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Abstract

Object classification is a core element of various robot

services ranging from environment mapping and object ma-

nipulation to human activity understanding. Due to lim-

its in the robot configuration space or occlusions, a deeper

understanding is needed on the potential of partial, multi-

view based recognition. Towards this goal, we benchmark a

number of schemes for hypothesis fusion under different en-

vironment assumptions and observation capacities, using a

large-scale ground truth dataset and a baseline view-based

recognition methodology. The obtained results highlight

important aspects that should be taken into account when

designing multi-view based recognition pipelines and con-

verge to a hybrid scheme of enhanced performance as well

as utility.

1. Introduction

View-based methods for object classification have been

shown in latest extensive experiments [4], [16] to out-

match 3D-based shape description methodologies of com-

plete shapes. Such results are particularly encouraging for

robotic applications since observing objects from multiple

viewpoints is often infeasible either due to robot kinematic

constraints or due to the presence of obstacles. On the other

hand, it is generally true that not all viewpoints are equally

informative in discriminating the class of an object. This is

because the discriminative features of an observation taken

from a particular viewpoint depend on the intra-class as well

as inter-class variability as well the nature of the underlying

features that are extracted (cf. Fig 3., [19]). As a conse-

quence, there is an unavoidable bias/utility towards certain

viewpoints when classifying objects depending on the shape

of the object and its semantic class (cf. Fig. 2, [8] and Fig.

3, [11]). Therefore, while an integral inspection of an object

may not be necessary for correct classification, we can ex-

pect that in the worst case two or more observations will be

required in order to capture the most discriminative object

parts.

Most earlier works addressing multi-view object classifi-

cation are application oriented with predetermined assump-

tions. The authors of [8] exploit the viewpoint bias of de-

tectors only empirically by adopting the shape description

method with the highest influence to viewpoint variability

and mostly evident among positive and negative examples.

To fuse the classification outputs obtained from the total set

of observations they apply the naive Bayes criterion, also

applied in their consecutive work [9].

In the work of Becerra et al. [2] a POMDP formulation

for confirming the class of an object is proposed which in-

tegrates information on robot location and the output of an

object detector. A solution is found via stochastic dynamic

programming for a fixed time horizon, but only after assum-

ing a particular class for the object of interest before trying

to optimize the detection score while performing training

and testing on the same object. This makes that approach

unsuited when the objective is to confirm one among many

possible classes and on different test and train objects.

Potthast et al. [12] also adopt a POMDP formulation for

joint category and viewpoint classification of an object by

further incorporating feature selection on interleaved steps

of local and global optimization. Since their main goal is to

extract the optimal category and viewpoint at the last obser-

vation of an object with no concern on the consistency along

the entire observation sequence, state transitions among cat-

egories are not excluded which could lead to unreasonable

results.

In [1] the authors propose a model for active object clas-

sification and pose estimation that jointly considers sensor

movement and decisional cost. They are also based on a

POMDP formulation, yet its practical utility is limited be-

cause successive observations are considered independent

and state transitions among object categories are also al-

lowed. Their experiments also appear to be limited by con-

sidering only 1 object category at a time.

Finally, in the work of Patten et al. [11], class and pose
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are estimated separately and by assuming observation inde-

pendence for both problems. The class distribution is ob-

tained by Bayesian updates while pose by the best align-

ment among all observations and the best match given by

the classifier, through Iterative Closest Point (ICP) registra-

tion.

Overall, due to differences in the applications, assump-

tions and detectors among earlier works it is not straightfor-

ward to derive conclusions on the conditions under which

multi-view classification is beneficial compared to single-

view object classification.

In this work, we examine the performance of multi-view

hypothesis fusion for 3D object classification both under

observation dependence or independence and in consider-

ation of the robot observational capacities. Under observa-

tion dependency, we detail how multiple classes can be hy-

pothesized by firstly evaluating the viewpoint sequence es-

timation problem for every hypothesized class and secondly

by assigning the class with the highest overall probability.

After comparison against alternative fusion schemes under

observation independence, the experiments highlight that it

proves consistently beneficial with the increase of distinct

observations, in contrast to observation dependence which

proves superior only early in the observation sequence.

The remaining of the article is organized as follows. In

Section 2 we formulate the problem under consideration, in

Section 3 we describe different hypothesis fusion schemes

along with the conditions and assumptions that are applica-

ble for each case and in Section 4 we evaluate crucial as-

pects of multi-view based object classification on a public

dataset.

2. Problem Description

We treat the problem of optimal classification of static

or dynamic 3D objects from sequences of observations ac-

quired from multiple viewpoints by a mobile sensor. A

ground truth of labelled object templates observed from var-

ious viewpoints is assumed available where each annotated

training sample is a tuple composed of the semantic class

of the object, the observed viewpoint and the correspond-

ing feature vector. Considering the observation viewpoint

as part of the ground truth implies that objects that belong

to the same semantic class of the ground truth must share a

fixed canonical pose, namely, they are aligned to each other

as in the case of ModelNet [20] or CAPOD datasets [10].

When exploring a new environment, i.e. during testing,

both the semantic class as well as the pose of an object are

unknown and thus the challenge resides in devising them

from the collected observations. In the context of a robotic

application, we are generally more interested in hypothe-

sizing the semantic class and secondarily the pose since the

latter can be ambiguous or even absent due to shape symme-

try across object views. Object classification will therefore

be used as the final performance measure criterion.

To address the outlined problem, we may rely on: (i) a

capacity to hypothesize the semantic class and the observed

viewpoint of an object based on a single frame/observation

and (ii) an approximate sensor localization capacity. The

first capacity allows only for joint consideration of differ-

ent observations under the assumption that they are inde-

pendent while the second capacity allows to enforce depen-

dency between successive observations. Upon presenting

these capacities in sections 2.1, 2.2 we then detail the fusion

schemes that can be considered depending on assumptions

in Section 3.

2.1. Single Observation Model

A feature vector classification method is employed (see

Sec. 4) which classifies a given feature vector x describing

an object ox to one of |I| classes ωi ∈ I , i ∈ {1, 2, ...|I|}
based on the corresponding probability P (ωi|x). A feature

vector corresponds to the global shape descriptor extracted

by observing an unknown object from an unknown view-

point. If we assert that an object ox belongs to a specific

class ωi, we write ox = ωi.

For the evaluation of the posterior probability P (ωi|x),
a nearest neighbor classification scheme is adopted which

sets the probability as inversely proportional to the match-

ing distance between x and the nearest neighbor that be-

longs to ωi, namely:

P (ωi|x) ∝
1

distNN (x,ωi)
(1)

distNN (x, ωi) = min
y∈Y|oy=ωi

dist(x,y) (2)

where Y is the total set of feature vectors of the ground

truth database that are compared against x and dist(., .) is

the distance function for a pair of feature vectors.

The total number of possible classes is therefore |I| =
|V | · |S| where |V | is the cardinality of the set of view-

points V from which each object is observed and |S| the

cardinality of the set of object semantic classes S. It fol-

lows that each ωi is associated with a particular object

viewpoint θv = (v − 1)2π/|V |, v ∈ {1, 2, ...|V |} of a

particular semantic class cs, s ∈ {1, 2, ...|S|}, which can

be equivalently denoted as ωvs through the linear mapping

i = v+ (s− 1)|V |. We will hereafter employ the two nota-

tions ωi and ωvs interchangeably for convenience depend-

ing on the context. Fig. 1 depicts the underlying notations

with a representative object of semantic class armchair.

2.2. Sensor Localization and Transition Model

We consider a mobile robotic sensor with the capability

of aproximate 2D localization around an object of interest,

e.g. following the approach described in [6]. The location

of the sensor is used for measuring its displacement across
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Figure 1. Example object and observation configuration

succesive observations and in turn, obtain the expected tran-

sition/shift in the observed object pose. Considering a se-

ries of observations where k ∈ {2, 3..., N} denotes the ob-

servation step, we can readily obtain the transition prob-

ability p(ωv(k)s(k)|ωv(k−1)s(k−1)), where ωv(k)s(k) is one

of the possible classes that can be appointed to an object

at the kth observation step, i.e. v(k) ∈ {1, 2, ...|V |} and

s(k) ∈ {1, 2, ...|S|}.

Recalling subsection 2.1, each class ωi can be equiva-

lently referred as ωvs where v and s correspond to a view-

point and a semantic object class respectively. Evidently,

when observing a particular object there can only be transi-

tions between viewpoints and not among semantic classes.

Therefore, we simplify the transition probability as:

p(ωv(k)s|ωv(k−1)s) = N (∆α;µ∆θk , σ) (3)

where µ∆θk = θv(k) − θv(k−1) is the angle between view-

points v(k) and v(k − 1), σ corresponds to the standard

deviation that quantifies the uncertainty of the sensor local-

ization and ∆α the angular displacement of the sensor with

respect to the object between observations k − 1 and k.

3. Fusion schemes

3.1. Hypothesis Fusion based on Observation De
pendency

We first investigate the possibility of fusing the total

number of obtained hypotheses by assuming dependency

among observations, which implies using both capacities

described in Sections 2.1, 2.2. Given a sequence of object

observations xk, the optimal class is obtained as:

ω∗
i(N) = argmax

ωi(N)

Dmax(ωi(N)) (4)

where Dmax(ωi(N)) is the maximum decision score that

can be deduced if class ωi(N) ∈ I is matched to the un-

derlying object.

The above problem can be formulated as a hidden

markov model (HMM) where ωi(k) are the possible, hid-

den states along the observation sequence and xk are the

corresponding observations. In this context, the aggregated

decision cost at time step k is given by:

D(ωi(k)) =

k∑

r=1

d(ωi(r), ωi(r−1)) (5)

where d(ωi(r), ωi(r−1)) is the cost that is associated to a

transition between succesive states ωi(r) and ωi(r−1). Al-

though the term cost may seem counterintuitive since we

seek to maximize eq. (4), it is adopted here for the sake

of correspondence to the literature (cf. [17], Ch. 9) which

further holds true for the chosen notations.

Recalling that when observing a particular object the

only possible state transitions concern transitions between

viewpoints and not among semantic classes, it follows that

eq. (5) can be expressed as:

D(ωi(k)) = D(ωv(k)s) =
k∑

r=1

d(ωv(r)s, ωv(r−1)s) (6)

where the decisional transition cost d(., .) is defined as:

d(ωv(k)s, ωv(k−1)s) = ln(p(ωv(k)s|ωv(k−1)s) · p(xk|ωv(k)s)) (7)

where p(ωv(k)s|ωv(k−1)s) is obtained by eq. (3) and the

likelihood function p(x|ωi) introduced in eq. (7) is ob-

tained by applying Bayes rule and assuming equal a priori

class probabilities. In other words, we do not assume that

certain object classes are more likely to appear than others,

although such treatment could be employed when the sur-

rounding spatial context can be accounted for (cf. [5] and

[7]). In this way, we obtain that p(x|ωi) ∝ P (ωi|x)/p(x)
which makes the calculation of p(x) redundant in the evalu-

ation of the cost in eq. (7). Eventually, the maximization of

the aggregated cost D is efficiently calculated via dynamic

programming by virtue of Bellman’s principle and by em-

ploying the Viterbi algorithm [18].

3.2. Hypothesis Fusion based on Observation Inde
pendence

Observation independence is assumed in the case of no

sensor localization capacity or whenever we cannot assume

that objects remain strictly static along the entire set of ob-

servations, therefore all state transitions are equiprobable.

Under such conditions, we examine a number of possible

hypothesis fusion schemes presented as follows.

3.2.1 Equiprobable Transitions

The first scheme can be considered as a subcase of the pre-

vious by setting the transition probability to be uniformely

distributed, i.e. p(ωv(k)s|ωv(k−1)s) = 1/|V |. This implies

that the transitional decision cost of eq. (7) depends only on

the observation likelihood while the optimal class ω∗
i(N) is

obtained in the same manner using Viterbi algorithm.
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3.2.2 Maximum Similarity

In this scheme, we hypothesize as class of the object the one

corresponding to the viewpoint observation with the maxi-

mum probability, namely:

ω∗
i(N) = argmax

ωi(k)

P (ωi(k)|x)) (8)

where P (ωi(k)) is calculated using eq. (1).

3.2.3 Maximum Certainty

We hypothesize as class of the object the classification re-

sult of the viewpoint observation with the maximum classi-

fication certainty, namely:

ω∗
i(N) = argmax

ω∗

i(k)

Hi(k) (9)

ω∗
i(k) = argmax

i

P (ωi(k)|x) (10)

Hi(k) = −
∑

i P (ωi(k)|x) logP (ωi(k)|x) (11)

and certainty is quantified via Shannon’s information en-

tropy.

4. Results

We performed a comparative evaluation of the afore-

mentioned approaches within the Princeton ModelNet10

[20] dataset which contains 4899 objects distributed into 10
common indoor classes, in order, bathtub, bed, chair, desk,

dresser, monitor, night stand, sofa, table and toilet. These

categories correspond to the top 10 most common indoor

object categories according to [21]. Example 3D objects

for each category are shown in Fig. 2.

Figure 2. Example 3D objects from ModelNet10 dataset categories

This dataset is particularly suited in the context of a mo-

bile robotic sensor since the pose of each synthetic object

coincides with its expected upright orientation in the real

world, which in turn allows the adoption of a fixed sensing

configuration. For our experiments, we set M = 20 cam-

era viewpoints uniformly distributed around each object at

a sensor pose that is orientated versus the centroid of the

coordinate system at a fixed pitch angle. This testing con-

figuration is equivalent to related works on multi-view ob-

ject classification such as [16], [12] or [4] wherein a roving

sensor observes a query object from different viewpoints

and estimates its class and possibly its pose. Nevertheless,

Figure 3. Baseline method for single observation model

Table 1. Comparative classification performance of baseline single

view observation model against state-of-the-art methods

Precision

%

Recall %

Baseline 71.4 70.9

ESF [19] 73.6 72.8

VFH [13] 69.9 69.1

ROPS [3] 58.3 57.7

the scope of our evaluation is different in that we do not

seek to compare the performance among different single-

view based object recognition methods but among decision

fusion schemes based on a common, baseline single-view

method.

The baseline approach that we adopt here for the sin-

gle observation model assumed in Sec. 2.1 is composed

of the following steps. First, a bilateral filter is applied on

a depth buffer image acquired by simulating a perspective

projection of the object using as intrinsic camera parameters

those corresponding to a Kinect V1 sensor. The smoothed

organized point cloud (PCD) is then used to compute the

surface orientation at each sensed point, producing a sur-

face orientation image. That image is finally encoded by

a multi-scale 2D discrete wavelet transform (DWT) whose

coefficients are used to extract a set of central moments

(mean, standard deviation and skewness) for each distinct

wavelet sub-band and scale. To compare two feature vec-

tors, the Canberra distance score is employed. This feature

extraction procedure is summarized in Fig. 3. As a ref-

erence for the general performance of our baseline single

observation model, we further provide in Table 1 its com-

parative performance to three other state-of-the-art single-

view based object descriptors in terms of precision and re-

call. The compared methods are: (i) Ensemble of Shape

Functions (ESF) [19], (ii) Rotational Projection Statistics

(RoPS) [3] and (iii) VFH (Viewpoint Feature Histograms)

[13], whose implementations are available with PCL (Point-

Cloud Library) [14]. These results suggest that the adopted

baseline observation model is representative of the state-of-

the-art performance.

To evaluate performance among hypothesis fusion

schemes, we calculate the precision and recall scores for

each object class and perform leave-one-out experiments
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by simulating sensor observations from randomly chosen

viewpoints and k ∈ {2, 3, ..., 6}. We perform a total of 4
independent runs for each k and fusion scheme and finally

obtain the average.

We abbreviate the compared hypothesis fusion schemes

as follows: HMM-dep (Sec. 3.1), HMM-indep (Sec.

3.2.1), MAXS (Sec. 3.2.2) and MAXC (Sec. 3.2.3). In

Fig. 4 we demonstrate the respective results for each class

of the dataset, for both precision and recall scores. For the

trivial case of 1 observation being considered, since there

is no hypothesis fusion all schemes attain the same per-

formance. When multiple observations are performed for

(k = 2, 3, ...) the presented results are instructive in a num-

ber of points.

First of all, we observe that the consideration of supple-

mentary viewpoint observations contributes almost always

in the increase of classification performance (with the ex-

ception of the desk Recall and the dresser precision when

using the MAXC criterion). The first 3 observations ap-

pear to be in general those which contribute the most while

performance seems to stabilize afterwards with very little

additional benefit. Furthermore, it is clear that the average

macroscopic performance for schemes MAXS and MAXC

is clearly inferior compared to the other alternatives. This

strongly suggests that single-view based object classifica-

tion cannot alone surpass the performance of multi-view

classification. If this is the case then this result may ap-

pear contradictory to the results presented in [15] where

view-based methods surpass entire 3D object discrimina-

tion methods.

An explanation to this contradiction emerges via the

comparison between the schemes HMM-dep and HMM-

indep. Considering observation dependence via HMM-dep

is consistently beneficial when k = 2 observations, while

for more observations the performance seems to stabilize

in an abrupt way and sometimes even decrease (see dresser

Recall, sofa Recall, bed Precision, chair Precision, toilet

Precision). Conversely, considering observation indepen-

dence via HMM-indep, performance is always favoured by

the consideration of supplementary observations and con-

vergence is smoother and in turn, more stable. Furthermore,

HMM-indep surpasses HMM-dep in the majority of classes

both in terms of precision and recall while achieving very

close performance to HMM-dep in the remaining cases.

The above observations leads us to the principal outcome

of the experiments, namely, that multi-view object classifi-

cation is strongly influenced on the underlying assumptions

(i.e. viewpoint dependency) and occasionally by the object

category. The fact that viewpoint independence appears to

generally be more beneficial than considering dependency,

means that there may be classes easier to be confused if they

exhibit similar visual characteristics when observed from

the same viewpoints. In such cases, observation indepen-

Table 2. Average macroscopic performance of hypothesis fusion

schemes as a function of supplementary observations

Recall/Precision per number of observations

Fusion

schemes

2 3 4 5 6

HMM-dep 78.8/79.7 79.9/80.8 80.7/81.5 81.3/82.2 81.8/82.7

HMM-indep 77.8/78.7 81.4/82.9 82.1/83.6 82.6/84.2 83.1/84.6

MAXS 73.4/73.8 75/75.6 75.4/76.1 76/76.7 76/76.8

MAXC 72.9/73.4 73.9/74.5 74.1/74.6 74.5/75.1 74.3/74.8

dence allows an observation to be matched to an arbitrary

view of an object, which means that objects can be deemed

similar if they generally share similar visual characteristics

without explicitly requiring spatial correspondence.

Driven by this analysis, we can deduce a hybrid fusion

scheme that combines viewpoint dependence with view-

point independence, by applying HMM-dep for k = 2 and

HMM-indep for k > 2. The average macroscopic perfor-

mance of all schemes presented in Table 2 clearly shows

the performance difference between k = 2 with obser-

vation dependence and k > 2 with observation indepen-

dence. This means that optimal multi-view object classifi-

cation should be initially sought by spatially corresponding

visual similarity between pairs of objects and secondarily

by random, non spatially corresponding visual similarity.

The latter element being the determining factor in disam-

biguating semantically different classes with increased vi-

sual correspondence.

This theoretically optimal scheme is also practically ap-

pealing in scenarios involving robots that explore an envi-

ronment and look for objects. It implies that accurate lo-

calization of the robotic sensor with respect to the object

in order to enforce viewpoint dependence is only important

at the early stage of observation. In other words, an object

would be assumed to be static for only two consecutive ob-

servations while in the sequel the robot would deliberately

consider that the object may have moved or that sensor lo-

calization is less accurate and therefore enforce observation

independence. In the worst-case where the object moved

among the first and second observation then as shown by

Fig. 4 and Table 2, the performance difference between

HMM-dep and HMM-indep would be trivial.

5. Conclusions

This work has presented an elaborate study targeting the

application of multi-view hypothesis fusion schemes for the

purpose of 3D object classification. We evaluated differ-

ent fusion schemes that are distinguished by the underly-

ing assumptions regarding the objects (static or dynamic)

and the sensor observations (dependency), on a common
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Figure 4. Comparison of multi-view hypothesis fusion schemes; (a) Recall and (b) Precision

benchmark. The performed experiments highlight the ex-

istence of a certain trade-off in the way that multiple ob-

servations should be considered for optimal classification

performance.

In future work, it would be interesting to extend these

experiments by alternating other parameters such as alter-

native baseline single observations models, varying sensing

configurations or bigger object collections, which would al-

low more solid conclusions. Finally, as the analysis was

solely based on 3D shape with no consideration on texture

characteristics, subsequent work could emphasize on pho-

tometric and color data of real objects.

6. Acknowledgements

The author would like to acknowledge the contributions
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