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Abstract

One of the most important challenges in the field of 3D

data processing is to be able to reconstruct a complete 3D

scene with a high accuracy from several captures. Usu-

ally this process is achieved through two main phases: a

coarse, or rough, alignment step then a fine alignment. In

this article we propose an automatic scalable global reg-

istration method (i.e. without arbitrary pose of the sen-

sor) under the following constraints: markerless, very large

scale data (several, potentially many millions of points per

scans), little overlap between scans, for more than two or

three dozens of scans, without a priori knowledge on the 6

degrees of freedom.

Here we only address the coarse alignment, and con-

sider the fine alignment step tackled by dedicated existing

approaches such as Iterative Closest Point (ICP) [3].

We evaluate thoroughly our method on our own dataset

of 33 real large scale scans of an indoor building. The

data presents some pairs of scans with very little over-

lap, architectural challenges (a patio and a rotunda open

through several levels of the buildings, etc), several millions

of points per scan. We will make this dataset public as part

of a benchmark available for the community.

We have thus evaluated the accuracy of our method, the

scalability to the initial amount of points and the robustness

to occlusions, little scan overlap and architectural chal-

lenges.

1. Introduction

Nowadays, the world of 3D data is facing a true revolu-

tion with many new devices easily available for both captur-

ing and visualizing data whether it be pure virtual 3D data

for virtual reality applications or combined 3D and visual

data for augmented reality. This new context with every-

day new applications based on 3D information, 3D data of

many different types, new sensors, comes up with also a lot

of new challenges. Among these challenges, the first pro-

cessing step preceding almost always any other processing

from 3D data is the registration of data acquired by a sen-

sor from different locations. For professional quality even

more for large scale environments, LiDAR technology re-

mains the first choice. LiDAR acquisitions provide us with

point clouds with little noise and the knowledge of the spa-

tial range. Indeed, whatever the kind of sensors considered

(Laser scanner, Kinect...), no existing technology can ac-

quire the whole 3D information of a scene all at once.

A 3D acquisition usually results in a set of 3D points (a

3D point cloud), with or without associated RGB informa-

tion depending on the sensor, covering partially the spatial

area of the full scene. Single scans, from different sensor

positions, are acquired within a local coordinate frame de-

fined by the instrument. For visualization and further data

processing of the point cloud the single scans must be trans-

formed into a common coordinate frame. This process is

usually called as registration. Given two or more 3D point

clouds that have a subset of points in common, the goal of

3D registration is to compute the rigid transformation that

aligns these point clouds, providing an estimate of the rela-

tive pose between them. This registration of partially over-

lapping 3D point clouds, usually considered pair by pair,

taken from different views is thus an essential task in 3D

computer vision and the basis of many algorithms in 3D vi-

sion applications. There are two well identified challenges

in this task of 3D registration:

• Global registration which refers to the registration of

a pair of 3D point clouds without initial guess on the

pose of one point cloud to the other, the pose is thus

arbitrary.

• Local registration which refers to the registration of a

pair of 3D point clouds from a valid initial estimate of

the pose of between the two clouds.

Many algorithms for registration have addressed these

challenges in the last decades. It is commonly accepted in
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the community to classify the algorithms into 2 distinctive

classes [6] regarding to which challenge they address:

• Coarse registration: it consists in roughly aligning two

scans without any clue about the initial alignment.

• Fine registration: from a given coarse alignment, it

refines the result, generally by minimizing error itera-

tively.

The global registration usually requires both coarse and

fine registration steps, while for the local registration chal-

lenge it is often sufficient to consider a fine registration pro-

cess only.

A popular type of approach involves iterative algorithm,

Iterative Closest Point (ICP) [3] and variants [14, 9, 12].

In practice, the original ICP algorithms tend to converge

poorly when subjected to severe noise and large pose dis-

placements without a good initial guess on scans alignment.

This algorithm, or its variants, is then often used for a fine

registration stage in order to improve previous coarse reg-

istration but is not suitable as a direct solution for coarse

registration.

Some other approaches try to get rid of the requirements

of good initial estimate by extracting invariant local features

and finding correspondences. The main limitation of such

methods is a lack of robustness to large baseline (large sen-

sor viewpoint changes) and little overlap.

With the availability of several new consumer-grade 3D

sensors, many solutions have been proposed to solve this

problem and work pretty well for reasonably sized point

clouds (few thousands of points) even with little overlap,

noise and pretty large baseline.

LiDAR scans have several advantages compared to other

point clouds:

• They generally have very little noise, compared to

other point clouds capture with sensors like Kinect;

• They are already at scale contrary to point clouds pro-

duced by structure from motion. This reduces the com-

plexity of the problem by locking the scale.

Many algorithms try to solve this problem using either

only geometrical information, or only visual information

(e.g. RGB values attached to the 3D points), and eventually

some use both. Most of the current solutions are not able

to solve efficiently the global registration problem when all

the following constraints are present: large scale data, large

baseline, little overlap, no initial guess of the relative align-

ment.

Here, we present a keypoint-based approach. This means

we look for particular points/regions scan that are likely

to be repeatable across scans. Then we retrieve informa-

tion from those points and their close neighborhood (po-

sition and normal) and build a descriptor on it. One cor-

respondence is sufficient to estimate a rigid transformation

between the two scan locations. Our goal is to solve the

3D global registration problem in environments with large

scale data (several millions of points), large baseline, little

overlap and no prior knowledge on the alignment between

scans.

2. Related work

A survey of the most significant contributions in the do-

main can be found in Diez et al. [6]. As described in this

survey, all the approaches of coarse registration can be com-

pared considering the main steps:

• Salient information detectors that aims at detecting

keypoints to reduce the size of the representation of

the data such as MeshDoG [17], or Harris3D [15]

• Salient information descriptors in order to extract rele-

vant and discriminant information from the previously

detected keypoints such as Improved Spin Image [19]

or Rotational Projection Statistics [8].

• Refinement: This step is mainly based on ICP [3]

and its improvements [14, 9, 12], which improves the

coarse alignment for a better fit.

This survey is not only reporting the current state-of-the-

art on coarse registration but it proposes a pipeline to clas-

sify these existing methods with respect to the three afore-

mentioned main steps. This survey also defines a standard

formal notation to provide a global point of view of the

state-of-the-art.

The reader looking for more details on the existing meth-

ods on coarse registration should consider this survey.

Our method is fully in line with the previous three

steps: our idea is to detect keypoints from the point

clouds/meshes, to describe them exploiting the (X,Y,Z)

information (no RGB) and to create correspondences

which are finally used to generate hypotheses of possible

registrations.

In that context, one classical method to describe the

scans around salient detectors is based on normal distribu-

tion. This idea has already been taken into account in sev-

eral variants. For instance, an algorithm based on normals

distribution has been proposed by Makadia et al. [9]. Nor-

mals are accumulated in an orientation histogram. Peaks are

identified and create constellations, that are then aligned to

directly give the rotation between two scans. Translation

can be deduced in a further step. The limitations identi-

fied in this approach are that overlap has to be important,

and that normals from the overlap area must be discrimina-

tive regarding the distribution of normals through the whole

point clouds, while being consistent with this distribution.

One solution to address these limitations, when RGB infor-

mation is available, is to combine 3D and RGB detection,
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description and matching. For instance, Zeisl et al. [18]

combine 3D information with standard vision matching us-

ing 2D SIFT. The idea in their paper is to project the scan

in perspective views orientated towards ”salient directions”,

which are identified as peaks on the normals distribution as

in the previous work. However, this algorithm is challenged

by point clouds with few planar areas, or surfaces present-

ing an important tilt when viewed from the scan location.

In cases such as scanner acquisitions, there may be lot of

self-occlusions, leaving large parts of the scene hidden from

the scanner. Since the occlusions are likely to be different

from a viewpoint to another, hence from one scan to an-

other, using a larger size for the neighborhood might be not

suitable, as the information held by this neighborhood could

vary a lot.

This led us to build a descriptor purely based on 3D in-

formation and that would not make strong assumption on

the point neighborhood. Moreover the detector of salient

points used in our algorithm uses RGB or intensity infor-

mation in the neighborhood, since it is known to be quite

resilient to occlusions and differences in sampling density

as stated in Theiler et al. [16].

The seminal work to our approach is the work from

Aiger et al. [1]. They proposed the 4-Points Congruent Sets

(4PCS) algorithm that does not use local description. In-

stead, it considers groups of 4 quasi-coplanar points in the

point cloud. It uses a shape descriptor based on the dis-

tances between these points and the intersection of the line

segments they define.

The selected points must be spread enough to guaran-

tee algorithm stability, and close enough to ensure that the

points are in the overlap area between the two viewpoints.

The geometric configuration of four coplanar points is dis-

criminant enough to create strong matches between the two

point clouds.

This work on 4PCS algorithm has inspired several other

recent approaches still introducing the 4-Points Congruent

Sets principle: the very recent Super4PCS from Mellado et

al. [10] is based on a smart indexing data organization re-

ducing the algorithm complexity from quadratic to linear in

the number or data points; Mohamad et al. [11] general-

izes 4PCS by allowing the two pairs to fall on two different

planes which have an arbitrary distance between them, then

by increasing this distance, the search space of matching hy-

potheses exponentially leading to a run-time improvement

of up to 80%.

However the Super4PCS is more complex to implement

and the runtime improvement is generally of 50% compared

to 4PCS. Similarly the Generalized 4PCS reach more than

80% of runtime improvement but this is only evaluated on

datasets with less than 100K points.

Theiler et al. [16] and more recently Bueno et al. [5]

cut down the complexity by using keypoint detection as a

  

(a) : INPUT : SCANS  
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(b) : KEYPOINTS 
DETECTION

(e) : SCAN 
CLUSTERING

(c) : DESCRIPTOR 
CALCULATION

(d) : HYPOTHESES 
GENERATION

(R, t)

VALIDATION
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Figure 1. Overview of the algorithm. Each step will be explained

further and referenced with the associated letter

previous step to the 4PCS algorithm. This allows to work

with larger points clouds.

Another idea to reduce the complexity of 4PCS is to rely

on pairs of points rather than on 4-Points Congruent Sets.

The idea of a four-component descriptor based on angles

and distance between two points, has been first proposed by

Drost et al. [7]. They applied this descriptor, called Point

Pair Feature (PPF), for efficient and robust 3D object recog-

nition.

Then, Birdal and Ilic [4] proposed a full processing

chain based on their PPF descriptor to address the prob-

lem of large scene scan registration. Even though their ap-

proach may seem similar to ours, our approach differs from

Birdal’s method in several significant aspects that we are

going to describe in the following section. It mainly consists

in the introduction of keypoints detection to deal with large

point clouds, a box filtering associated, a different voting

space based on translations, and the hypotheses verification

step based on hierarchical clustering.

3. Algorithm overview

An overview of the algorithm is presented in figure (1).

Our algorithm proceeds by first extracting keypoints lo-

cally in each scan, grouping them in pairs and building a

descriptor for each pair.

Then, the descriptors are used to estimate rigid transfor-

mations. Since there may be a lot of outliers, we accumulate

those transformations into a voting space and look for zones

with high density - the idea being similar to a classic Hough

transform. The most relevant transforms are then scored to

define the correct alignment.
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3.1. Detector: SIFT3D (figure 1 b)

Numerous 3D detectors are available on the bench-

mark. We need a detector that is not too sensitive to self-

occlusions and has a good repeatability, regardless of the

descriptor. Moreover, since we will use normals in the de-

scriptor, the detected points must have a well-defined nor-

mal, which means features such as corners are not good can-

didates.

For this reason, we decided to extract keypoints based on

RGB or reflectance data attached to the scan, rather than on

geometry itself.

We did tests on the repeatability of common detectors on

our datasets: SIFT3D, Harris3D and Intrinsic Shape Sig-

nature. SIFT 3D showed to be the most suitable detector

for our purpose. We used the implementation provided by

Point Cloud Library (PCL). To counter the effects of occlu-

sions on the detection step, the maximum scale is set to a

low value compared to the size of the point cloud. To en-

sure that keypoints are detected in every part of the scan, we

use a low initial threshold on response intensity (in practice,

we use a minimum contrast of 0.1). Then, to control the to-

tal number of keypoints, we split the space in fixed-size 3D

buckets and only consider the first n strongest keypoints in

each bucket. In practice, we use buckets sizing 2 x 2 x 2

meters with 4 keypoints in each. It ensures there are not

too few keypoints, which would lead to a lack of repeatabil-

ity, and not too many, which would drastically increase the

execution time.

3.2. The descriptor: KPPF (figure 1 c)

Our algorithm is inspired by the K-4PCS and the PPF.

The driving idea behind it is that 4PCS has issues when

dealing with large point clouds: complexity can make it

intractable to use all input data points. By limiting com-

putation to keypoints detected by a feature detector such as

SIFT, the point clouds are down-sampled in a way that pre-

serves correspondences if features are repeatable enough.

And since, finding sets of four coplanar keypoints that

would be visible from both point clouds can be challeng-

ing due to the non-repeatable features detected, we reduce

the number of points in a descriptor to two. To still be able

to compute the rigid transformation from one pair of de-

scriptors, we keep the normal associated to both points.

3.3. Descriptor construction

Keypoint detection: SIFT 3D undertakes successive fil-

ters at different scales, that are then subtracted. Maxima are

identified as keypoints. To limit sensitivity to occlusions,

we voluntarily forced the maximum scale not to be too large

regarding the point cloud size.

Normals extraction: At every keypoint, we need a

reliable normal information. For this, we consider a

neighborhood around this keypoint and fit a plane to the

corresponding data using normalized least squares [2].

If the neighborhood is planar enough, a robust normal is

calculated and refined to fit at best the local geometry.

Keypoints that do not have such normals are discarded and

ignored in the subsequent stages (see red points in figure 2).

Figure 2. Close-up of the keypoints extracted in scan number 12.

Green dots have stable normals whereas red do not - and are thus

discarded.

Descriptors calculation: The descriptor consists of val-

ues derived from a pair of two keypoints and their normals,

like in the PPF descriptor [7]. At this stage, we consider all

the points that have been detected at the first step using 3D

SIFT, and have not been discarded at the normal estimation

step. Then, we estimate the 4 following values that build

the descriptor:

• spatial distance between the two points (1 value)

• angles between the normals and the line defined by the

two points (2 values) 1

• angle between the normals themselves (1 value)

Such a descriptor is fast to compute and very compact.

This representation is very convenient and conveys suffi-

cient information to compute a rigid transformation from a

pair of descriptors.

1It is there important to use a criterion to sort the two angles that would

be shared through different viewpoints. If we do not, every set of two

points could have two valid descriptors and it would drastically enhance

the complexity. We chose to set the smallest as first.
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Figure 3. The descriptor itself: angles between the normals and

the line defined by P1 and P2 (α1 and α2) and angle between the

normals �n1 and �n2 (α3).

3.4. Descriptors matching

The algorithm proceeds by considering, for all descrip-

tors in scan 1, the potential candidates in scan 2. This is

done finding the nearest neighbors in the descriptor space.

To efficiently find neighbors, a 4D kd-tree is built using all

the descriptors for each point cloud. For any descriptor from

a given point cloud, we can efficiently look for the best can-

didates in the other point cloud by doing an approximate

nearest neighbor search in the 4D kd-tree. The candidate

pairs of descriptors are used in a voting scheme presented

in the following section 3.5.

In the 4D kd-tree, we are inserting 4-vectors made of 3

angles and distance. Since the kd-tree relies on L2 distances

between these 4-vectors, we have to normalize the data so

that an increment on any of the four values would change

the distance between descriptors consistently: we tested us-

ing either raw cosines of angles, raw angles, and angles with

a scalar factor (to fit with the distance dimension). The best

configuration is raw angles in degrees, and distance in me-

ters multiplied by 40.

3.5. Hypothesis generation:(figure 1 d)

From all the candidate pairs considered, we derive the

strongest rotation-translation hypotheses, i.e. the ones that

get most support from the candidate pairs. To achieve this,

we use a voting scheme based on 3D translation. A regular

3D voxel space is generated with an appropriate range

and scale regarding the point cloud. The three dimensions

represent respectively the x, y and z components of the

translations. In practice, we use 50 x 50 x 50cm voxels. In

each cell, we create and maintain a list of rotation clusters.

The pseudo-code below describes how a candidate pair is

processed:

To determine if a candidate belongs to a ”cluster”, we

first compute the product of the candidate rotation matrix

with the inverse of the representative of the cluster. Then

Data: Unclassified transform (rotation + translation)

candidate

Result: Transform candidate stored in the voxel space

Construction of the voxel space of translations;

while not empty candidates pool do

read the transform of the candidate (hypothesis);

select the voxel corresponding to the translation;

if voxel is empty then

store the hypothesis as a full transform;

else
if hypothesis’ rotation close enough to one of

the rotation clusters’ then

add the hypothesis to the cluster;

else

create a new cluster and add hypothesis;

end

end

end

Algorithm 1: Storing a candidate in the voxel space

we check if the angle (fourth component of the quaternion)

is smaller than a threshold (in practice we use 5°).

To handle the fact that translations may land near a bound-

ary between two voxels, each translation also votes for the

26 voxels around, with a score determined by a Gaussian of

its distance to the center of the voxel.

3.6. Hypothesis validation:(figure 1 f)

To accept or reject a hypothesis, we produce a higher

level representation of the original point cloud data of each

scan using the adaptive hierarchical clustering algorithm

proposed by Pauly et al. [13]. Once patches are built, we

estimate the ratio between the number of matches and no-

matches. First, a patch from a scan is picked and placed in

the other scan according to the hypothesis. Rays are cast

from the center to determine the corresponding patch in the

scan. If it lands in front of the other patch, it is a no-match,

because the other patch should be occulted. If it lands be-

hind the other patch, we cannot say anything. If it lands

close to the other patch, it is a match if normals correpond,

a no-match if they do not. Ratios are evaluated in both di-

rections (from one scan to another and vice versa), and a

threshold is applied to validate the hypothesis.

4. Experiments

4.1. Data

We acquired the dataset used in this study using a

FARO®Focus3D Laser Scanner. The acquisition angles

range from -60°to + 90°for elevation, and -180°to +180°for

azimuth. The resolution of the spherical images associated

is 5142 x 2134. The dataset is made of 33 scans located in
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Figure 4. Top view of the scanner positions of the dataset

the positions indicated on the figure 4 (black spots on top,

red on bottom). To estimate the ground-truth positions, we

used a manual registration method. Ground-truth is used to

assess the performance of our algorithm in the next para-

graphs.

4.2. Overlap

In our assessment, we have estimated the overlap for all

pairs of scans. This gives information about how likely the

scans are to match.

To estimate this criterion, we represent each scan with vox-

els of fixed size: 20 x 20 x 20 cm. A voxel is activated

if it contains at least one point. Then, the two scans are

put in a common frame using the ground-truth transform.

Points from one scan are projected into the voxel space of

the other scan, through the pairwise ground-truth transform.

The overlap is the ratio between the voxels activated by both

scans and the voxels activated by only one scan. For the

528 pairs of scans, we observe an overlap mean value of

9% with high standard deviation of 11%. Values of overlap

for each pair of scans are plotted on figure 5 and the distri-

bution of overlap values on figure 6. We observe that 29%

of the pairs of scans have an overlap ratio less than 2% that

could be explained by occlusion in the scene (see figure 4).

We also observe that 4.5% of the pairs of scans have more

than 30% of overlap and only 1.3% have more than 50% of

overlap.

4.3. Results

4.3.1 Repeatability of the detector

The repeatability of detected keypoints is systematically

estimated using the same process: each keypoint is repro-

jected in the other scan using ground-truth transform. If

it lies in the area of the scan (if there is a 3D point at less

than 5 centimeters), we check if there is a keypoint at less

than 20 centimeters. The repeatability is the ratio between

the number of points that fill this last criterion and the total

number of keypoints that were successfully reprojected.

Repeatability has been computed for each pair of scans

Figure 5. Overlap percentage between 2 scans. Mean overlap of

9%, standard deviation of 11%.
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Figure 6. Distribution of the percentage of overlap between scans.

that overlap in two directions (as for example scan 2 with

respect to scan 4 and scan 4 with respect to scan 2).

As a starting point, SIFT keypoints are detected, using

the following values as parameters: minimum scale: 0.2,

number of octaves: 4, number of scales per octave: 8

and response threshold: 0.1. This last parameter impacts

the number of keypoints, thus increasing the repeatability

and the complexity of the algorithm. We evaluated the

repeatability of keypoints as well as the the performance of

the algorithm.

For the 33 scans (see paragraph 4.1), the mean repeata-

bility is 0.144 with a standard deviation of 0.065. This

means only one out of seven keypoints from a scan will find

a match in the other one, which is really low and detrimen-

tal. We will see in further experiment that even with low
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Figure 7. Number of pairs successfully matched depending on the

number of top-rated hypotheses over 33*32 = 1056 pairs.

repeatability, our algorithm still has good performance.

4.3.2 Pertinence of the descriptor/voting scheme

The voting scheme gives us a list of hypotheses sorted

in decreasing confidence order. The ones with the highest

score are the ones that appeared the most during the vot-

ing process, and are likely to be the most relevant. We

only score the first 16 ones, since considering more does

not bring a lot of improvement, as illustrated on the Fig-

ure 7: it represents the number of pairs of scans that suc-

cessfully matched depending on the number of hypotheses

considered. If only one hypothesis is considered, the best

transformation estimated between two scans is applied. If

more than one hypotheses are considered, for each pair of

scans, all corresponding possible transformations are tested

and best results are selected. Adding more hypothesis in-

crease thus the number of pairs successfully matched. How-

ever, as shown in figure 7, the increasing rate of matching is

quite low. Considering that adding hypothesis is costly, we

may limit the number of hypotheses to be tested.

4.3.3 Computation time for data preprocess and

matching

Our algorithm is splitted into two parts:

• The first one extracts information - descriptors - from

the scans.

• The second one matches those descriptors across

scans.

Step 1: Information extraction from scans This step

extracts information, keypoints and descriptors, indepen-

dently from each scans. The number of informations and
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Figure 8. Number of keypoints, number of descriptors (divided by

1000 to be displayed on the same graph), time of extraction, for

each of the 33 scans.

computation time are displayed in figure 8. The computa-

tion time appears to be independent of the number of infor-

mations with a mean of 27 seconds and a standard deviation

of 2 seconds.

Step 2: Matching The time is highly dependent on the

number of keypoints extracted/descriptors built as illus-

trated in figure 9. The computation time has a mean value of

2.17 and a standard deviation of 2.73. The average quality

is of 144 with a standard deviation of 327.

Comparison to K4PCS The algorithm that was closest

to ours in terms of method was K4PCS. We decided to test

this algorithm on our dataset. The total number of scans

pairs is 528. In order to be able to use K4PCS, we need an

estimation of the overlap between each pair. For our exper-

iments, we used the overlap values presented on Figure 5.

The results are displayed in the Table 1 below.

- K4PCS KPPF

Number of scans pairs matched 28 250

Time per scans pair 135s 145s

Table 1. Table of comparison between K4PCS and our algorithm

For an approximate equivalent time, our algorithm out-

performs K4PCS in terms of number of matches. Moreover,

we do not need an estimate of the overlap between scans,

which prevents bias from a wrong estimation.

5. Conclusion

In this article, we have presented a coarse registration

algorithm to address the following challenges: very large
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Figure 9. Matching time with respect to the number of descriptors

(sum of descriptors in both scans) for each of the 528 pairs of

scans. Time of computation increases with number of descriptors.

scale scans (about 10 millions of points), matching pairs

of scan with an overlap of 5%, without any guess on

the initial alignment, and without the use of any artificial

marker nor external sensors. Our algorithm is keypoint-

based Point Pair Features and provides 250 correct matches

on a database of 33 scans.

In order to evaluate our algorithm, we have acquired a

dataset of 33 indoor scans with architectural challenges. To

the best of our knowledge, this dataset is the first one pub-

licly available gathering all the aforementioned challenges:

large scale, overlap, viewpoints...

We will further improve and increase this database to make

it a reference benchmark.

The next step will be to integrate corners since they could

for instance be described using the several normals that

form it. The detection is still sensitive to occlusions, and

this impacts the efficiency of the algorithm as a whole. We

are currently exploring an adaptive thresholding strategy on

points density of buckets, to lessen the sensitivity of our al-

gorithm to occlusions.

Finally, we are working on a tensor voting approach in order

to improve the validation step.
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[18] B. Zeisl, K. Köser, and M. Pollefeys. Automatic registra-

tion of RGB-D scans via salient directions. In IEEE ICCV,

Sydney, Australia, pp 2808–2815, 2013. 3

[19] Z. Zhang, S. H. Ong, and K. Foong. Improved spin images

for 3d surface matching using signed angles. In IEEE ICIP,

pp 537–540, 2012. 2

2502


