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Abstract

One key enabling component of immersive VR visual

experience is the construction of panoramic images—

each stitched into one large wide-angle image from mul-

tiple smaller viewpoint images captured by different cam-

eras. To better evaluate and design stitching algorithms,

a lightweight yet accurate quality metric for stitched

panoramic images is desirable. In this paper, we design a

quality assessment metric specifically for stitched images,

where ghosting and structure inconsistency are the most

common visual distortions.

Specifically, to efficiently capture these distortion types,

we fuse a perceptual geometric error metric and a local

structure-guided metric into one. For the geometric er-

ror, we compute the local variance of optical flow field en-

ergy between the distorted and reference images. For the

structure-guided metric, we compute intensity and chromi-

nance gradient in highly-structured patches. The two met-

rics are content-adaptively combined based on the amount

of image structures inherent in the 3D scene. Extensive ex-

periments are conducted on our stitched image quality as-

sessment (SIQA) dataset, which contains 408 groups of ex-

amples. Results show that the two parts of metrics comple-

ment each other, and the fused metric achieves 94.36% pre-

cision with the mean subjective opinion. Our SIQA dataset

is made publicly available as part of the submission.

1. Introduction

Recent rapid development of virtual reality (VR) tech-

nologies has led to new immersive visual experiences, ren-

dered using head-mounted displays like Occulus Rift. Real-

time reconstruction of panoramic images is one key en-

abling component, where multiple small viewpoint im-

ages captured by an arrangement of cameras on the rig

are stitched together into one large wide-angle view [2,

24, 25, 11]. The stitching process can be broadly divided

into two parts: i) geometric alignment, and ii) photometric

correction. Geometric alignment rectifies the perspectives

of the viewpoint images via homographic transformation

[13], where the transform parameters (e.g., scaling, rota-

tion, shearing, etc) are computed by establishing correspon-

dence between features in two images’ overlapping spatial

regions. Thus errors in this stage are primarily caused by the

inaccuracy in estimated homographic transform parameters.

This results in commonly observed ghosting and structure

inconsistency visual artifacts, as shown in Fig.1.

Photometric correction targets errors due to hetero-

geneous imaging hardware or environmental conditions

among the capturing cameras. Typical errors include vi-

gnette and exposure unevenness, which can be removed ef-

fectively using a number of post-processing techniques in

the literature, including [4, 8, 7]. We thus focus on dis-

tortions due to inaccurate estimation of homographic trans-

form parameters in this paper.

Among the diversity of stitching algorithm literatures,

many researchers choose to assess the stitched images by ei-

ther making comparisons subjectively [24, 14] or using con-

ventional image quality assessment (IQA) metrics [12, 1].

However, the problem of stitched image quality assessment

(SIQA) differs from classical IQA in two main aspects.

First, stitched image quality suffers severely from perspec-

tive, scaling and translation distortions, for which conven-

tional IQA methods do not account. Second, instead of the

globally diffused noise widely studied in the previous IQA

works, the quality of stitched images is more affected by

local artifacts such as shape distortion and ghosting intro-

duced by blending surrounding pixels.

Contributions: We propose to combine a perceptual ge-

ometric error metric and a local structure-guided IQA met-

ric to form a new SIQA metric. To measure the geomet-

ric errors, we compute the local variance of optical flow

field energy between the distorted and reference images.

To measure the structure errors, we compute the intensity

and chrominance gradient in highly-structured patches. The

two metrics are combined in a content-adaptive manner,

where the amount of image structure is first estimated from

the originally captured viewpoint images, as illustrated in

Fig. 2. Experimental results show that the two parts of met-

rics complement each other, and the fused metric achieves

94.36% precision with the mean subjective opinion. We
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Figure 1. Examples of typical distortions in stitched images. (a) textured scene with ghosting; (b) and (c) are ghosted areas with varying

intensity of distortion, distorted image is in red frame, and reference is in green; (d) structured scene with shape breakage; (e) and (f) are

the local areas with distorted structure.

also introduce a stitched image quality assessment (SIQA)

dataset, which contains 408 groups of examples with per-

spective variations, which is made publicly available as part

of the submission.

The paper is organized as follows. Section 2 discusses

previous works in stitched image quality assessment. Sec-

tion 3 introduces our proposed metric. Experimental results

are presented in section 4, and section 5 draws the conclu-

sion.

2. Related Work

Compared with the rapid evolution of stitching algo-

rithms in the last decade, previous literatures on SIQA

seems insufficient and lagged. The recent applications of

the stitching technique have redirected its emphasis, with

the auto-adaptive cameras and freely-assembled rigs gen-

eralized, the imaging condition has largely been improved

and photometric errors introduced on the hardware-level be-

come less a concerning issue. Meanwhile, the demand for

VR experience increases the demand for high quality, full-

perspective panorama in super resolution.

Stitching algorithm evaluations. For stitching algo-

rithms, ghosting and structure inconsistency artifacts that

cause large perceived errors and visual discomfort are major

challenges [21, 3]. To evaluate how effective the algorithms

are as to resolving such errors, many literatures choose to

directly compare the stitched images and judge perceptually

[24, 14]. The illustration is straight-forward but subjective,

and in many cases the comparison is conducted on limited

number of examples, which makes the evaluation less con-

vincing. Another way to evaluate stitching algorithm is to

adopt classical IQA metrics to stitched images [1, 12] such

as MSE (Mean Squared Error) [23], PSNR ((Peak Signal-

to-Noise Ratio) [17], SSIM (Structural Similarity index) [6]

and VSI (Visual Saliency Induced index) [26]. These are

powerful metrics in conventional image quality evaluations,

and can effectively grade images generated by global noise

addition or various encoding methods, but not designed for

the problem of SIQA.

Previous SIQA metrics. Much previous SIQA met-

rics payed more attention to photometric error assessment

[10, 13, 22] rather than geometric errors. In [10] and [22],

geometric error assessment is omitted and the metrics fo-

cus on color correction and intensity consistency. [13] try

to quantize the geometric error by computing the structure

similarity index (SSIM) of high-frequency information of

the stitched and unstitched image difference in the over-

lapping region. However, since unstitched images used

for test are directly cropped from the reference and have

no perspective variations, the effectiveness of the method

is unproven. In [5] an omni-directional camera system of

full-perspective is considered, but the work pays more at-

tention to assessing video consistency among subsequent

frames and only adopted a luminance-based metric around

the seam. In [16], the gradient of the intensity difference

between the stitched and reference image is adopted to as-

sess the geometric error, however, the experiments are con-

ducted on mere 6 stitched examples, and more experiments

are conducted on conventional IQA datasets, which avoids

the important and dwells on the trivial.

IQA-related datasets. The absence of an SIQA dataset

benchmark is another evidence of the problem being un-

derstudied. Compared with the popularity of conventional

IQA datasets like LIVE database[15] or JPEG 2000[9], the
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Figure 2. The proposed procedure for stitched image quality assessment.

situation for SIQA problem is obviously a drawback for the

development of stitching algorithms. Therefore, establish-

ing a stitched image dataset of proper scale and formation

is clearly a necessary move.

3. Proposed Method

Perceptual geometric error metric. As mentioned ear-

lier, miscalculated correspondence between the unstitched

viewpoint images is a major source of distortion for stitched

images that results in relative perspective, scale and transla-

tion error. To estimate such errors, a perceptual geometric

error metric is proposed. First, we establish a dense cor-

respondence between the stitched and reference images to

identify the transformation at the pixel level using optical

flow. Considering the diversity of existing stitching algo-

rithms, displacement between the stitched and reference im-

ages might vary across spatial dimensions. Thus large dis-

placement optical flow (LDOF) [20] is adopted to calculate

point correspondence. The dense flow field is then obtained

as motion vectors at each pixel, which is later utilized to

assemble the geometric error metric.

The magnitude of flow field reflects the intensity of geo-

metric transformation from the stitched image to the refer-

ence image. However, what characterizes geometric distor-

tions is the relative perspective, scale and translation vari-

ations, which are found in the local patches. Hence, the

variance of flow in an N -by-N local patch is adopted to de-

scribe local geometric error. The error metric Mlp for each

stitched image is then obtained by summing up the variance

of local patches as Eq.(1):

Mlp =

P
∑

p=1





1

N2 − 1

N2

∑

i=1

|gi − µp|
2



 (1)

where P is the number of patches, N is the patch size, i is

the pixel index within each patch and µp is the mean mag-

nitude of patch p.

Although the distribution of geometric errors is charac-

terized as random, how human perceives the error is quite

attention-based. For stitched panorama with broad view

with such rich information, human visual perception plays

a more important role on how particular errors are dis-

played and evaluated than normal-size images. To this end,

a salient object detection model is applied to generate an

attention-weighted map, which is characterized as Sp, for

each reference image. Thus, the saliency guided geometric

error metric Mg is summarized as Eq.(2):

Mg =

P
∑

p=1

Sp ·





1

N2 − 1

N2

∑

i=1

|gi − µp|
2



 (2)

where Sp is the normalized saliency of the pth patch.

Structure-guided metric. Despite the measurement of

miscalculated correspondence using geometric error met-

ric, shape and chrominance similarity are proven effective

means to assess noticeable structure distortions [16, 26].

Hence we customize a structure-guided metric for SIQA

problems. First, we rectify the image perspective using the

flow field obtained from previous steps. Then, we detect and

locate the structured areas as bounding-boxes, the visual
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saliency (VSI) method [26] is applied to each bounding-

box. VSI is an effective metric combining visual saliency,

edge similarity and chrominance consistency, which is in

accordance with the desired measurement. Finally, we sum

the index along the bounding-boxes to form the metric.

We rectify the geometric differences by warping the

stitched image to the reference image using the calculated

LDOF field. The structured areas are located using the line

segment detector (LSD) [19] method, and a bounding-box

is imposed around each line with sufficient length. For all

the bounding-boxes representing structured area, we sum

the visual saliency score Sbbox to form the structure-guided

metric Ms is presented in Eq.(3):

Ms =
B
∑

b=1

Sbbox (3)

where B is the number of detected bounding boxes in each

stitched example.

Due to the diversity of content in stitched images, how

structured the content is should be considered. A scene with

unregulated textures like trees or clouds have quite different

noticeable error types from a structured scenes with walls

and furnitures. For instance, line breakage is a more notice-

able error type on the edge of a desk than a flower, while

ghosting is more salient on a flower represented as “dupli-

cation” of the flower. As a result, it is necessary to first

decide how structured a scene is before error quantification.

As discussed earlier, the geometric error metric quan-

tifies the misalignment, and hence is suitable for texture

distortions like ghosting. On the other hand, the structure-

guided metric characterizes the shape and color inconsis-

tency. To combine them in a content-aware pattern, we de-

sign a metric that quantifies the “structureness” of a scene.

In our work, a more structured scene is assumed to contain

more long straight lines. The number, length and distribu-

tion of straight lines are integrated to form the structure-

ness index. If a scene is containing numerous long straight

lines, the mean length µl is supposed larger. On the other

hand, larger µl could also indicate a scene with few but

extra-long lines, thus it is also necessary to divide µl by

the length variance σ. Lines are segmented using the LSD

method and pooled into a 30-dimension histogram accord-

ing to their phase, thus the magnitude for each bin is com-

puted by Eq.(4):

Bmag =

(

µl

σ + ǫ

)

∑

Q

expLq/γ (4)

where Q is the number of lines, and Lq is the length of qth

line within the bin. γ is the rectification parameter, used to

convert an unnormalized value to unit range; in this paper

we use one-tenth of the diagonal length for each stitched

image. Here bins with large magnitude are considered an

effective representation of structure, thus the structureness

index ωstr is described as follows:

ωstr =

B
∑

i=1

Bmag +

Btop
∑

i=1

Bmag (5)

where B is the number of bins, 30 bins are divided in our ex-

periment and Btop is the number of bins with top magnitude

and in this paper we adopt 5 as Btop. The structureness in-

dex is normalized between [0, 1] using the min-max method

and then further rectified. Fig. 3 illustrates typical examples

computing structureness. Finally, the content-aware adap-

tive metric is composed as Eq.(6):

M = ωstr ·Ms + (1− ωstr) ·Mg (6)

.

4. Experimentation

In this paper, we introduce a stitched image quality as-

sessment dataset benchmark called SIQA dataset. Exten-

sive experiments are conducted on the SIQA dataset, in-

cluding the comparison between our proposed metric and

classical IQA metrics, the validation of each metric compo-

nent, and the contrast between fixed-weight and content-

aware adaptive combination mechanism. To analyze the

combined metric and how each component takes effect,

we also studied the specific examples using each compo-

nent solely. Results show the effectiveness of the pro-

posed content-aware metric, achieving 94.36% precision

compared with the mean subjective opinion score (MOS).

4.1. SIQA Dataset Benchmark

The first version of our SIQA dataset is based on syn-

thetic virtual scenes, since we try to evaluate the proposed

metric for various stitching algorithms under ideal photo-

metric conditions. The images are obtained by establish-

ing virtual scenes with the powerful 3D model tool—Unreal

Engine. A synthesized 12-head panoramic camera is placed

at multiple locations of each scene, covering 360 degree sur-

rounding view, and each camera has an FOV (field of view)

of 90 degree. Exactly one image is taken for each of the 12

cameras at one location simultaneously. Each camera view

is used as a full reference of the stitched view of its left and

right adjacent cameras, as demonstrated in Fig.4.

SIQA dataset utilized twelve different 3D scenes vary-

ing from wild landscapes to structured scenes, two sets of

stitched images are obtained using a popular off-the-shelf

stitching tool Nuke using different parameter settings, alto-

gether 816 stitched samples, the original images are in high-

definition with 3k − by − 2k in size. Annotations from 28

different viewers are integrated to decide on which one of
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Figure 3. Examples of computing structureness index ωstr . (a) is a

natural textured scene with relatively less structure; (b) is a natural

scene with more structure; (c) is an outdoor structured scene; (d)

is a structured indoor scene with high structureness index.

the two stitched images is better, more than 10000 decisions

are combined into mean subjective opinion (MOS), which

we later utilize as the ground-truth.

The dataset is properly constructed both in formation and

in scale, and to the best of our knowledge, is also the first

stitched image dataset considering perspective variations.

From each perspective the images are provided separately.

The use of 12-head rig leads to cameras closely joined, with

larger overlap in the captures between the adjacent cameras

and smaller between non-adjacent ones, providing an option

considering overlap size.

4.2. Experimental Results

We mainly conducted 3 groups of experiments on the

SIQA dataset. First, comparing our proposed metric with

the classical IQA metrics. Second, comparing with state-of-

Figure 4. The 12-head panoramic camera established in a vir-

tual scene using the Unreal Engine, and the formation of

stitched/reference image pairs for SIQA-dataset.

Metric Precision with MOS RMSE

VSI 0.8701 0.3604

SSIM 0.8162 0.4287

FSIM 0.8162 0.4287

GSM 0.8407 0.3991

SR-SIM 0.8333 0.4082

RF-SIM 0.6691 0.5752

Proposed 0.9436 0.2374

Table 1. Comparisons with the classical IQA metrics, best results

for classical IQA metrics and for all the evaluated metrics are high-

lighted in bold text.

the-art SIQA methods. Third, evaluating the effectiveness

of each metric component and validating the effectiveness

of the combination mechanism.

Six widely-adopted IQA metrics are evaluated compar-

ing with the proposed metric, as illustrated in Tab.1. Evalu-

ated as single metric, VSI has better performance compared

to others, yet the overall precision is unsatisfying since they

are not designed for the stitched image evaluation problem.

The state-of-the-art SIQA methods are also compared, as il-

lustrated in Tab.2. The proposed method achieves the high-

est precision with MOS and lowest root-mean-square error

(RMSE).

For saliency detection, we adopted a Minimum-

Spanning-Tree-based (MST) [18] method which is both ef-
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Metric Precision with MOS RMSE

Quereshi et al.[13] 0.5343 0.6824

Solh et al.[16] 0.8554 0.3803

Proposed 0.9436 0.2374

Table 2. Comparisons with state-of-the-art SIQA metrics, best re-

sults are high-lighted in bold text.

Metric Without Quarter-size Half-size Origin-size

Mg 0.7034 0.7696 0.7770 0.7868

Table 3. The saliency map fineness applied to Mg and the corre-

spondingly achieved precision.

Metric component Precision with MOS

Mg 0.7868

Ms 0.9167

Fixed combine 0.9216

Content-aware combine 0.9436

Table 4. Individual metric component evaluation.

fective and basically real-time. As mentioned in the previ-

ous section, the calculated saliency magnitude is summed-

up and normalized in local patches with the size N = 32
in Eq.(1), and then used as the perceptual weight. As much

previous work suggested, saliency guidance serves a posi-

tive but non-dominant role in IQA-related problems. The

parameters we used are default as suggested by the author.

Meanwhile, it is observed that the fineness of the saliency

map is positively-correlated, as illustrated in Tab.3.

The structure-guided metric is obtained by computing

intensity and chrominance gradient around local structured

patches. As mentioned earlier, the structured areas are lo-

cated by lines detection using the LSD method. Finally, VSI

is computed in each bounding box imposed around each re-

served line. Fig.5 illustrates a typical example under this

process.

In previous section, we propose to adaptively com-

bine the geometric error metric and structure-guided met-

ric according to scene structureness. To validate the pro-

posed idea, contrast experiments are conducted including

using the geometric error metric and structure-guided met-

ric solely, combining them with a fixed-weight mecha-

nism, and using the content-adaptive way. The fixed weight

adopted in this experiment is 0.5 and 0.5. As illustrated in

Tab.4, the results show that combining the two components

promotes the precision of the assessment, and best result

is achieved using the content-aware adaptive combination,

hitting 94.36% precision with the MOS.

Though comparisons clearly reveal the effectiveness of

the proposed method, we still need to validate that the two

components are practically complementary to each other.

Figure 5. An example of structure guidance for computing local

image quality assessment. (a) is image after LSD detection, the

red lines are the detection results; (b) is the result after trivial

structures being removed; (c) is the image with bounding boxes

of structured area, high-lighted in yellow; (d) is the amplified ex-

amples of bounding box.

To this end, a close observation is conducted among the

examples for which one component works but another one

fails. Part of the examples are illustrated in Fig.6, we ob-
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Figure 6. Examples of the two metric components complement each other. (a) is the example that geometric error metric score the stitched

image 1 higher, yet the local structure-guided metric score image 1 lower; (b) is the example which structure-guided metric score image 1

higher but the geometric error metric vice versa.

serve that in unstructured scenes like (a) when two stitched

images have very similar structure, even similar distortions,

attention-based IQA metric fails while geometric error met-

ric successfully scored image 1 higher since the geometric

distance error between image 1 and reference is relatively

smaller. In structured scenes like (b) where diverse edge

breakage and shape distortion exist, geometric error metric

fails to evaluate the differences while the structure-guided

metric successfully captured the distorted areas, thus pro-

viding better decisions. Based on observation through such

examples, the correctness of our previous conception that

the two component complement each other shows.

5. Conclusion

We propose a quality assessment metric specifically de-

signed for stitched images. We first analyze different er-

ror types typically encountered in image stitching, including

how the errors are generated and rendered, and then arrive at

the most common visual distortions in SIQA—ghosting and

structure inconsistency. To effectively characterize these

distortion types, we propose to adaptively fuse a perceptive

geometric error metric and a structure-guided metric.

To capture perceptual ghosting which is mostly caused

by geometric misalignment, we compute the local variance

of optical flow field energy between the distorted and refer-

ence images, guided by detected saliency. For structure in-

consistency, a powerful intensity and chrominance gradient

index VSI is adopted and customized around the highly-

structured areas of the stitched images. Based on under-

standing of the different purposes of these two metrics, we

propose to use a content-adaptive combination according to

the specific scene structure. Experimental results show the

effectiveness of our proposed metric and confirm the cor-

rectness of the combination mechanism. The metric can be

used to optimize various stitching algorithms.

Extensive experiments are conducted using our SIQA

dataset, which we introduce as a dataset benchmark for

SIQA problems. The large-scale dataset is laboriously con-

structed and is made publicly available for researchers in

the VR community for further research.
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