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Matea D̄onlić Tomislav Petković
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Abstract

One of the very first tablets with a built-in DLP projec-

tor has recently appeared on the market while smartphones

with a built-in projector have been available around for

quite a while. Interestingly, 3D reconstruction solutions on

mobile devices never considered exploiting a built-in pro-

jector for the implementation of a powerful active stereo

concept, structured light (SL), whose main component is a

camera-projector pair. In this work we demonstrate a 3D

reconstruction framework implementing SL on a tablet. In

addition, we propose a 3D registration method by taking the

advantage in a novel way of two commonly available sen-

sors on mobile devices, an accelerometer and a magnetome-

ter. The proposed solution provides robust and accurate 3D

reconstruction and 3D registration results.

1. Introduction

Various available 3D measurement devices use different

technologies depending on their application field. Optical

methods, and within those structured light (SL) strategies,

are one of the most popular ones since they are offering very

robust, non-invasive and highly accurate 3D measurements

[4, 32]. In brief, SL is a representative of active stereo con-

sisting of a projector and a camera. A projector illuminates

an object of interest with a certain number of patterns which

are subsequently captured by the camera. The patterns carry

a particular code and the decoding of the code in the cap-

tured images enables 3D triangulation and reconstruction

of object’s surface. Unfortunately, almost all objects re-

quire multiple 3D scans using more than one spatial view

to obtain the 3D reconstruction of the whole surface. These

separate scans must be brought together into a common co-

ordinate system in order to seamlessly join them. This is the

task of 3D surface registration [40] which finds transforma-

tions to the common coordinate system. For rigid objects

such transformations have six degrees of freedom: a three

component translation vector and three rotation angles.

Typically a 3D registration on mobile devices is carried

out either through the SLAM pipeline or combining out-

puts of magnetometer, accelerometer and gyroscope. The

translation estimates coming from the inertial sensor is usu-

ally acquired by the double integration of accelerometer

data and a rotation estimate is usually extracted from the

gyroscopes by integrating angular speed during a dynamic

movement. In practice this usually requires rather brisk (dy-

namic) movement of the smartphone in order to have reli-

able data for the integration [41]. Such manipulation with

3D device is not very convenient. Also, 3D reconstruction

solutions which relies on the SLAM typically require pro-

cessing a large number of captured images which is done

in the cloud or on the GPU. Some of the first smartphone

3D solutions have been essentially based on some form of

passive stereo [35], which unfortunately has a number of

disadvantages compared to active stereo, particularly in the

absence of sufficient object surface texture.

Obviously it would be preferable to have a reconstruction

and registration method for a mobile device (tablet or smart-

phone) which requires fewer sensors for registration, does

not require brisk movements, process only frames from very

different views instead of processing all frames in-between

and for 3D data computation itself uses one of the most ac-

curate and robust principle—structured light.

We have noticed, relatively recently available on the mar-

ket, Lenovo tablet with the built-in projector: Yoga Tab 3

Pro. As it will be shown, this tablet can be used as stand-

alone 3D scanning mobile device (with no need for attach-

ing additional equipment [28, 38]) since we choose a conve-

nient setting where the Yoga tablet’s camera and projector

do have a common FOV. Additionally we point out the fact

that nowadays tablets (and smartphones) have a number of

additional sensors that can be readily used to solve 3D reg-

istration problem. This work builds on the work of [27]

where the following was emphasized: typical 3D registra-

tion approaches explicitly search for all six unknown regis-

tration parameters whereas a tablet sensors, accelerometer

and magnetometer, can be used to first initialize rotation,
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allowing cleverly to focus the search for translation only.

Thus, effectively reducing the search space from six to three

unknowns. However, unlike [27] where a smartphone was

used to solve the registration problem of a typical 3D SL

scanner, this work takes it to a next level.

We demonstrate a full tablet based solution including

both 3D SL reconstruction and 3D registration. First we

show the effectiveness of one the most popular SL strate-

gies, so called multiple phase shifting (MPS), on the Yoga

Tab 3 Pro tablet having projector with the features still be-

hind typical projectors. Next, we describe a 3D reconstruc-

tion approach which imitates IR speckle (random dots) pat-

tern which is used in some of the most popular mobile 3D

scanning devices such as Microsoft’s Kinect v1 device, Oc-

cipital’s Structure Sensor [38] or Google’s Project Tango

[30]. Considering that none of the aforementioned compa-

nies of nor anyone else openly published a complete and

step by step solution how random dots pattern can be used

for 3D reconstruction, we describe in full our proposal.

Therefore, essentially showing that our proposal is appli-

cable in the case of Kinect v1 approach too. Third, we

propose a novel registration algorithm to register large data

sets in a timely efficient manner. This efficiency is gained

by uniquely transforming the typical search from a spatial

domain, into frequency domain.

The remainder of this paper is structured as follows: Sec-

tion 2 gives a brief overview of related work. Section 3

describes the proposed method in detail. Results and Dis-

cussion are presented in Section 4. We conclude in Section

5.

2. Related Work

2.1. 3D Registration

3D scanning system may be attached to various robot

arms and/or turntables [20, 2]. Such hardware readily pro-

vides 3D registration parameters. Apart from the evident in-

crease in the system cost, robotic manipulators are usually

installed in a dedicated environment requiring the object to

be brought in which is not always convenient or possible,

e.g. large objects, excessive weight objects [16]). There-

fore, purely software based 3D registration solutions have

been proposed as well, roughly categorized as coarse and

fine surface registration methods [33]. The former requires

no (explicit) initial solution and, hopefully, eventually out-

puts an estimate that is good enough for some fine regis-

tration methods to start with. Concerning fine registration

methods, iterative closest point (ICP) is nowadays consid-

ered a standard for general-purpose fine registration. Since

the earliest ICP proposal [3], there have been many efficient

variants studies [31], and they are successfully applied in

specific applications [22]. Some ICP variants use uniform

[44] or random [31] sampling of the data, or use multi-

resolution approach [11] to speed up registration. Others

[7, 39] employ color information to reduce the search space

in the ICP point correspondence process. However, for ICP

to be successful it requires a rather good initial solution,

commonly provided manually or by some coarse registra-

tion based on feature points [6].

The majority of published algorithms, except for a few

PCA based exceptions [5], assume first a step of selecting

a set of candidate solutions, followed by the step of the de-

tection of the optimal candidate solution within a candidate

set. Due to the intrinsic combinatorial complexity of the

problem both steps are likely to be memory and time de-

manding. Consequently, a central issue in most approaches

is time efficiency where many solutions use the appropriate

data structures [45]. Efficiency is particularly challenging

in the case of genetic-based algorithms which are in addi-

tion known to have problems such as defining clearly a cri-

teria to stop iterating [34]. Approaches based on the shape

descriptors tend to improve time efficiency measuring the

local shapes of the sets around each point [21]. Some meth-

ods relax the problem by assuming only a certain type of

environment (e.g. objects having straight edges and planar

regions), at the same time inherently being restricted to a

particular type of application [37]. On the other hand, there

are methods which expect not only 3D point position data,

but also the normal vectors of every 3D point [18]. An-

other generic way to increase the efficiency of any paral-

lelized method is to make an additional implementation ef-

fort (e.g. require having NVIDIA CUDA enabled device)

by providing GPU method implementation [24].

In terms of 3D registration the most similar work to ours

is [27]. However, in that work no tablet or smartphone with

a built-in projector was used. Only a common smartphone

without a built-in projector was used and it was merely for

3D registration task whereas the 3D reconstruction was car-

ried out using a standard 3D SL hardware components. Be-

sides, [27] computes the translation from a set of candidates

by evaluating each candidate using the nearest neighbor ap-

proach. On the other hand, we estimate the translation from

a single search step by transforming the search in the fre-

quency domain. Some methods [17, 47] use frequency do-

main to compute phase correlation and obtain both rotation

and translation but with the drawback that the common re-

gion between contiguous 3D scans must be known.

2.2. Smartphone and Tablet 3D reconstruction

3D surface reconstruction methods applicable to smart-

phones and/or tablets may be categorized into passive and

active methods.

Most common passive 3D reconstruction solutions re-

quire the user to go around the object carefully taking a rel-

atively large number of images [1, 43] that are processed in

a SLAM pipeline to extract a 3D shape. Image processing
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(e.g. extracting image features and matching them between

acquired images) is a central part of such approaches and

is to a large extent typically done in the cloud requiring a

network connection to upload acquired images. Also those

solutions usually take around 10 or more minutes to pro-

duce a 3D model (e.g. when scanning a plastic mannequin

head [13]). The complete on-smartphone solutions have

also been presented [41], but they still require a fairly large

number of images (features) to retrieve a coarse 3D shape.

In addition, [41, 14] heavily rely on the use of other sen-

sors such as gyroscope and accelerometer. Alternatively,

the shape from silhouettes has also been proposed, still cre-

ating relatively coarse 3D models [10] and/or models with

poor level of details [29].

Besides the passive approaches, some authors realized

the possibilities to use a smartphone in the context of active

stereo, more specifically using the photometric stereo. The

smartphone screen is conveniently used as a light source,

however, as noted by the authors themselves, a dark envi-

ronment is required [46, 42]. Somewhat more robust so-

lution, but at the expense of using an extra smartphone, is

proposed in [48]. They used a pair of smartphones which

collaborated as master and slave where the slave was illu-

minating the scene using the flash from appropriate viewing

points while the master recorded images of the object.

Considering such approaches it become apparent that the

lack of an appropriate light source on the smartphone is

a substantial obstacle to implementing any form of active

stereo. Project Tango by Google is perhaps one of the most

well-known examples where in order to overcome that ob-

stacle a custom made IR projector and IR camera are in-

stalled in a smartphone [30]. It appears that the principle

used behind is presumably similar to Kinect v1 [12, 19],

and can be shortly described as follows: a projector illumi-

nates the scene with a random dots IR pattern; the acquired

image is then matched against the reference image(s) taken

in advance. Since a large part of processing is apparently

stereo matching between a pair of images, rather than an

explicit computation of some SL code, many do not con-

sider the mentioned principle as type of SL approach. But

even more importantly added IR projector may be used only

for 3D depth sensing and nothing much beyond.

Some of the more recent work proposed the use of a laser

line projector attached to a smartphone [36]. Although con-

ceptually simple, such solution, similarly to all single line

laser approaches, requires many images for 3D surface re-

construction. Besides, the authors in [36] impose a con-

straint that a marker has to be visible and tracked through-

out the frames in order to 3D register all those separate laser

line segments. Combining a pico-projector with almost any

smartphone is always a possibility [26], but evidently not

always a convenient solution. Apparently, the only smart-

phone standalone solution for 3D shape acquisition which

(a) (b) (c)

projector
front camera

projector

front camera

projectorrear camera

Figure 1. Lenovo Yoga Tab 3 Pro. Built-in projector’s position: (a)

for the projection of video content; (b) with the hinge completely

open; (c) with the hinge completely closed – this position is used

for 3D surface scanning.

implemented SL (active stereo) is [28] where a smartphone

with a built in projector was used. However such approach

requires the use of custom designed adapter to bring smart-

phone’s built in projector and camera into the common field

of view.

In the context of mentioned 3D scanning solution, we

recall briefly some of the major advantages of our method

compared to others:

• no need for Internet connections and requirement for

processing taking place outside the smartphone [1];

• no requirement for IR projector [30], but instead we

use a visible light projector that can be utilized for

other purposes too;

• no extra light sources are needed [36];

• no need to have an extra dark environment [42];

• no need to use and process data from additional sensors

(e.g. accelerometer, gyroscope) [41]; and

• no problems with a sparse reconstruction of small ob-

jects such as convex/concave surfaces [10].

3. Method Description

We first describe utilized hardware in Section 3.1 fol-

lowed by the Section 3.2 describing our proposal of using a

random dots pattern. Section 3.3 describes the used struc-

tured light method and Section 3.4 presents the proposed

3D registration method.

3.1. Hardware Components

Figure 1 shows the Lenovo Yoga Tab 3 Pro tablet which

has a 13MP rear camera, a 5MP front camera, and a 50 lm

DLP projector which is placed on a rotating hinge. The ro-

tating hinge allows some flexibility in positioning the built-

in projector with respect to both cameras. In this work we

have chosen a repeatable positional setting of the closed

hinge (Fig. 1c) where the built-in projector and the rear

camera share a common field-of-view.

The camera-projector pair was calibrated using an

adapted approach from [23].
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3.2. 3D Reconstruction using Random Dots Pattern

We next describe our proposal how a Kinect v1 like ran-

dom dots (speckle) pattern is processed in order to extract

the depth.

Without loss of generality, assume a rectified camera-

projector pair such that the epipolary rectified pair of pro-

jected random dots pattern and of acquired object image is

available. Figure 2 shows the rectified sensors arrangement

of our system, assuming that camera’s coordinate system

coincides with the world coordinate system. For the rectifi-

cation, we have used an approach described in [8].

Consider a point A on the surface of an object illumi-

nated using a random dots pattern. Let the coordinates of

the point A be (xCA, yCA, zCA) in the camera coordinate

system, (xPA, yPA, zPA) in the projector coordinate system,

(uCA, vCA) in the camera image, and (uPA, vPA) in the pro-

jector image. The coordinates of the point A satisfy the

following equations:

uCA − u0 =
f · xCA

zCA

vCA − v0 =
f · yCA

zCA

uPA − u0 =
f · xPA

zPA

=
f · (xCA − b)

zPA

vPA − v0 =
f · yPA

zPA

(1)

In Eq. (1) f is an effective focal length, b is a baseline dis-

tance between optical centers CC of the camera and CP of

the projector, and (u0, v0) is a principal point of camera and

projector sensors within the rectified pair. Due to epipolar

rectification yCA = yPA and zCA = zPA. Also, the disparity

dA between camera and projector image coordinates simpli-

fies to the difference between horizontal image coordinates

only:

dA = uCA − uPA =
f · b

zCA

. (2)

Eq. (2) is a well-known relation for a rectified sensor pair

which enables recovery of spatial depth zCA from the dis-

parity dA.

The disparity dA is not directly measurable for a

projector-camera pair; this is in direct contrast with a stereo

camera pair for which the disparity dA is directly measur-

able. The crux of the proposed 3D surface reconstruction

method is that the disparity dA between camera and projec-

tor image coordinates is never explicitly computed. Instead,

consider another point B which lies in a reference plane as

shown in Fig. 2 and which has the very same coordinates

in the projector image as the point A (so uPA = uPB and

vPA = vPB). Then vCA = vCB due to stereo rectification [8].

The disparity dB for the point B is:

dB = uCB − uPB =
f · b

zCB

. (3)

Difference of disparities of Eqs. (2) and (3) is another

disparity D where all projector image coordinates conve-

niently cancel out,

D = dA − dB = uCA − uCB =
f · b

zCA

−
f · b

zCB

. (4)

The depth zCB of the reference plane and the parameters

f and b of the projector-camera pair are known; they are

measured during the system calibration. The depth zCA of

the point A may then be recovered using

zCA =
zCB

1 + zCB

D

f · b

, (5)

provided the disparity D is measured from the image. The

disparity D may be computed using any passive stereo

matching [15] between the object image and the reference

plane image. The object image is recorded during 3D scan-

ning while the reference plane image is recorded once dur-

ing the system calibration by projecting a random dots pat-

tern on a white reference plane. Note that in the proposed

approach the original random dots pattern image which is

projected by the projector is not used for stereo matching.

Once depth zCA is computed using Eq. (5) the other two

coordinates xCA and yCA are found using the first two ex-

pressions from Eq. (1).

3.3. 3D Reconstruction using Structured Light

The basic principle of SL approach can be summarized

as follows: a projector projects a certain number of images

on the object of interest. The projected images have a par-

ticular structure, a code, which can be decoded on the ac-

quired camera images. 3D position can be triangulated from

the decoded SL code.

Among more than a dozen different SL patterns we

have chosen one of the time multiplexing strategies, a well

known phase shifting (PS) method [32]. PS consists of pro-

jecting a number (N ≥ 3) of periodic sine pattern, shifted

by some period amount. The patterns are sequentially pro-

jected with a projector on the object of interest, are recorded

by the camera, and are then processed in order to com-

pute a wrapped phase map. Due to the periodic nature of

sine patterns, the wrapped phase map does not provide a

unique code, rather it is said that the code is wrapped within

〈−π,+π] interval. One way to unwrap the wrapped phase

map and recover the SL code is to project additional PS

patterns having a different number of periods compared to

the first set. Such multiple phase shifting (MPS) procedure
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projected
speckle pattern

image
plane

(uCB,vCB) (uCA,vCA)

A(xPA,yPA,zPA)

B(xCB,yCB,zCB)

CP xP

yP

zP
xC

yC

zC

f f

reference
plane

image

object
image

b

projector camera

A(xCA,yCA,zCA)

(uPA,vPA) ≡ (uPB,vPB)

CC

B(xPB,yPB,zPB)

Figure 2. The principle of using a random dots pattern for 3D sur-

face reconstruction. Points A and B are 3D points on the object

and on the reference plane, respectively. Without loss of general-

ity, points A and B correspond to the same point in the projector

image space but they project to the different points in the camera

image plane producing the disparity D. See text for more details.

provides two wrapped values φw1 and φw2. Computing the

unwrapped phase Φuw from the φw1 and φw2 and extracting

the SL code can be done in number of different ways; we

have followed the method described in [25].

3.4. 3D Registration

Assume two different point clouds C1 and C2 are ac-

quired from the two different views of the same rigid body.

Then, we propose finding the registration between two

views by separately finding the rotational and the transla-

tional part of the transformation.

Rotation The rotation to align the second view to the first

is found using the following steps:

Step 1. Given available accelerometer and magnetome-

ter measurements we can compute the rotation matrix RS ,

describing tablet rotation (i.e. its Android’s coordinate sys-

tem (XS ;YS ;ZS)) w.r.t. the Earth coordinate system. For

two different views we first compute RS1 and RS2 and

then the relative orientation between two views as RS21 =
RS1R

−1

S2
.

Step 2. Similarly, we can define the rotation matrix RC

as the rotation of tablet 3D scanner (i.e. its camera coordi-

nate system (XC ;YC ;ZC)) w.r.t. to some scanner calibra-

tion coordinate system. Therefore, for two different views

we consider RC1 and RC2. The relative orientation be-

tween two views (rotational part of the searched registra-

tion from the second to the first view) is then given by

RC21 = RC1R
−1

C2
. Unfortunately, RC’s are not directly

computable. However, throughout different views there is

a fixed rotational relationship RP between two coordinate

systems (XS ;YS ;ZS) and (XC ;YC ;ZC). In turn, the rota-

tion which aligns camera’s (3D scanner) second view to the

first view can be computed as:

RC21 = RP ·RS21 ·R
−1

P (6)

Translation Translation to align the second view to the

first may be found only after the rotation is known. To com-

pute the translation we propose the following efficient algo-

rithm:

Step 1. Voxelize each point cloud C1 and C2 so C1
is voxelized directly and so C2 is voxelized using vox-

els rotated according to the rotation matrix RC21 given

by Eq. (5). The voxelization is performed by constructing

a regular three-dimensional grid of voxels; we have used

5mm × 5mm × 5mm voxels. The voxel value is set to 1 if

any point from the point cloud C falls inside the voxel and

to 0 if no points fall inside the voxel. The voxelizations of

point clouds C1 and C2 are binary multidimensional arrays

of finite size; denote them by V1 and V2 respectively.

Step 2. The translation vector t21 which best aligns V2 to

V1 is found by computing the cross-correlation C21 between

V2 and V1; the position of the maximum of C21 is t21. We

propose solving efficiently this problem in the Fourier trans-

form domain by using the cross-correlation theorem which

relates cross-correlation C21 and its Fourier transform Ĉ21:

C21[x, y, z] =
∑

a,b,c

V ∗

1
[a, b, c] · V2[a+ x, b+ y, c+ z]

Ĉ21[ωx, ωy, ωz] = V̂ ∗

1
[ωx, ωy, ωz] · V̂2[ωx, ωy, ωz] (7)

Let V1 be of size N1,x×N1,y×N1,z and let V2 be of size

N2,x×N2,y×N2,z . To find t21 both V1 and V2 are extended

to (N1,x+N2,x−1)×(N1,y+N2,y−1)×(N1,z+N2,z−1)
by zero-padding. Then the discrete Fourier transforms

along each of three dimensions are computed yielding V̂1

and V̂2. Next the complex conjugate of V̂1 is element-wise

multiplied by V̂2 yielding the Fourier transform Ĉ21. Ap-

plying the inverse discrete Fourier transform to Ĉ21 yields

the cross-correlation C21. The position of the maximum

of C21 is the translation vector t21. The computation in

the transform domain effectively reduces complexity from

O(N4) to O(N3 logN), where N is the maximum of N1,x,

N1,y , N1,z , N2,x, N2,y and N2,z .

Refinement The above computed 3D registration param-

eters are refined using the ICP.
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Figure 3. Example registrations for view pairs. Row labels denote used reconstruction method and object. Odd columns show a single

view, even column show two registered views.

4. Results and Discussion

Since our work is largely inspired by [27] we have also

implemented that method. Let us recall that in [27] a stan-

dard 3D structured light scanner configuration is used for

3D scanning and a low end smartphone having accelerome-

ter and magnetometer is used to implement 3D registration.

That implementation will be hereafter referred to as SM

method, in contrast to the proposed method using a tablet

and which will be hereafter referred to as TM method. We

have implemented the SM method using Acer X1260 pro-

jector, Point-Grey Dragon-Fly DR2-HICOL camera, and

Samsung SM-A310F smartphone.

We compare both TM and SM methods to the ground

truth (GT) registration data. The GT data is obtained by

first manually selecting very carefully several correspon-

dence points on each considered pair of views, which al-

lowed computing an initial registration solution. Next we

have refined that solution by using ICP that is known to pro-

vide a very accurate 3D registration solution, given a good

enough initial solution which was certainly satisfied in our

case.

In our experiments we have 3D scanned and 3D regis-

tered models of Donald Duck and Garfield. Figure 3 shows

representative point clouds before and after 3D registration.

Each view consisted of ∼15000 points. It is evident that

each registered view pair nicely adds new surface parts not

present in individual members of a pair. On average the dif-

ference in at least one of the rotation angles between views

is 57.65◦ ± 6.77◦. It is worth noting that when we have ap-

plied ICP alone on such pairs of views, it mostly failed to

register successfully.

For a qualitative evaluation we provide Table 1 show-

ing rotation and translation errors of SM and TM against

GT registration data. The errors are very small and can be

attributed to the finite accuracy of 3D reconstruction data
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Table 1. Comparison to the ground truth for MPS structured light reconstruction and final surface reconstruction from all view-pairs.

Rotation – Absolute error [◦]

SM method TM method Surface Reconstruction

Pitch Roll Yaw Pitch Roll Yaw

G
ar

fi
el

d

Pair 1 −0.49 −0.01 −1.85 0.18 −0.05 0.02
Pair 2 0.31 0.31 −0.36 0.17 0.31 0.53
Pair 3 −0.69 −0.22 1.29 1.03 0.21 −0.34
Pair 4 0.47 −0.59 −1.32 0.17 −2.02 0.08
Pair 5 0.16 0.73 1.44 −0.10 0.44 −0.04
Pair 6 0.03 −0.50 −0.81 −0.46 −0.04 0.52
Pair 7 −0.17 0.14 0.59 0.68 0.40 −0.17
Pair 8 0.20 0.17 0.22 −0.02 −0.11 0.21

D
o

n
al

d
D

u
ck

Pair 1 0.23 −0.12 −0.04 0.22 −0.40 −0.01
Pair 2 0.07 0.07 −0.21 0.19 0.13 −0.29
Pair 3 0.31 −0.22 0.35 −0.15 −0.66 0.36
Pair 4 −0.39 −0.07 −0.42 0.30 −0.35 −0.07
Pair 5 0.11 0.05 0.37 0.02 0.19 0.15
Pair 6 0.24 0.00 0.28 −0.28 −0.21 0.22
Pair 7 0.03 0.03 −0.16 −0.08 0.62 −0.08
Pair 8 −0.03 −0.06 −0.05 −0.09 0.01 0.02

Translation – Absolute error [mm]

SM method TM method Textured Reconstruction

Tx Ty Ty Tx Ty Tz

G
ar

fi
el

d

Pair 1 0.16 0.93 1.11 0.17 −0.33 −0.12
Pair 2 0.49 0.36 −0.22 1.11 −0.65 −1.73
Pair 3 −0.99 −0.02 1.03 −2.62 −2.29 −0.91
Pair 4 0.89 0.10 0.71 −2.20 −0.41 4.27
Pair 5 −0.98 0.39 1.28 1.82 0.24 0.67
Pair 6 −0.12 −0.06 0.33 2.04 0.43 0.10
Pair 7 0.13 −0.15 0.27 0.54 −1.95 −1.29
Pair 8 −0.09 −0.01 0.16 0.11 0.14 −0.15

D
o

n
al

d
D

u
ck

Pair 1 −0.10 0.95 −0.15 −0.75 −0.80 0.36
Pair 2 −0.30 −0.52 0.95 −0.24 −0.67 −0.18
Pair 3 1.65 3.06 −3.13 0.26 0.56 1.05
Pair 4 −3.44 −0.53 −0.46 −0.37 −1.01 0.59
Pair 5 1.73 −0.04 −1.98 1.09 0.26 −0.76
Pair 6 0.29 0.92 −1.06 0.39 0.78 0.29
Pair 7 −0.17 0.10 0.58 1.84 0.27 −1.12
Pair 8 −1.21 0.20 −0.02 0.65 0.28 −0.06

and to the fact that due to a finite 3D reconstruction resolu-

tion many points simply do not have a perfect match in the

correspondent view unless a certain interpolation on the 3D

point cloud is performed. We recall that both methods con-

sist of rotation estimation, translation estimation, and ICP

refinement. The TM method is able to estimate translation

in only matter of couple tenths of second and therefore is

much faster then the SM method, i.e. for the order of mag-

nitude (see Table 2). Finally, both methods require several

more seconds for the ICP refinement.

We have used here MPS which is one of the most accu-

rate SL algorithms. In addition we have contributed with

our Kinect-like random dots implementation showing 3D

registration results not as accurate which is due to a fact

that initial 3D reconstruction is less accurate than the MPS

approach (Table 3). The inherent feature of straightfor-

ward use of the random dots pattern is discretization of the

depth, resulting in less accurate 3D reconstruction and con-
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Table 2. Duration of translation estimation [s] for SM and TM

methods.

SM method TM method

G
ar

fi
el

d

Pair 1 1.271 0.133
Pair 2 1.008 0.129
Pair 3 1.371 0.135
Pair 4 1.466 0.148
Pair 5 1.167 0.128
Pair 6 1.118 0.149
Pair 7 1.125 0.126
Pair 8 1.185 0.143

D
o

n
al

d
D

u
ck

Pair 1 3.952 0.251
Pair 2 3.318 0.217
Pair 3 4.075 0.274
Pair 4 4.484 0.232
Pair 5 4.503 0.228
Pair 6 5.797 0.305
Pair 7 5.621 0.229
Pair 8 4.244 0.237

sequently less accurate 3D registration. Additionally, quali-

tative inspection of Figure 3 confirms the advantage of using

MPS over the random dots pattern. Nevertheless we have

demonstrated that the proposed registration method works

in the case of random dots pattern too.

Our method estimates rotation from only two sensors in

a straightforward fashion. Furthermore we point out, it is

applicable not only in the case of tablets but in all those

applications whenever accelerometer-magnetometer pair is

available. Given the accuracy of estimated rotation data us-

ing smartphone or tablet sensors, the proposed method gen-

erally requires ICP as the final refinement step. However

from the end-user’s point of-view the introduction of ICP

as the final registration step is completely transparent and

the proposed method as a whole can be regarded to be the

complete 3D registration solution.

Many 3D registration tablet (smartphone) solutions also

require a dynamic tracking frame by frame while the pro-

posed TM method takes advantage of only two widely

apart views and under much convenient static conditions.

TM method complete relies on only accelerometer and

magnetometer sensors. Nowadays, almost all smartphones

and tablets are equipped with three axis accelerometer and

three-axis magnetometer which we use to compute the local

orientation. Other solutions tend to take advantage of addi-

tional sensors such as gyroscope and GPS. We point out that

based on the data search from GSM Arena [9] only around

one fifth of smartphones are equipped with gyroscope. Not

surprisingly Lenovo tablet model we have used does not

have a gyroscope. Nevertheless, Lenovo tablet used here

is apparently one of the very first, and one of the still rela-

tively few tablets with a built-in DLP projector, that rather

recently have begun to appear on the market. In that sense,

the proposed work is a nice example of going along with

the newest technologies emerging on the market.

5. Conclusion

To the extent of our knowledge, this is the first demon-

stration of the 3D structured light scanning which com-

bines 3D reconstruction and registration on a single device

(tablet) to obtain a full 3D point cloud model. We have also

shown how random dots (speckle) pattern can be modeled

and used in 3D reconstruction from a single image. Be-

sides the 3D reconstruction itself, we have proposed a novel

3D registration algorithm. Our algorithm cleverly takes ad-

vantage of the two commonly available sensors to estimate

accurate rotation parameters. The remaining translation is

found efficiently in the frequency domain, even for very

large point clouds. As demonstrated with our quantitative

and qualitative results, there is a high potential of the pro-

posed approach for the 3D reconstruction and registration

using tablet that goes beyond a simple gadget which is oth-

erwise typical for many tablet (or smartphone) applications.
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Table 3. Comparison to the ground truth for the TM method using random dots pattern.

Rotation – Absolute error [◦] Translation – Absolute error [mm]
Pitch Roll Yaw Tx Ty Tz

G
ar

fi
el

d

Pair 1 −0.539 0.583 1.118 3.211 2.271 −2.551
Pair 2 −0.116 2.319 1.769 4.841 0.885 −9.499
Pair 3 −0.355 −0.046 1.371 −7.364 2.820 −1.447
Pair 4 −3.123 2.558 0.096 4.054 6.292 −3.604
Pair 5 −0.962 2.268 −0.570 5.366 4.415 −2.049
Pair 6 −1.821 3.610 0.903 4.469 2.285 −5.854
Pair 7 0.733 3.649 0.552 1.085 −2.513 −11.479
Pair 8 −0.514 0.785 0.036 3.515 1.437 −0.350
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July 13-15, 2016, Proceedings, pages 443–450, Cham, 2016.

Springer International Publishing. 1, 3

[29] V. A. Prisacariu, O. Khler, D. W. Murray, and I. D. Reid.

Simultaneous 3D tracking and reconstruction on a mobile

phone. In Mixed and Augmented Reality (ISMAR), 2013

IEEE International Symposium on, pages 89–98, Oct 2013.

3

[30] Project Tango. http://get.google.com/tango.

[Online; Accessed: July 2017]. 2, 3

2470

http://www.123dapp.com/catch
http://www-old.igd.fraunhofer.de/en/Institut/Abteilungen/VHT/Projekte/Automated-3D-Digitisation
http://www-old.igd.fraunhofer.de/en/Institut/Abteilungen/VHT/Projekte/Automated-3D-Digitisation
http://www-old.igd.fraunhofer.de/en/Institut/Abteilungen/VHT/Projekte/Automated-3D-Digitisation
http://www.gsmarena.com/search.php3
http://www.gsmarena.com/search.php3
http://get.google.com/tango


[31] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP

algorithm. In 3-D Digital Imaging and Modeling, 2001.

Proceedings. Third International Conference on, pages 145–

152, 2001. 2

[32] J. Salvi, S. Fernandez, T. Pribanić, and X. Llado. A state of
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