

truck, car)

10 324 lighting 1,944 97,200

ALOI [13] 1000 (household: tissues, duck, pineapple, ball,

etc.)

∼1 75
lighting direction,

lighting color
111 110,250

3D Object [23] 8 (bike, shoe, car, iron, mouse, cellphone, sta-

pler, toaster)

10 24 zooming 72 ∼7,000

Intel Egocentric5,6 [22] 42 (household: bowl, cup, wallet, scissors, etc.) 1 various
background,

manual activity
1,600 70,000

RGB-D2 [14] 51 (household: mushroom, bowl, stapler, key-

board, etc.)

3-14 750 camera resolution >750 250,000

BigBIRD2 [25] 100 (household: crayon, toothpaste, cereal, etc.) ∼1-8 600 n/a 600 60,000

iCubWorld-Trfms.3,5 [21] 20 (household: lotion, book, phone, flower, etc.) 10 ∼1200

lighting,

background,

zooming

∼2,000 ∼200,000

iLab-20M [7] 15 (vehicles: boat, bus, car, tank, train, etc.) 25-160 88
lighting,

background, focus
>18,480 21,798,480

CORe502,4,5,6 [18] 10 (plug, phone, scissors, lightbulb, can,

glasses, ball, marker, cup, remote)

5 ∼1

indoor/outdoor,

slight handheld

movement

∼300 164,866

EMMI5,6,7 [this paper] 12 (cup, mug, spoon, ball, cat, duck, horse,

giraffe, car, truck, airplane, helicopter)

30 ∼4,200
translating,

zooming
∼6,600 ∼2,300,000

1 Stereo pair images are not included in image counts. 2 Images collected as RGB-D video. 3 Updated counts taken from dataset website.
4 From arXiv preprint. 5 Handheld objects. 6 Egocentric video. 7 Expected EMMI dataset size by date of publication.

Manual rotations and other transformations in EMMI were

timed to follow fixed patterns, so that estimates of object

pose can be calculated for the majority of EMMI images.

As a final note on datasets, the datasets in Table 1 can

also be divided by whether objects are on a table or other

fixed surface (e.g., COIL, NORB, etc.) versus handheld

(e.g., Intel, iCubWorld-Transformations, CORe50). Be-

cause objects in EMMI are handheld, images do contain

some occlusions, which are unstructured; people collect-

ing EMMI data were instructed to hold objects naturally

while performing each object manipulation. Thus, EMMI

may also be interesting as a testbed for studying the man-

ual affordances of objects. For example, smaller objects in

EMMI are often held with one hand, while larger objects in

EMMI require holding with two hands.

How do datasets like the ones in Table 1 support study-

ing how appearance-related and/or distributional properties

affect learning? Obviously, many studies (practically all

object recognition research) aims to deal with appearance-

related and/or distributional properties of inputs, though of-

ten, the goal is to achieve invariance with respect to these

properties—for example, a classifier that can recognize a

mug in many different poses, or a learning algorithm whose

performance does not depend on the distribution of training

examples. Fewer studies explicitly examine the effects of

such variations on learning.

Perhaps the largest bodies of relevant work are in active

learning [24] and curriculum learning [5]. In active learn-

ing, the learner tries to choose, from a large pool of available

training examples, which examples it would like to learn

from next. In curriculum learning, an external agent tries

to order training examples in such a way as to maximize

learning outcomes for the learner, similar to the way that, in

human education, a teacher can order material into a coher-

ent “curriculum,” to best scaffold the learning processes of

a student. Both of these approaches highlight the ideas that

both the content and ordering of training matters for learn-

ing. In one interesting demonstration, a study attempted to

quantify the “learning value” contained in different training

examples or subsets of examples [15].

Finally, we give two examples of studies that are very

similar to the experimental work presented in the second

half of this paper, and that exemplify the kinds of research

that can be supported by the EMMI dataset. A study using

the iCubWorld-Transformations dataset looked at effects of

different distributions of training images on object recogni-

tion performance, based on the type of transformation rep-

resented in the images (e.g., rotation, zooming, etc.) or on

the number of distinct images used per object [21]. A study

using wearable camera data collected from adults and in-
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Figure 3. Comparison of images from EMMI (top) and ImageNet (bottom). For EMMI images, household objects (left) are real, functional

objects, though they do come in “adult” and “kiddie” versions. Animals (center) and vehicles (right) are replicas, either “realistic” scale

models or “cartoony” toy objects. (EMMI images brightened for PDF viewing.)

fants playing with toys looked at how differing object sizes

(i.e., handheld objects appear smaller to adults but larger

to infants, due to differences in arm length) affect object

recognition [3]. Both of these studies were conducted by

fine-tuning a pre-trained deep network on different training

sets, which is also the approach we use here (see Section 4).

3. EMMI Dataset Collection

Selection of categories. EMMI contains 12 categories,

roughly grouped into three super-categories: household

items (cup, mug, spoon, ball), animals (duck, cat, horse,

giraffe), and vehicles (car, truck, airplane, helicopter). To

maximize the usefulness of EMMI for comparisons with

studies of human learning, all 12 of these categories are

among the most common early-learned nouns for typically

developing children in the U.S. [12]. Categories were se-

lected both to provide ample shape variety in each super-

category (e.g., spoon vs. ball, duck vs. cat, etc.) as well as

shape similarity (e.g., cup vs. mug, car vs. truck, etc).

Selection of objects. Each category contains 30 differ-

ent objects purchased from a combination of local house-

hold and toy stores, and Amazon.com. Individual objects

were selected to provide variety within each category. In

the super-category of “household items,” objects are func-

tional, real-world examples of that category, i.e., real cups,

mugs, spoons, and balls (though we did include both adult

and “kiddie” versions, see Figure 3). For both animals and

vehicles, in contrast, we cannot include real ducks, cars,

or helicopters, and so these objects are replicas. In these

categories, we included both realistic, scaled-down model

objects as well as “cartoony” toy objects (see Figure 3).

Recording devices and format. All videos were

recorded using Pivothead Original Series wearable cameras,

which are worn like a pair of sunglasses and have the cam-

era located just above the bridge of the wearer’s nose. Spe-

cific Pivothead settings included: video resolution set to

1920 x1080; frame rate set to 30 fps; quality set to SFine;

focus set to auto; and exposure set to auto.

Canonical views. For all objects, we defined a canoni-

cal view, which has the object held at a specified orientation,

roughly centered in front of the camera-wearers eyes. For

cups, the canonical view is defined as the object held up-

right. For mugs, the canonical view is defined as upright

with the handle pointing to the right. For spoons, likewise,

the canonical view has the handle pointed to the right and

the bowl of the spoon turned up. For animals and vehicles,

the canonical view is defined as the object facing towards

the left (or standing with its head towards the left side, if its

face is not aligned with its body).

Object videos. For each object, a set of 12 videos was

recorded, as detailed in Table 2. For all rotations, each video

contains two full revolutions of the object, over a fixed time

course of about 20 seconds. For translations, each video

contains three back-and-forth translations starting from the

minus end of each axis, over a fixed time course of about

20 seconds. Rotations and translations were controlled to

have an approximately constant velocity over the 20 second

duration of the video. To do this, we developed a set of

audio “temporal instruction templates” that camera-wearers

would listen to while creating each video. Thus, the pose

of the object in every frame of a given video can be esti-

mated according to the time of the frame.

Table 2. Set of 12 videos collected per object in EMMI.

Label Description Time (s)

absent background shot 2

present steady hold at canonical view 2

rotation, X+ somersaulting towards viewer 20

rotation, X- somersaulting away from viewer 20

rotation, Y+ in-plane clockwise rotation 20

rotation, Y- in-plane counter-clockwise rotation 20

rotation, Z+ spinning (like a carousel) to the right 20

rotation, Z- spinning (like a carousel) to the left 20

translation, X horizontal, back-and-forth motion 20

translation, Y in depth, back-and-forth (zooming) motion 20

translation, Z vertical, back-and-forth motion 20

hodgepodge unstructured object motion 20

Recording procedures. Objects were semi-randomly
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assigned to several individual camera-wearers (all members

of our research lab) for data collection. Efforts were made

to ensure that no individual was over-represented in any cat-

egory or object size class, to reduce any biases related to

specific personal attributes or individual hand gestures. All

videos were collected in an indoor setting against a white

wall. No requirements were set as to time of day or specific

lighting conditions, so there is variation in lighting across

different objects (as can be seen in the example images in

Figure 3).

Video-to-image conversion for experiments. The ex-

periments described here used EMMI after the first half of

data collection was complete, i.e. 15 objects per category

across 12 categories, instead of the full 30 objects per cate-

gory. Object videos were converted to images in jpeg format

using FFmpeg. Around 1.2 million images were generated

in this way. However, due to the limited field of view of the

Pivothead wearable camera, we found that in some images,

the object was almost or completely out of the image frame.

To eliminate these “blank” images, the whole dataset was

first used to re-train the Inception v3 neural network (as

described in Section 4), with all 12 categories plus a 13th

“blank” category that contained images from the “absent”

videos, i.e., videos that recorded background only (see Ta-

ble 2). The re-trained neural network was then applied back

to the whole dataset to screen for “blank” images. About

10,000 “blank” images (∼1%) were found using this clas-

sifier and, after manual confirmation, were subsequently re-

moved for the experiments that are described next.

4. Methods

For initial, proof-of-concept experiments with EMMI,

we used the transfer learning methodology appearing in

many recent studies, e.g., [21, 3], which involves re-training

the last layer of a pre-trained, deep convolutional neural net-

work. Specifically, we used the ImageNet ILSVRC 2012

pre-trained Inception v3 network as a fixed feature extrac-

tor, and then re-trained the last layer using various subsets

of our data to study the effects of different training regimes

on object recognition performance. We used the Tensorflow

software library for all experiments [2].

Inception is a representative convolutional neural net-

work that has been shown to be highly successful in im-

age recognition tasks [28]. The Inception v3 model we

used here was pre-trained on the ImageNet ILSVRC 2012

dataset, which contains 1.2 million images from 1,000 cat-

egories. As a note on the pretrained network, most EMMI

categories did appear in the original 1,000 categories used

for pretraining—all except for helicopter, giraffe, horse, and

duck. As the architecture of Inception v3 has been de-

scribed extensively in other sources, we omit any detailed

description here and refer readers to [28]. We conducted

two experiments using the Inception v3 re-training method-

ology, using resources from the Tensorflow library [2].

Experiment 1, looking at object diversity, varied the

number of objects per category used for re-training, with the

total number of training images per category fixed at 1100

across conditions. For example, with one object per cate-

gory, each of the 12 categories is represented by 1100 im-

ages of a single object from that category. With two objects

per category, each category is represented by 1100 images

uniformly drawn from two objects-550 images per object on

average. As a comparison, we also used images from Ima-

geNet for retraining, with 1100 images per category (which

corresponds to having 1100 objects per category, since Im-

ageNet essentially has one image per physical object).

Experiment 2, looking at object view diversity, varied

the number of images per object used for re-training, with

the total number of objects per category fixed at 12 across

conditions, and the number of training images per category

(drawn uniformly across the 12 objects) varied from 24—

i.e., average of 2 images per object—to 1100—i.e., average

of 92 images per object. Here, average number of images

per object, drawn uniformly across all EMMI videos (ex-

cept hodgepodge), is used to approximate views per object.

Both experiments were conducted using EMMI after

data collection was halfway complete (15 objects per cat-

egory out of the full 30 objects). For both experiments,

training images were sampled uniformly across all videos

in EMMI, excluding the hodgepodge videos. We generated

different training datasets with these varying numbers and

compositions of images from EMMI, and then retrained In-

ception v3 on each respective training dataset. For retrain-

ing, we modified a publicly available retraining script [1]

published as part of the Tensorflow software package [2].

We used images from ImageNet, with 100 images sam-

pled from each of the 12 EMMI categories, as the test set.

Note that the choice of using ImageNet images (instead

of hold-out EMMI images) as the test set for our exper-

iments was deliberate. We aimed to explore how well

training on a small number of handheld, often toy objects

would be able to generalize to the very different objects rep-

resented in ImageNet (e.g., training on toy cats to recognize

real cats). Certainly other testing approaches would also be

interesting and will be pursued in future work.

5. Results

5.1. Experiment 1: Object diversity

In our first experiment, as described in Section 4, we

tested how changing the number of distinct, physical ob-

jects represented in each category would affect recognition

performance, with the total number of training images per

category held constant. Training was done using images

from the EMMI dataset, and testing was done using images

from ImageNet. Results are shown in Figure 4.
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Figure 4. Experiment 1: Top-1 error rate on ImageNet test set as

a function of object diversity in EMMI training set, ranging from

1 to 15 distinct physical objects per category, with total number

of training images per category held constant at 1100. (Random

baseline error rate for 12 categories is 11

12
≈ 92%.)

Using a training set with images of only a single EMMI

object per category (i.e., 1100 images of a single object)

yields an error rate of 51.92%, which while not excellent,

is well below the random-guessing baseline error rate of

91.7%. Adding a second object (i.e., about 550 images of

each of two objects) further reduces error to 45.83% Adding

more objects per category (with total training images per

category fixed at 1100) continues to improve performance

significantly, with our final experiment using 15 objects per

category yielding an error rate of just over 20%.

We also aimed to characterize the performance improve-

ment by computing best-fit lines using both linear and expo-

nential models. As shown in Figure 4, the exponential curve

yields a better fit. Therefore, at least from the perspective of

this model fitting, it appears that increasing object diversity

will reduce the error rate in an exponential manner, with

much greater improvements in performance for the first few

added objects, and smaller increases thereafter.

Confusion matrices for results using 1 object per cate-

gory and 15 objects per category are shown in Figure 6A

and 6B, respectively. With fewer objects per category dur-

ing training, there tend to be more false positives in certain

categories. Increasing the number of objects per category

during training greatly reduces the false positive rate.

For comparison, we performed the same retraining pro-

cedure using a training set drawn from ImageNet with 1100

images per category, corresponding to 1100 distinct objects

per category. (This “data point” could be imagined to fall

at the point x = 1100 on the plot shown in Figure 4.) The

error rate obtained for this ImageNet retraining was 4.9%,

and the confusion matrix is shown in Figure 6F.

Plugging in 1100 into the best-fit exponential curve

Figure 5. Experiment 2: Top-1 error rate on ImageNet test set as

a function of object view diversity in EMMI training set, ranging

from 2 to 92 images per object, with 12 objects per category. Total

number of training images per category varies from 24 to 1100.

(Random baseline error rate for 12 categories is 11

12
≈ 92%.)

shown in Figure 4 yields an expected error rate of 16.56%,

and so the actual results using ImageNet are much better.

This difference could reflect a fundamental limitation of

training with toy objects from EMMI, or it could reflect the

fact that the deep-level features in our network were origi-

nally trained on ImageNet categories to begin with. These

are just a sampling of the interesting open questions raised

by Experiment 1 results.

5.2. Experiment 2: Object view diversity

The second experiment, as described in Section 4, stud-

ied how varying the number of distinct views of each object

would affect recognition performance. We approximated

number of views as “number of images” uniformly sam-

pled across all EMMI videos (excluding hodgepodge), with

the total number of objects per category held constant at 12,

and different average numbers of training images per object

in each condition. As with Experiment 1, training used im-

ages from the EMMI dataset, and testing used images from

ImageNet. Results are shown in Figure 5.

When there are only two images per object on average,

the top-1 ImageNet error rate is 33.9%. This error is re-

duced to 27.3% after doubling the average number of im-

ages per object to 4. When increasing the average num-

ber of images per object to 92 ( 1100 images per category,

as in Experiment 1), the error rate is around 24%, repre-

senting a 10% improvement relative to just 2 images per

object. Again, the results better match an exponential fit

(R2
= 0.85) than a linear fit (R2

= 0.47).

Confusion matrices for training using 2, 20, and 92 im-

ages per object are shown in Figure 6C, D, and E, respec-

tively. As in Experiment 1, as the diversity of object views
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Figure 6. Confusion matrices showing the effects of increasing ob-

ject diversity (A, B) or object view diversity (C, D, E), along with

a comparison using ImageNet (F). Row labels are true categories

and column labels are predictions.

increases, accuracy improvements, especially for certain

categories, are clearly visible in these matrices.

While the results from Experiment 1 and Experiment 2

shown here—that increasing the diversity of objects and ob-

ject views improves object recognition performance—are

not likely to be surprising to anyone familiar with machine

learning, what these experiments do offer is a unique oppor-

tunity to quantify and characterize these improvements.

6. Discussion

Large scale image datasets such as ImageNet have been

the driving force for recent breakthroughs in image recog-

nition. But the nature of these datasets (i.e., one image per

physical, real-world object) makes it hard to study certain

factors that are likely to be important for visual learning,

especially factors like appearance-related and distributional

properties that are central to the nature of egocentric vision.

We created the EMMI dataset with the hope of complement-

ing the roles of existing datasets like ImageNet.

A typical ImageNet category contains about 1200 im-

ages from 1200 objects. With EMMI, we showed that with

as few as 15 objects per category, the transfer learning of the

pretrained Inception v3 convolutional neural network can

achieve 20% top 1 error rate, using ImageNet as the test set.

It is worth pointing out that for categories such as car, truck

and airplane, the images from the EMMI dataset are either

small replicas or cartoony toys, while we tested recognition

performance against the real-world images from ImageNet.

It is surprising that the neural network, retrained only on

small replicas and cartoony toys, is able to recognize real

world objects from ImageNet with decent performance. In

addition, all experiments were done by fine tuning the last

layer. One interesting future direction would be to train the

neural network from scratch using EMMI, and see how the

early features are learned.

It is also worth noting that all images in EMMI contains

the camera-wearer’s hands holding, and partially occluding,

the object. No image segmentation was performed as part

of these experiments; the neural network received training

inputs consisting of entire images from EMMI, hands and

all. However, the network was still able to learn to classify

non-egocentric, handless images from ImageNet.

We also showed that multiple views of the same object

have the potential to enhance recognition performance, even

when the number of objects per category remains the same.

We did not include any data augmentation in our retraining

process. One interesting future direction will be to system-

atically test how training with specific types of views of the

same objects affect recognition performance, in comparison

to traditional methods for synthetic data augmentation, and

whether the two methods can work synergistically.

Another valuable research aspect of EMMI is having

timed rotations and translations in the collected videos (al-

though values are approximated). For example, because of

the dense and controlled nature of the visual transforma-

tions represented in EMMI, we can reveal intriguing aspects

of the neural network activations at classification time.

Figure 7A shows representative EMMI images from one

mug and one cup undergoing rotation about the Z+ axis.

The rest of the plots in this figure show activations of the

neural network generated while classifying, in sequence,

frames from this video. Note that the mug and cup images

show one full rotation, but the plots show network changes

over two full rotations.

First, we looked at neuron activations of the last hidden

layer from Inception v3, as shown in Figure 7B. Inception

v3 contains 2048 neurons in the last hidden layer, which are

fully connected to the 12 output neurons.
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Figure 7. Representative object rotations (top) and corresponding

neuron activations from the last hidden layer (middle) and the out-

put layer (bottom) of the retrained neural network, at classifica-

tion time, plotted as a function of time when receiving continu-

ous inputs from EMMI video of object undergoing Z+ axis (i.e.,

carousel-like) rotation. Note the clear phases of activation demon-

strated by the network while recognizing the mug, which appears

“cup-like” when the handle is hidden, versus the relatively con-

stant activation demonstrated by the network while recognizing

the cup, which is rotationally symmetric about the Z+ axis.

Note that these neuron activations originate purely from

the pre-trained Inception v3 network. They are not changed

during our retraining process; only the links coming from

this last hidden layer to the final output layer are subject to

change during retraining. Each horizontal line represents

the activity of a given neuron over the entire time span.

When “watching” the mug rotate, some neurons remain

silent, some neurons get activated periodically as the mug

rotates, and some neurons fire throughout the time course

irrespective of the rotation. In contrast, the neuron firing

pattern for a rotating cup is more constant. Because of the

timed rotation, the periodical firing can be easily matched

to certain rotating positions, and in fact we see that certain

parts of this periodic signal correspond to moments when

the mug looks “cup-like” because the handle is out of view.

We also plotted neuron activations of the output layer

(the retrained classification layer) during these rotations. As

shown in Figure 7C, the “mug neuron” fires at high levels

overall when the network is watching the mug rotation, and

likewise for the “cup neuron” while watching cup rotation.

Interestingly, the mug neuron firing will dip and the cup

neuron firing will go up when the mug handle is either be-

hind or in front of the mug body. While this observation

makes sense when the handle is hidden behind the mug, it

shows limitations of the network’s performance when the

handle is in front; perhaps the handle is too low-contrast to

be detected, or is interpreted as a flat pattern on the cup.

More generally, studying results in this way could give

insights into which neurons in the network are responsible

for representing certain category features (e.g. mug han-

dles), and could also reveal how properties like rotation-

invariance are encoded in a deep network.

7. Contributions

In this paper, we have presented a new dataset, called

the Egocentric, Manual, Multi-Image (EMMI) dataset, to

support research into visual learning. EMMI will enable

systematic research into the effects of appearance-related

and distributional properties of first-person visual experi-

ence on many kinds of visual learning, including (but not

limited to) research on object recognition, as presented in

proof-of-concept experiments here. Ultimately, we expect

that EMMI will serve as a highly complementary resource

to accompany the use of existing datasets like ImageNet.
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