
   

 

 

 
 

Abstract 

 

With the growing use of digital lightweight cameras, 
generating 3D information has become an important 

challenge in computer vision. Despite several attempts 

presented in the literature to solve this challenge, it 

remains an open problem when it comes to the structural 

accuracy of the depth map and the required baseline 

(distance between the first and the last frames) to capture 
a sequence of images. In this paper, a novel approach is 

proposed to compute a high quality dense depth map 

together with a semi-dense/dense 3D structure from a 

sequence of images captured on a narrow baseline. 

Computing the depth information from small motions has 

been a challenge for decades because of the uncertain 

calculation of depth values when using a small baseline – 

up to 12mm. The proposed method can, in fact, perform on 

a much wider range of baselines from 8 mm up to 400 mm 

while respecting the structure of the reference frame. The 

evaluation has been done on more than 10 sets of 

recorded small motion clips and for the wider baseline, on 
7 sets of stereo images from Middlebury benchmark. 

Preliminary results indicate that the proposed method has 

a better performance in terms of structural accuracy in 

comparison with the current state of the art methods. Also, 

the performance of the proposed method remains stable 

even when only a low number of frames are available for 

processing. 

 

1. Introduction 

The use of consumer cameras, specifically smart-

phones is growing continuously nowadays and the level of 

expectation around what these cameras can do is 

increasing year by year. Consumers and photographers 

generally prefer to have advance features such as shallow 
depth of field in their images. This effect requires a large 

aperture like the ones used in DSLR cameras. Lightweight 

cameras like those in smartphones are equipped with small 

apertures which are not capable of reproducing this effect.  

Because these types of cameras are equipped with only 

one lens, this feature is commonly implemented by using a 

focal stack to compute the depth map [1, 2, 3, 4]. An 

alternative approach is to compute the 3D structure of the 

scene and the corresponding depth map. 

The 3D structure can be computed using the frame-to-

frame movements of the handheld camera. Movements of 

the camera can occur for several reasons, such as natural 

hand-shake, or when the user moves the camera slightly to 

capture a better scene. Generally, this effect is considered 

as an issue to be solved with image stabilization methods 

or stabilization gear such as tripods. However these types 

of movements can be used advantageously in a variety of 
applications for instance synthetic defocus [5, 6]. 

The baseline between sequences of frames captured as 

a sudden motion is considered to be small if it’s less than 

~8 mm. This restricts the viewing angle of a 3D point to 

less than 0.2° [7]. Due to this limitation the general 
Structure from Motion (SfM) methods fails [8, 9, 10] and 

the computed depth map will be highly penalized. 

Several works addressed the challenges of the 

Structure from Small Motion (SfSM) [5, 7, 11, 12] and 

proposed a number of algorithms. But there are still a 

couple of open challenges remaining for these methods 

such as: 

1- These methods fail for baselines wider than ~12 

mm. In wide-baseline motions, local image 

deformations cannot be realistically 

approximated by translation or translation with 
rotation and a full affine model is required. Also 

larger baselines increase the observed disparities, 

but increase the difficulty of finding 

corresponding points due to a larger change in 

viewpoint. This statement is specifically targeting 

the close scenes with shorter depth ranges. 

2- These methods return false results when the 

number of the input frames is less than 15 frames. 

3- The structure of the depth map is not respected 

properly based on the reference frames. More 

specifically the depth maps generated by these 
methods suffer from the lack of accuracy along 

the edges and corners of structures within the 

imaged scene. 

4- Some of these methods suffer from 

missing/undefined patches in the depth map, 

especially along the boundaries of the image. 
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In this paper, we propose an approach to estimate the 

depth from small motion clips that addresses each of the 

challenges mentioned above. In addition to its ability to 

provide high structural accuracy and occlusion handling, 

the proposed method has 2 important additional 

advantages: 

1- It is able to process a sequence of image frames 

with baselines as large as 400 mm. 

2- There is no restriction on the minimum number 

of frames in the proposed method. The evaluation 
shows that it can perform accurately 

for ������ ≥ 2. 

In the next section, we review the previous works done 

in this area. Section 3 presents the details of the proposed 

approach and the evaluation and comparison results are 

presented in section 4. 

2. Related Works 

The first step in the process of the SfSM is to build a 

dense 3D model from the sequence of images. This step is 

widely studied in several SfM research works [13, 14, 15].  

In SfM, bundle adjustment [16] is used to find the 

optimal estimation of the sparse 3D structure of the scene 

and positions of camera poses. Nonlinear least square is 

used as the basic cost function to evaluate the reprojection 
error from undistorted to distorted image domain. There 

are several issues that must be solved for this method to be 

successful: 

1. The accuracy of the estimated 3D structure is 

highly dependent on proper initialization of the 

cost function. To solve this problem factorization 

methods have been widely adopted in SfM 

literature as a means for initializing the bundle 

adjustment [17, 18, 19]. 

2. When encountering continues texture-less 

surface, the method is not capable of producing 
3D points due to the lack of features and the 

failure of the feature tracking. 

3. The feature tracking is also an issue in case of 

rapid movements. 

4. Complex computation of the reprojection error 

for inverse depth representation because of 

mapping the projected 3D points from the 

undistorted image domain to the distorted image 

domain [20]. This issue makes the normal bundle 

adjustment improper for small motions. 

 

To overcome the problems of the common bundle 
adjustments with small baseline motions, a modified 

bundle adjustment is presented in [11]. In this case the 

reprojection error is calculated from distorted to 

undistorted image domain [21]. This solves the inverse 

depth representation problem. The method presented in 

[11] also employs the idea that in small motion clips the 

cost function can be initialized better as long as the camera 

poses or the distance between frames are closer to each 

other. The idea used in [11] was initially introduced in [7] 

to find the trajectory of the camera from small motion. 

The density profile in [7] is created by random depth 

initialization and plane sweeping based image matching 

[22, 23]. It employs Markov Random Field [24] to 
regularize the estimated depth effectively. 

The method presented in this paper appears to be the 

first to deal successfully with wider baselines and low 

frame-rate motion clips. This work presents evaluation and 

comparisons with other methods in both small and large 

baseline motions. The results demonstrate that the method 

proposed here performs better in terms of accuracy of the 

depth estimation and respecting the structure of the 

reference image frame.  

Fig. 1 illustrates the general overview of the proposed 

SfSM approach. 

3. Proposed Method 

The main steps of the proposed SfSM approach are 

detailed and explained in this section.  

The feature detection of the 3D reconstruction block in 
the proposed method is equipped with ORB features [25]. 

The correspondence features location to the initial features 

is found by Kanade-Lukas-Tomashi (KLT) method [26]. 

The bundle adjustment presented in [11] is used for 3D 

structure optimization based on the Huber loss function 

[27]. The reason for employing this bundle adjustment is 

the different way of measuring the reprojection error than 

the usual SfM methods.  

The reprojection error is computed by mapping the 

points in the distorted domain to the points in the 

undistorted domain. The point of this change is to make 
the reprojection error computation less complex for 

inverse depth estimation. Using this technique enables the 

proposed method to perform on uncalibrated motion clips.  

Fig. 2 shows the 3D reconstruction by our method and 

Hyowon Ha et al. [11]. 

3.1. Dense Matching Profile 

The basic idea of the dense matching in the current 

paper is based on the Plane Sweeping method [22]. 

Different from plane sweeping based stereo matching 

methods, we estimate the �-th plane directly from the set 

of ORB matches. If (��,��) and (�� − �,��) represents 

the pixel � in the left image and the correspondence match 

in the right image respectively, then the set of � =

{��,��,�} denotes the match of the two pixels.  
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Figure 1. General overview of the proposed SfSM 

At the pixel (��,��), the disparity is �(�,�) =  � ∔
(��,��,�), where  � = (��,��,��) represents the plane.  

To compute the sequence of disparity planes, a 

segmentation tree [28] is used. The overall objective 
function in the proposed method which is being minimized 

by the segmentation tree is: ∑ �(��,�� ���)   (1) 

where �� ∈ � and �� is part of the plane �� . The goal of 

this function is to measures the error between the true 

disparity at � and the disparity generated by the plane. �-
th disparity plane is computed by minimizing this function 

using a graph �. The graph � is constructed by connecting 

each node � to its ten nearest neighbours computed by 

Euclidean distance. 

3.2. Matching Cost and Plane Sweeps 

At the first step, the frame � is resampled into an [�,�] 

area from frame �+ � using B-Spline interpolation. The 

correlation score of �(�,�,�) is obtained over  5 × 5 

patches. The score is turned into the pixel-wise matching 

cost as: �(�,�,�) = � −�(�,�,�)   (2) 

where � refers to Normalized Cross Correlation and � 

refers to the matching cost. 

The raw cost is converted from pixel cost to the 

aggregated volume cost using adaptive cost aggregation 

[29]. 

As it is common in most of the stereo algorithms, the 

cost volume is computed as: �(�,�,�) = ∑ �(�,�,�)(�,�)    (3) 

But this assumption has a requirement that the surface 

has to be facing the camera and this makes the pixels 

surrounding a patch to have almost the same disparity 

value. The restriction for this assumption arises from the 

common and important challenge of handling the 

occlusions along the boundaries in stereo matching 

methods. To resolve this issue, the cost volume is 

computed by aggregating the cost based on the color and 

similarity features. The matching cost from the resampled 
image is weighted by a similarity feature, in this paper the �� and the color difference between  � =  (�,�) and � =  [�,�] as �ℂ. 

The weighting function � can be defined as: �(�,�) = ��� (
−�ℂ−��� )   (4) 

where � is the weighting constant. The basic idea in Eq. 4 

is to aggregate the matching cost based on color and 

feature similarity (geometric proximity). Considering a 

pixel � and pixel �, the matching cost from � is weighted 

by the color difference between  � and �, and the 

Euclidian distance between � and � on the image plane. 

The computed aggregated cost from the pixel-wise cost is: 

�(�,�) =  
∑ �(�,�)�′(�,�′)�(�,�)�,�′∑ �(�,�)�′(�,�′)�,�′     (5) 

 

 

  

a. A frame of the sequence 
b. Our reconstructed 3D point cloud and the 

estimated camera trajectory – Side view 

c. Reconstructed 3D point cloud by Hyowon 

Ha et al.[11] – Side view 

Figure 2. Comparison of our 3D reconstruction with Hyowon Ha et al. [11] 
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where � and � are the matching pixels and �′ is the 

support region of �. Eq. 5 represents the weighted sum 

of per pixel which is used as cost aggregation. 

Once the cost volume is computed, the initial 

disparity map � is obtained by parametrizing the plane 

equation in pixel level with local disparity values. The 

condition for choosing the local disparity is minimizing 

the total aggregation cost.  

Although  � has a quite reasonable depth values but 

it still can be noisy and the structure of the depth map 

can suffer from inaccurate edges and corners. To solve 

this issue and handle the probable occlusions, we define 

2 terms as the smoothness term and the data term. 

The smoothness term for pixels � and � and the 

displacement vector � is defined as: ����,��� = ���������� −�����, ��   (6) 

where ��� is the weighting variable computed by the 

color similarity of the patch surrounding � and pixel �. � 
is the reduction threshold. 

This term has the most influence on occlusion 

handling by propagating the cost from the non-occluded 
pixels to occluded pixels based on their similarity. 

Following the smoothness term, the data term is 

defined as: 

������ = ���� −��∗���         � �� ��� − ���������,          ���������  

  (7) 

where ��∗  is the initial displacement vector. 

Defining these 2 terms handle more than 96% of the 

occlusions but still, there are some missing parts, 

specifically around the boundaries of the objects which 

cause an inaccurate edge structure in the depth map. 

Considering a pixel � located in the occluded area. We 
try to estimate its disparity value by using a small patch �(�) with known disparity values, centered at �.The 

disparity value of � can be estimated by the following 

equation: �� = �� + 〈���,� − �〉   (8) 

where ∈ �(�) , �� and ��� are the disparity value and 

gradient respectively. 〈, 〉 represents the inner product 

operation. 

This estimation is done for all the pixels in �(�) and 

at the end the final disparity map of � is obtained by: 

�� =
∑ �������+〈���,�−�〉�∈�(�) ∑ ����∈�(�) 

    (9) 

where ��� = ��� is the weighting function and it is 

defined as: ��� = ���(��)���(��)   (10) 

where ���(��) denotes the distance term and ���(��) 

color similarity term. ���(��) = ��� (− ‖�−�‖���� )   (11) ���(��) = ��� (− ���−������� )   (12) 

where �� and �� are the color values of the pixels � and � respectively. � and � are constant values specified 
experimentally. 

When corresponding matching pixels have dissimilar 

colors because of illumination variations, the inaccurate 

disparity map is generated. Adding the color similarity 

term to the weighting function helps to handle this issue. 

To treat the probable artifacts caused by plane 

sweeping algorithm due to the over/under sampling, the 

inter frame motion estimation problem is reformulated to 

be optimized over image intensity function for sequence 

of frames. The formulation computes the cost over all 

pixels of the reference frame. Through this formulation a 
geometrical fidelity is checked for patch of pixels. The 

fidelity check is based on consistency of the normal 

directions between neighboring pixels to make sure they 

have similar surface normal vector. The correlation 

between the normal vectors of the center pixel and 

neighboring pixels can lead optimization to refine the 

depth map. 

3.3. Final Depth Refinement 

After computing the final depth map from the 
previous step, it is refined by the guided joint filter 

presented in [30]. The filter in [30] is based on the 

mutual information. The mutual information guides the 

weighted median filter to follow the structure of the 

RGB image while filtering the correspondence depth 

map. To keep the valid depth values and just filtering the 

false ones, window selection step of the median filter is 

designed to be adaptive using the joint histogram. The 

probable remaining artifacts after the adaptive weighted 

median filter are being eliminated by normalized 

interpolated convolution in diffused image domain. 

Beside the performance of this filter in occlusion 
handling, it helps the depth map to follow the image 

structure more precisely. Without defining any 

limitations, for small parallax including slow-enough 

motion, or far-enough objects, or fast-enough temporal 

sampling, occluded areas are small. Our experiments 
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show that the mentioned filter guarantees intra-object 

occlusion handling accurately even in wide baseline 

motions. The failure of the filter might occur in the case 

of large inter-object occlusion. Generally in small 

motions the main occlusion to deal with is intra-object. 

Although it is worth pointing out that the filter is able to 

handle relatively good amount of inter-object occlusions 

unless there is a considerable displacement or off axis 

parallax. 

4. Experiments and Evaluation 

In this paper, the experiment and evaluation is done 

in 2 parts. First, the proposed method is evaluated for 

small motions and in the second part, it is evaluated for 

stereo image sets. The first comparison is done against 

Hyowon Ha et al. [11] and Kevin Karsch et al. [31] and 

the second comparison is done against 3DMST [32] and 

APAP-Stereo [33] stereo matching algorithms ranked in 
Middlebury stereo benchmark [34], training dense 

section. 

For the first part, the dataset from [11] is used and we 

also provided 10 other small motion clips using the 

devices shown in Table 1. The motion clips are available 

to download at (goo.gl/m5QohE). 

There is no ground truth in this form of evaluation, but 

the performance of the proposed method makes it 

possible to show the visual comparison with 2 other 

methods. 

Fig. 3 shows the depth map computed by Hyowon Ha 

et al. [11], Kevin Karsch et al. [31] and our method. 

These images show the performance of the proposed 

method in terms of accuracy of the depth along edges 

and the depth values on the surface of objects in the case 

of small motions and small baseline. 

The results by Hyowon Ha et al. [11] and Kevin 

Karsch et al. [31] have inaccurate depth values along the 
edges and corners of the objects as seen in Fig.3.a and 

Fig.3.b. Note that due to the very small baseline between 

the frames these methods distinguish foreground 

information better than background information. 

In some cases as shown in Fig.3.b, the depth map 

estimated by these methods are suffering from inaccurate 

depth values on an object’s surface or the depth values of 

the background and foreground objects are mixed 

together which cause inaccurate performance in 

segmentation and 3D reconstruction applications. 

Fig. 4 shows how the inaccurate depth values along 

the edges can generate a faulty 3D structure. The 
highlighted patches show a part of the 3D textured mesh 

generated based on the reference frame and the 

corresponding depth map.  

 

    

    
a. A frame from the 

sequence 

Depth map computed by Kevin 

Karsch et al.[31] 

Depth map computed by 

Hyowon Ha et al.[11] 

Depth map computed by the 

proposed method. 

    
b. A frame from the 

sequence 
Depth map computed by Kevin 

Karsch et al.[31] 

Depth map computed by 

Hyowon Ha et al.[11] 

Depth map computed by the 

proposed method. 

Figure 3. Comparison of the depth from small motion with state-of-the-art methods 
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Table 1. Devices used for making our own dataset 

 Device Resolution fps 

1 iPhone6 Plus 1080p 60 

2 iPhone6 Plus 1080p 30 

3 iPhone7 1080p 30 

4 iPhone7 720p 30 

5 iPhone7 Plus 1080p 30 

6 iPhone7 Plus 4K 30 

The 3D mesh generated based on the depth map by 

Hyowon Ha et al. [11] is suffering from missing parts on 
objects’ surfaces which is caused by inaccurate depth 

values on reference patches. 

For the second part of the comparison, we evaluated 

the performance of the proposed method for a set of 

stereo images. In this case, we considered the left and 

right images as a sequence of frames, 2 frames instead of 

processing 30 frames by considering the fact that the 

method is designed to perform on small baseline motions 

while the higher number of frames provides the higher 

number of inliers at the feature matching step. Note that 

more experiments are done on ordinal camera motions 

recorded by authors [11]. The depth map in Fig.1.d and 

Fig.1.c in the Appendix_1 (goo.gl/fqqUxk) is 

generated using only 2 frames of the real camera motion 

which is captured by users. That’s why the result of the 

method [11] in Fig.1.d and Fig.1.c in Appendix_1 is 

different from what is published in the main paper [11]. 

The depth map in [11] is computed using 30 frames, but 

in this paper only 2 frames are used. That shows the 
superior performance of the proposed method. 

To have an accurate evaluation at this part, we used 7 

pairs of stereo images from Middlebury stereo 

benchmark with the corresponding ground truth depth 

maps. Fig. 5 represents the visual comparison of this 

evaluation. Fig.5.a and Fig.5.b show how the proposed 

method is capable of keeping the structure of the 

reference image in the depth map, especially important 

features like edges and corners in comparison with top 

stereo matching algorithms.  

The accuracy of the estimated depth by each method 

has been evaluated against the ground truth which is 

provided by the benchmark and the numerical results are 

presented in Table 2. These results illustrate the 

competitive performance of the proposed method in 

terms of accuracy of the depth along edges and the depth 

values on the surface of the objects against top 

algorithms in Middlebury benchmark. Although there is 
still the potential for this method to be improved as it is 

not performing perfectly in some cases. 

To find more visual/extended numerical results and 

the higher resolution version of the images presented in 

Fig. 3 and Fig. 5 please refer to Appendix_1. 

For evaluation purposes, 4 metrics including PSNR, 

RMSE, Universal Quality Index (UQI) [35] and 

Structural Similarity Index (SSIM) [36] are used. Table 2 

presents the average numerical comparison of the 

methods per metric on the chosen stereo sets from the 

benchmark. The extended numerical results are 

presented in Appendix_1. 
Fig. 6 represents the SSIM and UQI maps of the 

depth map generated by each method from the images in 

Fig. 5. The SSIM map show how similar is the structure 

of the computed depth map to the ground truth. The 

lighter and darker pixel values show more and less 

structural similarity to the ground truth respectively. 

The general quality of the generated depth maps in 

comparison with the ground truth is shown as UQI map. 

The lighter and darker pixel values show more and less 

similarity to the ground truth respectively. 

As it is illustrated in Fig. 6, the proposed method is 
estimating depth maps relatively close to the ground 

truth in both structural and quality indices as there are 

larger areas covered with lighter values. The areas 

presented in dark show how far the depth values are 

from ground truth based on SSIM and UQI maps.

 

   

   

Reference frame 
3D textured mesh – Ground 

truth 

3D textured mesh – Our 

method 

3D textured mesh – Hyowon 

Ha et al.[11] 

Figure 4. Comparison of the 3D textured mesh based on the depth maps generated by the proposed method and Hyowon Ha et al. [11] 
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a. Reference frame 3DMST [32] APAP-Stereo [33] Our method Ground truth 

     

     
b. Reference frame 3DMST [32] APAP-Stereo [33] Our method Ground truth 

Figure 5. Comparison with 3DMST [32] and APAP-Stereo [33] based on Middlebury benchmark 

 

There are still considerable parts in the depth maps 

generated by the proposed technique which look far from 

ground truth but the results are reasonably close to the 

top stereo matching algorithms. 
SSIM maps in Fig. 6 show that the structure of the 

reference frames including the sharp edges and corners, 

is respected in the estimated depth map and this is one of 

the advantages of the proposed method. 

Occluded regions are important features in depth 

extraction methods [37][38]. Unlike most of the current 

algorithms that are not able to handle this issue, the 

proposed method can estimate the information on 

invisible scene components. Fig. 6 illustrates another 

important advantage of the proposed technique which is 

the acceptable performance on lower fps motions such as 

2 frame stereo images. The presented cost function 
makes the algorithm capable of processing motions with 

wider baseline.  

The robustness of the proposed method is also 

evaluated by considering the magnitude of the baseline 

and number of the frames. The result illustrates that the 

algorithm can generate depth with the similarity of ~75% 

to the ground truth as long as the magnitude of the 

baseline is greater than ~6% of the nearest scene depth 

and the number of frames captured exceeds 2 frames. 

Table 2. Numerical comparison of the methods/average per 
metric for seven stereo set 

 PSNR RMSE UQI SSIM 

Ours 17.281 35.491 0.87 0.70 

3DMST [32] 18.315 29.975 0.89 0.82 

APAP-Stereo [33] 18.734 28.672 0.95 0.85 

5. Conclusion 

This paper has presented an accurate approach for 

computing the depth map from narrow baseline motion 

clips.  

Six important contributions have been proposed in this 

work as follows: 

General Contributions: 

1. Generally in small motions, the feature tracker 

can obtain more inliers due to the small 

difference between the frames. However the 

number of inliers reduces when the baseline 

becomes wider and as the result the generated 

depth map becomes inaccurate. The modified 
cost function in the proposed method makes it 

capable of processing sequence of frames with 

the baseline up to 400 mm while most of the 

methods in this field fail for the baselines wider 

than ~12 mm.  

2. Accurate performance for ����� ≥ 2  
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3. Occlusion handling by respecting the structure 

of the reference frame. 

Technical Contributions: 

1. New data and smoothness terms are defined to 

recondition cost volume and cost aggregation 

function. 

2. Proposed cost propagation is formulated as 

energy minimizer function for depth on each 

pixel point. 

3. The proposed method can approximate non-
planar surfaces, while being robust against 

depth outliers and occlusion. 

This practical application has the potential to be used 

in smartphone cameras. These cameras are designed to 

gather image frames before and after a user initiate a 

capture sequence. The 3D information obtained by this 

method can be used for synthetic defocus applications, 

object detection and segmentation purposes and scene 

analyses and understanding. 

Unlike other techniques, the 3D points generated by 

the proposed method at the background of a scene don’t 

have high uncertainty. This gives a uniform and 
continuous shape to the point cloud from the closest to 

the furthest point visible to the camera. 

A range of different experiments on both wide and 

narrow baselines have been conducted which proved that 

the proposed method exhibits improved performance 

over state of the art methods. In addition this method is 

sufficiently robust to perform adequately at low frame 

rates and with a small number of input images. 

With respect to the performance and accuracy of the 

studied method, there is still the computational time of 

this technique which has to be considered as a trade-off. 
The method has been tested on a device equipped with 

Intel i7-5600U @ 2.60GHz CPU and 16 GB RAM. The 

whole process of computing the 3D structure and depth 

map take about 6-8 minutes. The most expensive part of 

the method is the bundle adjustment optimization which 

is takes around 4-5 minutes on high resolution images 

and motivates our future research activities to make this 

method suitable for real-time applications. The full 

evaluation of this method requires a dataset of video 

sequences with valid ground truths which at the moment 

is not publicly available. As part of our future work on 

this topic we would like to provide a dataset of video 
sequences with the ground truths for close-range scenes 

using ToF cameras. 
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Figure 6. Comparison of SSIM and UQI maps 
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