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Abstract

We propose a new method to super-resolve images cap-

tured by a hybrid light field system that consists of a stan-

dard light field camera and a high-resolution standard cam-

era. The high-resolution image is taken as a reference to

help with super-resolving the low-resolution light field im-

ages. Our method combines an exemplar-based algorithm

with the state of-the-art single image super-resolution ap-

proach and draws on the strengths of both. Both quanti-

tative and qualitative experiments show that our proposed

method substantially outperforms existing methods on stan-

dard light field datasets in the challenging large parallax

setting.

1. Introduction

Light field imaging measures the spatial and angular

variations in the intensity of light [3]. Because of the small

volume and fast capturing speed of light field imaging sys-

tems, they have become one of the most extensively used

devices for capturing a 3D scene. However, light field imag-

ing systems has their own limitations. In their early years,

light field cameras required expensive multi-camera arrays

[4] to capture the high-resolution light-field image. In con-

trast, recent industrial light field cameras, such as Lytro

[5] and RayTrix [6], are inexpensive and commercialized.

However, suffering from restricted sensor resolution, light

field cameras nowadays must make a trade-off between spa-

tial and angular resolution [8].

In the literature, many studies have tried to break this

trade-off, and they can be roughly categorized into three
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types. Firstly, some of the light field camera designs mod-

ify existing cameras and add programmable apertures [36]

or coding modules [37] into the traditional camera design,

and they use compressive sensing approach to recover high

resolution spatial information. But this approach requires

special hardware modification of the camera and is usu-

ally impractical. Secondly, [38, 39] apply single-image

super-resolution methods to super-resolve the images cap-

tured by the light field camera. However, this method does

not utilize the information from the reference image, and it

usually does not perform well under large super-resolving

scale (i.e. ×8 scale). The last type of approach introduces

a portable light field attachment which combines a tradi-

tional high-resolution digital SLR camera with low qual-

ity side cameras [7] or a light-field camera [8]. After ap-

plying exemplar-based image synthesis algorithms, low-

resolution images are then transferred into high-resolution

versions. This kind of approach only requires lightweight

hardware modification, and it is able to synthesise high

quality super-resolution output by combining information

from the high-resolution reference image. As an exemplar-

based approaches, however, it is not robust against the lack

of exemplar patches. In other words, the output quality of

such methods usually deteriorate severely under conditions

such as occlusion or large parallax, resulting undesirable

ghosting or blurring effects.

In this paper, we extend the work of [8] for light-field

super-resolution using such hybrid imaging system because

of its efficient hardware implementation and its desirable

super-resolution output under non-occluded region. How-

ever, to overcome the ghosting and blurring effects that typ-

ically occurred under occlusion region or large parallax set-

ting, we proposed a novel combined approach which take

advantage of both the state-of-the-art single-image-based

super-resolution approach [35] and the exemplar-based ap-

proach.

Specifically, unlike [8] which directly synthesises super-
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resolution output using the reference image, we instead syn-

thesise an error map which measures the difference from

the high-resolution ground-truth to the prediction of another

independent algorithm (such as the single-image-based ap-

proach [35]). Our key insight is, the state-of-the-art single-

image-based approaches provide robust low-frequency esti-

mation, which usually perform better in the occluded re-

gion. Therefore, by applying exemplar-based approach

upon such single-image-based estimation for better high-

frequency detail enhancement, occlusion robust reconstruc-

tion can be further obtained. Extensive experiments validate

that our proposed approach substantially outperform other

methods, both quantitatively and qualitatively.

2. Related Work

Light fields [1, 11] provide a new angular dimension, al-

lowing various visual applications such as light field display

[12] and light field microscopy [13, 14]. Many recent works

have tried to capture or synthesize high quality light fields

from different types of input data. In this paper, we are in-

terested in improving the spatial resolution of light field, us-

ing high-resolution light field images captured by different

view to that of this high-resolution reference image.

2.1. Single Image Super­resolution

Single image SR resolution is a classic computer vi-

sion problem. To solve this problem, plenty of approaches

have previously been proposed. These approaches typi-

cally utilize sparse representation [24, 25], neighbor em-

bedding [26, 27], or anchored neighborhood regression

[28, 29, 30]. Recently, deep-learning-based approaches

have achieved state-of-the-art performance on single image

super-resolution. Specifically, [31, 32] proposed a 3-layer

convolutional neural network for image super-resolution

(SRCNN). [35] further proposed a 20-layer convolutional

neural network for the same task, which achieves even bet-

ter performance. [33, 34] further discussed acceleration

techniques for the deep learning based super-resolution ap-

proaches.

Although deep-learning-based approaches (such as

VDSR) achieve impressive results, they fail to utilize the

high frequency information, which is provided by the high-

resolution reference image.

2.2. Light Field Super­resolution

In the studies of light field super-resolution, several

methods have been proposed to restore the high frequency

information using the provided high-resolution reference

images. Specifically, [22] proposes a method to estimate

both the high resolution depth map and luminous intensity

in the Bayesian framework under the Lambertian textural

prior. In addition, exemplar-based approaches, which have

been widely used in texture synthesis [15], image comple-

tion [16], denoising [17] and deblurring [18], have also been

applied to super-resolution [19, 20]. In light field research,

[8] introduces a hybrid imaging system and a correspond-

ing exemplar-based algorithm for super-resolution. [7] pro-

poses a different light-field attachment and an iterative algo-

rithm based on the work of [8]. However, exemplar-based

approaches do not work well under the deficiency of ex-

emplar samples, and occluded or specular highlighted re-

gions usually cause the performance degeneration of such

algorithms. As a consequence, although exemplar-based

approaches such as [8] take advantages from additional

high-resolution samples, the state-of-the-art single-image-

based approaches still outperform such exemplar-based ap-

proaches by a large margin.

Other LF image/video interpolation methods are also re-

lated to our paper, in spite of the different application con-

text. Specifically, [9] proposes a learning-based method for

synthesizing new views from the sparsely sampled LF im-

ages. With an additional high frame-rate video, [10] aims

to increase the temporal resolution of the low frame-rate LF

video.

3. Proposed Method

This section introduces the proposed patch-based

method which integrates the state-of-the-art single image

SR algorithm, i.e. VDSR [35], for super-resolution of the

side view images. The configuration is outlined in Figure 1.

The basic concept is to use a patch-based method to fix the

error made by the single image SR algorithm.

Figure 1: The overview of our proposed method. The HR ref-

erence image RHR is firstly converted to the low-resolution ver-

sion by ↑ (↓ (·)) and is then upsampled by the VDSR algorithm

fCNN (·) for computing the reference error map RERR. The

source error map SERR is consequently estimated by applying

patchmatch[8] on RERR. Finally, SERR is added to the VDSR-

upsampled source image for producing the SR result.

We consider two input images: a low-resolution source

image SLR, and a high-resolution side-view reference im-

age RHR. The two images show the same scene in two

different views.
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3.1. Computing the Reference Error Map

Using the available high-resolution reference image, we

can obtain a reference error map, which presents the error

made by VDSR on the reference image. This reference er-

ror map can be of help for estimating the error made by

VDSR on the source image. Specifically, let us denote the

low-resolution version of the reference image as

RLR =↑ (↓ (RHR)), (1)

where ↓ (·) is the downsampling operation, and ↑ (·) is the

bicubic upsampling operation. The super-resolved result of

RLR is computed by using the VDSR algorithm fCNN (·).
Afterward, the reference error map is calculated by

RERR = RHR − fCNN (RLR). (2)

3.2. Estimating Source Error Map

After obtaining the reference error map RERR, we adopt

an exemplar-based method [8] for estimating the VDSR

error map of the source image. Specifically, we extract

patches from RHR, and convert them into low-resolution

patches for computing the gradient features dictionary

DR = {fR,1, ..., fR,N}. Simultaneously, error patches at

the same location of the reference error map RERR are also

extracted, which is denoted as ER = {eR,1, ..., eR,N}.

To obtain the source error map, we calculate the feature

fj from the location j of the low-resolution source image

SLR. The 9 nearest neighbors in DR with the smallest L2

distance from fj are computed. These 9 nearest neighbors

in DR (denoted as {f j
R,k}

9

k=1
) along with 9 error patches

in ER (denoted as {ejR,k}
9

k=1
) are extracted. Then the re-

construction weights motivated from [8] are calculated. The

estimated error patches êj corresponding to location j are

êj =

∑
9

k=1
wke

j
R,k

∑
9

k=1
wk

, wk = exp
−||fj − f

j
R,k||

2

2σ2
. (3)

Finally, the overlapping error patches êj at every location

j are averaged to estimate SERR, i.e., the VDSR error map

of the source image.

3.3. Integrated Super­resolution

After obtaining the estimated error map SERR, which

indicates the error of VDSR on the source image, the next

natural step is to correct such error. Specifically, SERR is

added to the VDSR super-resolved version of the source im-

age:

ŜHR = fCNN (SLR) + SERR. (4)

Here we explain the intuition behind such a scheme. In tex-

tural regions, a patch-based approach usually works bet-

ter than a single-image approach as the reference image

provides high-quality exemplar patches with accurate high-

frequency details. However, in occluded or specular high-

lighted regions, a patch-based approach tend to fail because

of the lack of exemplar patches. When exemplar-patch-

based approach fails, single image approach like VDSR will

provides a good high-resolution estimation. Our approach

also resembles the subband decomposition, where an im-

age is decomposed into a low-frequency single image ap-

proach band and a corresponding high-frequency residue.

We apply VDSR to recover the low-frequency single image

approach band, and apply an exemplar-based approach to

recover the high-frequency band.

4. Experimental Results

We evaluate the performance of our proposed method for

dense light field rendering on two dataset, namely the Stan-

ford Light Field dataset [23] (from the Lego Gantry) and the

Stanford Light Field dataset [23] (from the Gantry), which

includes several challenging scenes with complex textures,

specularity, and side view images with large parallax.

4.1. Experimental Setup

For both of the datasets, we select light field images of 2

views from the same horizontal line. The distance of the two

light field images is set to 10, which is a considerably large

parallax. The right images are down-sampled and regarded

as low-resolution source images SLR. The left images are

regarded as the reference images RHR. We evaluate our

method in two different scales: ×4 and ×8.

We evaluate VDSR [35], a patch-based super-resolution

algorithm [8] (denoted by PBSR in this section), and our

approach on the two different scales. For VDSR [35] in

the scale ×4, we used the released model of [35] for super-

resolution, while the ×8 VDSR result is obtained by apply-

ing ×4 VDSR upsampling followed by ×2 bicubic upsam-

pling. For PBSR [8] in scales ×4 and ×8, we set a patch

size in low-resolution as 8 × 8, search range as 15 pixels,

and 1

2σ2 = 0.0125.

4.2. Super­resolution Results

Table 1(a) and Table1(b) show the performances of

VDSR, PBSR and our approach on the Stanford dataset

in the scales ×4 and ×8, respectively. It can be noticed

that the PSNRs of our approach in both scales are higher

than those of VDSR, since our approach takes advantages

of the high-frequency detail provided by the reference im-

age. Meanwhile, our approach outperforms PBSR. This is

because PBSR is not specially designed to handle occlu-

sion and specularity that usually occurs with large parallax,

while our approach utilizes the VDSR for processing occlu-

sions.

Figure 2 and Figure 3 illustrate super-resolution results

on the dataset. By observing the zoomed-in results in row
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Figure 2: Super-resolution result comparison in ×4 scale. From top to bottom: (a) ground truth, (b) VDSR, (c) PBSR and (d) our method.

Figure 3: Super-resolution results comparison in ×8 scale. From top to bottom: (a) ground truth, (b) VDSR, (c) PBSR and (d) our method.
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(a) Scale ×4 super-resolution results.

Image Bicubic VDSR [35] PBSR [8] ours

Chess 33.3402 35.5553 36.0067 37.9788

LegoBulldozer 31.479 34.6345 31.9685 35.2196

LegoTruck 33.8503 35.3746 37.1094 38.0753

EucalyptusF lowers 32.241 33.4495 33.0404 33.8013

Amethyst 32.6559 34.3501 34.8299 35.7121

Bracelet 28.8296 30.5893 29.2551 31.1606

StanfordBunny 39.1716 42.4671 40.9556 43.2953

JellyBeans 43.0806 45.5689 43.2104 45.9222

LegoKnights 30.9126 33.6056 31.5034 34.0243

TarotCards(small) 26.0773 28.0312 27.4733 29.2274

TarotCards(large) 25.0014 27.4172 24.6538 27.2570

TreasureChest 28.4255 29.6139 28.5932 29.8761

LegoGantry 28.8707 31.1338 31.2648 32.544

Average 31.8412 33.9840 33.0668 34.9304

(b) Scale ×8 super-resolution results.

Image Bicubic VDSR [35] PBSR [8] ours

Chess 29.1794 30.7205 30.8882 32.4780

LegoBulldozer 27.048 29.261 27.173 29.515

LegoTruck 30.4047 31.4772 33.4653 33.8647

EucalyptusF lowers 29.8656 30.7956 30.4894 30.9614

Amethyst 29.0107 30.1847 31.6159 32.0057

Bracelet 24.5000 25.3199 25.1986 26.0575

StanfordBunny 33.6903 37.0836 35.7900 38.3557

JellyBeans 36.5531 40.4824 36.9044 40.5603

LegoKnights 26.9367 28.9750 27.2989 29.2336

TarotCards(small) 22.6408 23.9477 22.8769 24.3882

TarotCards(large) 21.6241 22.6785 21.1274 22.4126

TreasureChest 25.5891 26.2591 25.5121 26.2956

LegoGantry 24.8678 26.6092 27.7943 28.9813

Average 27.8393 29.5227 28.9334 30.3931

Table 1: ×4 and ×8 super-resolution experiment on the

Stanford light field dataset [23] Light Fields from the

Lego Gantry. PSNR comparison of bicubic interpolation,

VDSR[35], patch-based method[8] and ours are listed in ta-

bles.

(d), it can be seen that our method has clearer high fre-

quency details than those of VDSR in row(b) and PBSR

in row(c).

Note that our algorithm was implemented with Matlab

without parallel computing optimization. The run-time for

the proposed algorithm is 3 minutes per image on an Intel

i7 processor with 16 GB RAM.

5. Conclusion

In this work, we proposed an accurate super-resolution

method for a hybrid imaging system. To improve the quality

of the super-resolution result, we incorporated an exemplar-

based approach with the state-of-the-art single image super-

resolution algorithm. Experiments on the Stanford Light

Field dataset demonstrate the substantial improvement of

our approach both in quantity and quality.

(a) Scale ×4 super-resolution results.

Image Bicubic VDSR [35] PBSR [8] ours

CDs(occlued) 27.3590 28.8787 27.3883 29.9141

CDs(unocclued) 27.8429 29.2925 29.0894 29.7159

Humvee(occluded) 42.6521 43.4338 41.5369 43.2132

Humvee(unoccluded) 29.9544 31.9358 31.8009 33.0976

Average 31.9521 33.3852 32.4539 33.9852

(b) Scale ×8 super-resolution results.

Image Bicubic VDSR [35] PBSR [8] ours

CDs(occlued) 25.0226 26.2536 26.1992 26.9569

CDs(unocclued) 24.3284 25.3855 24.2227 25.4434

Humvee(occluded) 38.4171 39.3918 36.9326 38.9085

Humvee(unoccluded) 26.1588 27.6895 28.0290 29.0252

Average 28.4817 29.6801 28.8459 30.0835

Table 2: ×4 and ×8 super-resolution experiment on

the Stanford light field dataset [23] Light Fields from

the Gantry. PSNR comparison of bicubic interpolation,

VDSR[35], patch-based method[8] and ours are listed in ta-

bles.
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