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Abstract

Gait as a biometric feature has been investigated for

human identification and biometric application. However,

gait is highly dependent on the view angle. Therefore, the

proposed gait features do not perform well when a per-

son is changing his/her orientation towards camera. To

tackle this problem, we propose a new method to learn low-

dimensional view-invariant gait feature for person identi-

fication/verification. We model a gait observed by several

different points of view as a Gaussian distribution and then

utilize a function of Joint Bayesian as a regularizer cou-

pled with the main objective function of non-negative matrix

factorization to map gait features into a low-dimensional

space. This process leads to an informative gait feature that

can be used in a verification task. The performed experi-

ments on a large gait dataset confirms the strength of the

proposed method.

1. Introduction

Recently, employing gait (the way of natural walking)

for individual identification has been drawing significant

attention in the field of video surveillance and biometric

applications [24, 11, 3]. Compared to the traditional bio-

metrics based on face, fingerprint or iris, gait has been

considered as a more promising and unique biometric for

person identification, due to its capability in identifying

a person even in low resolution images captured from a

large distance [14]. Many gait representation methods have

been proposed which are invariant to body shape that are

able to extract the useful information of a walking se-

quence [4, 5, 16, 17, 19]. However, these gait features

are influenced by viewing angle of the used cameras. Ap-

parently, the gait signature of different persons should be

still distinguishable and robust when the viewing angle is

changed. Therefore, having a view-invariant (or cross-

view) gait feature is highly desirable in video surveillance

applications, where the orientation of movement is chang-

ing toward the installed static (dynamic) cameras. Basi-

cally, the output of most well known hand-crafted gait fea-

tures is a silhouette image representing a full gait cycle. The

high dimensionality of these features leads to computation-

ally expensive gait recognition systems. Moreover, since

a big portion of a silhouette image are zero pixels, the re-

quired memory in real time applications is very high.

In this paper, we aim to have a gait representation which

addresses the two aforementioned issues. We propose a

feature learning technique based on Non-negative Matrix

Factorization (NMF), where the learned gait features of an

individual observed from different views would have high

similarity. Inspired by Joint Bayesian (JB) for face verifica-

tion [9], we utilize the Joint Bayesian formulation in order

to model the view variance. Specifically, we assume that

the joint probability of two gait feature of different views is

a Gaussian distribution. Based on this assumption, we com-

pute the log-likelihood of joint probability by MAP (Maxi-

mum a Posterior) as similarity term. We utilize this term [9]

as a regularizer coupled with Non-negative Matrix Factor-

ization (NMF) [8] to come up with a novel NMF technique

that maps a view-variant high-dimensional gait feature into

a new low-dimensional view-invariant gait feature, mean-

while the performance of gait verification is significantly

improved.

The rest of the paper is structured as follows. In Sec-

tion 2, we provide a review of the state-of-the-art methods

in the area of gait recognition and verification. In Section 3,

we propose our algorithm by first explaining a similarity

score based on Joint Bayesian and then its usage as a regu-

larizer in NMF. Section 4 provides the experimental results

of the proposed algorithm for gait verification. Finally, we

draw our conclusion in Section 5.

2. Related work

In gait recognition, there are different methods for gait

representation. Traditional gait features such as Gait En-

ergy Image (GEI) [20], Gait Entropy Image (GEnI) [5], En-

hanced Gait Energy Image (EGEI) [10], Gait Flow Image
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(GFI) [16], Masked GEI (MGEI) [6] represent a gait cycle

(i.e., several silhouette images) by a single image. For in-

stance, as a simple but effective feature, GEI is the average

over a complete gait cycle silhouettes. The EGEI method

analyzes the dynamic region information to enhance GEI

feature. GEnI represents the randomness of pixel values in

the silhouettes image sequence. GFI is generated by using

an optical flow field. MGEI feature is obtained by mask-

ing GEI with gait entropy image. However, these are very

high-dimensional features, which could be undesirable for

real time applications and are significantly depended on the

view point.

For modeling view variance, different approaches

have been proposed including view transformation model

(VTM) [23, 22], view invariant feature based classifica-

tion [25, 15], and multiple view gallery based methods [7,

13]. Besides, Deep Learning methods have also been re-

cently applied to gait representation. In [26], Wolf et al.

present a 3D Convolutional Neural Network (CNN) to at-

tain a human gait descriptor invariant to view angles. Simi-

larly, a CNN called GEInet was designed in [25], which gets

GEI feature as input and outputs a set of similarity score to

training subject data. This network shows also promising

results in terms of view variance. As a different approach

for verification task, Moghaddam et al. in [21] formulate

the verification problem as classifying the appearance dif-

ference between two images in face recognition. They pro-

pose a probabilistic similarity score based on Bayesian anal-

ysis of images’ differences.

Amongst the most well known matrix factorization

methods like Principal Component Analysis (PCA) and Sin-

gular Value Decomposition (SVD), NMF has been also em-

ployed widely in computer vision. Depending on the appli-

cation, many variants of NMF have been proposed. For in-

stance, Graph regularized NMF (GNMF) [8] tries to main-

tain the locality of the data points by defining the Laplacian

of neighborhood graph as a regularizer the objective func-

tion. In [2, 1], a semi supervised NMF, named Discrimina-

tive NMF, was proposed which utilizes the label of a frac-

tion of data as a discriminative constraint. Here, the data

points with the same label are in one axis or close to each

other, despite of constrained NMF (CNMF) [18], where all

these points are merged to a single point in the new low-

dimension space.

3. Approach

In this section, we first review the Joint Bayesian for-

mulation in order to model view variance in gait features.

Then, a similarity function based on Joint Bayesian is pro-

posed as a regularizer in Non-negative matrix factorization

to generate view-invariant gait features.

3.1. Joint Bayesian

The Joint Bayesian approach has been proved as a suc-

cessful technique in dealing with view-invariant face ver-

ification [9]. According to the same idea, we represent a

gait cycle feature by the sum of two independent Gaussian

variables:

x = µ+ ε (1)

where x is the zero-mean observed gait feature, µ repre-

sents its identity, and ε is the gait variation of the same iden-

tity observed by a different view. We assume that µ and ε

both are coming from Gaussian distributions, N(0, Sµ) and

N(0, Sε), respectively. Here, Sµ and Sε are covariance ma-

trices. Therefore, the joint distribution of x1, x2 has also a

Gaussian distribution with zero mean. Under intra-personal

hypothesis HI , when two gait features belong to the same

class, the identities of x1 and x2 are the same and their

intra-person variations are independent. Then, the covari-

ance matrix of the distribution P (x1, x2|HI) can be derived

as:

ΣI =

[
Sµ + Sε Sµ

Sµ Sµ + Sε

]
(2)

Under extra-personal hypothesis HE , when two gait fea-

tures do not belong to the same class, both the identities

and intra-person variations are independent. Then, the co-

variance matrix of the distribution P (x1, x2|HE) is:

ΣE =

[
Sµ + Sε 0

0 Sµ + Sε

]
. (3)

Based on the two conditional joint probabilities above, the

log-likelihood ratio r(x1, x2) can be obtained as [9]:

r(x1, x2) = log
P (x1, x2|HI)

P (x1, x2|HE)

= xT
1
Ax1 + xT

2
Ax2 − 2xT

1
Gx2

(4)

where

A = (Sµ + Sε)
−1 − (F +G) (5)

and

[
F +G G

G F +G

]
=

[
Sµ + Sε 0

0 Sµ + Sε

]
−1

. (6)

By using an efficient Inverse, we have

F = S−1

ε , (7)

G = −(2Sµ + Sε)
−1SµS

−1

ε , (8)

A = (Sµ + Sε)
−1 − S−1

ε + (2Sµ + Sε)
−1SµS

−1

ε . (9)

This ratio r is considered as the amount of similarity be-

tween two gait features.
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3.2. Joint Bayesian Regularized NMF

Non-negative matrix factorization (NMF) has drawn a

significant attention in recent years for representation of

high-dimensional data. NMF aims to factorize an input ma-

trix to two (three) non-negative matrices whose product pro-

vides a good approximation to the input matrix.

X ≈ UV (10)

Here X is a data matrix, X ∈ R
M×N , U ∈ R

M×K and

V ∈ R
K×N . N is the number of data samples, and M is

the size of feature vector in original space. The dimension

of the data in the new space would be K. A cost func-

tion, which can be used for quantifying the quality of the

approximation, is the square of the Frobenius norm of the

difference of two matrices.

OF = ‖X − UV ‖
2

s.t. U = [uik] > 0 , V = [vkj ] > 0
(11)

Denoting Tr(·) as the trace of a matrix, this objective func-

tion can be rewritten as:

OF =‖X − UV ‖2 =
∑

i,j

(xij −

K∑

k=1

uikvkj)
2

=Tr(XXT )− 2Tr(XV TUT ) + Tr(UV V TUT ).

(12)

NMF can learn a parts-based representation using the

non-negative constraints, but it does not take the intrinsic re-

lation and dissimilarity of low-dimensional representations

of data points into consideration.

In the following part, we introduce our approach based

on the combination of NMF and JB which avoids this limi-

tation. We modify the objective function so that the sum of

similarity score (i.e., ratio r defined by 4 ) of all pairs of gait

features from the same class is maximum. In other words, a

low-dimensional gait feature is desirable, where the features

of the same class but different views have a high similarity

score. Hereby, the objective function would be:

O = ‖X − UV ‖
2
−
α

2

N∑

i,j=1

r(vi, vj)wij , (13)

where X contains high-dimensional view-variant gait fea-

tures, and V is the low-dimensional view-invariant gait fea-

tures (V = {v1, v2, ..., vN}). W is a 0-1 weight matrix.

wij = 1 if and only if the gait features i and j belong to the

same class. For the derivation of update rules, we expand

the objective function in equation 13 to

O = ‖X − UV ‖
2
−
α

2

N∑

i,j=1

(vTi Ãvi + vTj Ãvj − 2vTi G̃vj)wij

= ‖X − UV ‖
2
− α

N∑

i=1

(vTi Ãvi)wii + α

N∑

i,j=1

(vTi G̃vj)wij

= ‖X − UV ‖
2
− αTr(DV T

0
ÃV0) + αTr(WV T

0
G̃V0).

(14)

where V0 is zero-mean matrix V , andD is a diagonal matrix

whose entries are column sums of W . Ã and G̃ are Joint

Bayesian model matrices in the new space. By employing

equation 12, our objective function would be:

O = Tr(XXT )− 2Tr(XV TUT ) + Tr(UV V TUT )

− αTr(DV T
0
ÃV0) + αTr(WV T

0
G̃V0),

(15)

Let φik and ψkj be the Lagrange multiplier for constraints

uik ≥ 0 and vkj ≥ 0, respectively, and also Φ = [φik],
Ψ = [ψik], then Lagrange L is

L = Tr(XXT )− 2Tr(XV TUT ) + Tr(UV V TUT )

+ Tr(ΦU) + Tr(ΨV )− αTr(DV T
0
ÃV0)

+ αTr(WV T
0
G̃V0).

(16)

According to [9], under linear transformation, then we get

the following relationships;

Ã = UTAU−T , G̃ = −UTGU (17)

where A and G are Joint Bayesian model in original space.

Considering equation 17, the partial derivatives of L with

respect to U and V are:

∂L

∂U
=− 2XV T + 2UV V T +Φ

− α(−U−TV0DX
T
0
AU−T ) + α(−GTX0W

TV T
0
)

(18)

∂L

∂V
=− 2UTX + 2UTUV +Ψ

− α(U−1ATX0D
T ) + α(−UTGTX0W

T )
(19)

Using the KKT conditions φikuik = 0 and ψkjvkj = 0,

the new updating rules of U and V are obtained as:

uik ← uik
(2XV T + αGTX0W

TV T
0
)ik

(2UV V T + αU−TV0DX
T
0
AU−T )ik

(20)

vkj ← vkj
(2UTX + αU−1ATX0D

T + αUTGTX0W
T )kj

(2UTUV )kj
(21)

Then the matrix V contains low-dimensional view-

invariant gait features.
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4. Experiment

In order to evaluate our approach, we conduct several

experiments for verification tasks on a gait dataset. In Sec-

tion 3.2, we have introduced our feature learning method,

considering a Joint Bayesian based regularizer in the NMF

objective function. To measure the quality of learned fea-

ture, we report verification rates obtained from original and

new gait features.

4.1. Dataset

The OU-ISIR Large Population dataset (OULP) [12],

which includes high-quality images with view variations,

is utilized in our research. This dataset consists of images

showing persons walking on the ground and is basically dis-

tributed in a form of silhouette sequences registered and

size-normalized to 88*128 pixels. Each subject is further

divided into 4 subsets based on the observation view an-

gles, namely 55◦, 65◦, 75◦ and 85◦. There are two samples

for each angle, that one of them is used as gallery and an-

other one for probe. Figure 1 shows four gait cycle samples

of a subject from this dataset observed from different view

angles.

Figure 1: Silhouette sequences of a gait cycle of a person observed

by different angles, namely (a) 55◦, (b) 65◦, (c) 75◦, (d) 85◦

4.2. Setting

First, the silhouette images are re-sized into 44*64 pixels

in favor of decreasing computational complexity. Then we

extract five different well known gait features, namely GEI,

GEnI, MGEI, EGEI, and GFI from each gait cycle. Fig-

ure 2 depicts the GEI features of a particular subject viewed

from different angles. Due to the high dimensionality of

Figure 2: GEI gait feature of a subject viewed by four different

angles (left to right: 55◦, 65◦, 75◦, 85◦)

these features, we apply PCA to reduce the dimensionality

to K. In our experiments, we select randomly 1600 sam-

ples categorized as 200 subjects from OULP dataset due

to high computational time. Each subject has 2 gait cycle

samples (one for gallery and one for probe) per view an-

gle. To compare the result of NMF with PCA, K is also set

to 200 (number of subjects), since the feature dimension-

ality of NMF equals to the number of subjects. The value

of regularization multiplier (α) in our objective function is

set to 100 (this value has been obtained by cross-validation

procedure).

The verification experiments are implemented among

different cross-view combinations. For verification, we

consider two similarity metrics for gait features: 1) log-

likelihood ratio (DistLLR) and 2) Euclidean distance

(DistEuc). The formula of computing each similarity met-

ric is given by

DistLLR(x1, x2) = − log
P (x1, x2|HI)

P (x1, x2|HE)
(22)

DistEuc(x1, x2) =‖
x1

‖ x1 ‖
−

x2

‖ x2 ‖
‖ (23)

In the experiment, we consider different non/cross-view

combinations of gallery and probe pairs. For each com-

bination, first the similarity score of each probe sample

with each gallery subject is calculated and then the cor-

responding Equal Error Rate (EER) for this combination

is computed. The verification results based on DistLLR

and DistEuc are presented in Tables 1 and 2, respectively.

Additionally, the Receiver Operative Characteristics (ROC)

curve of False Acceptance Rates (FAR) and False Rejec-

tion Rates (FRR) for both similarity metrics under different

cross-view settings are presented in Figure 3.
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Figure 3: ROC curves under different cross-view settings of GEI

4.3. Results and discussion

The obtained results demonstrate that gait cycles are

more reliably verified when they are represented by our al-

gorithm. By comparing the results of using two similarity

metrics (Tables 1 and 2), it can be found that using the log-

likelihood ratio as the similarity score gives us this ability

to do the verification task more accurately even in the pres-

ence of a large view variation. More specifically, referring

to Tables 1 and 2, it can be inferred that: 1) The gait cy-

cles represented by our proposed method (NMF+JB) can

be verified with a higher performance, compared to PCA.

For example, the EER corresponding to pair (55◦, 65◦), us-

ing gallery set with view angle 55◦ and probe set with view

angle 65◦, decreased from 16.43% to 7.86%, for GEI as

input feature representation. This statement is true for ev-

ery non/cross view combination; 2) According to Table 2,

the EER remains relatively low at the same level for differ-

ent non/cross view combinations; 3) The obtained results

for different gait representations show that the verification

performance of our proposed method is relatively indepen-

dent from the type of input gait feature. ROC curves for

different cross-view combinations in Figure 3 show that the

verification based on the log-likelihood ratio measure out-

performs the verification using the Euclidean distance mea-

sure. Moreover, in cross-view with a larger difference in

camera viewing angle, for example gallery 55◦ and probe

85◦, this distinction is significant. Last but not the least, it

can be seen that the performance of verification based on

log-likelihood ratio remains at the same level in this set of

combinations, while ROC curves for second approach (ver-

ification based on euclidean distance) differ on the view dis-

tance.

5. Conclusion

We proposed a new method to generate view-invariant

gait features based on NMF. We employed a regularizer

based on Joint Bayesian and attached to the main objective

function of NMF. We conducted several gait verification ex-

periments on the OULP gait dataset represented by different

gait features. We considered two types of similarity metrics,

namely log-likelihood ratio and Euclidean distance. The re-

sults confirmed that our method has achieved better perfor-

mance, apart from the type of gait features used as input.

Additionally, we found out that verification based on the

log-likelihood ratio performs more stably than verification

based on the Euclidean distance. For future work, we in-

tend to examine our approach on gait identification as well

as gait verification against further variances such as clothing

and a larger view variation.
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Gallery View Gait Cycle Representation
PCA NMF+JB

55 65 75 85 55 65 75 85

GEI 6.89 16.43 31.63 37.95 3.55 7.86 18.07 24.31

GEnI 6.81 17.95 32.74 38.68 3.24 10.67 23.11 29.34

55 MGEI 5.30 16.73 29.31 32.93 4.15 13.74 24.3 26.36

EGEI 6.99 18.11 32.57 38.40 3.72 11.04 23.28 28.14

GFI 6.78 14.99 28.39 34.98 5.31 9.87 20.01 26.96

GEI 17.21 5.80 11.63 21.07 8.05 3.95 6.05 11.9

GEnI 18.83 6.10 12.59 22.81 11.05 3.81 6.81 14.99

65 MGEI 14.63 4.60 9.88 18.33 13.41 4.60 9.45 15.56

EGEI 19.09 6.16 12.85 22.96 11.41 3.65 7.26 14.91

GFI 15.35 5.95 10.35 17.87 9.83 5.70 7.87 13.01

GEI 31.47 11.90 5.44 7.35 18.87 6.20 3.75 4.46

GEnI 33.37 12.82 5.17 7.71 24.44 7.36 3.35 4.15

75 MGEI 29.10 9.71 4.10 5.68 24.39 8.78 3.95 5.82

EGEI 33.11 13.13 5.44 8.02 23.72 4.42 3.31 4.45

GFI 28.12 10.36 5.42 7.29 20.14 7.84 4.96 6.18

GEI 37.55 21.33 7.36 5.38 25.21 12.26 4.40 3.15

GEnI 38.90 23.38 8.27 5.61 29.90 15.95 4.45 2.80

85 MGEI 32.93 18.06 5.96 4.71 26.96 15.22 5.36 3.61

EGEI 38.28 23.20 8.52 5.74 28.67 15.56 4.35 2.93

GFI 34.78 18.40 7.24 5.68 27.53 13.17 5.39 4.35

Table 1: Comparison of EERs (%) in gait verification based on DistEucDistEucDistEuc metric, after applying PCA and NMF+JB transformations on

different gait features under cross-view and non cross-view settings

Gallery View Gait Cycle Representation
PCA NMF+JB

55 65 75 85 55 65 75 85

GEI 2.71 2.79 2.88 4.48 1.31 1.62 2.05 2.85

GEnI 3.23 3.07 4.28 6.53 1.96 1.97 2.70 3.73

55 MGEI 3.75 3.53 5.03 6.70 2.20 2.16 2.94 4.04

EGEI 3.38 3.16 4.29 6.48 1.94 1.80 2.40 3.46

GFI 3.09 2.82 3.46 5.16 2.20 2.10 2.49 3.53

GEI 2.76 2.29 2.11 3.23 1.65 1.37 1.60 2.10

GEnI 3.44 2.55 2.99 4.04 2.20 1.75 2.01 2.57

65 MGEI 4.09 3.12 3.39 4.89 2.50 1.90 2.40 3.08

EGEI 3.43 2.50 2.84 4.08 2.11 1.46 1.95 2.35

GFI 3.06 2.41 2.69 3.56 1.91 1.66 1.91 2.36

GEI 2.96 2.26 2.10 2.41 2.11 1.40 1.55 1.69

GEnI 3.92 2.75 2.52 3.35 2.26 1.66 1.60 2.01

75 MGEI 5.41 3.08 3.02 3.89 2.85 1.65 1.95 2.61

EGEI 3.87 2.64 2.52 3.19 2.30 1.65 1.70 2.10

GFI 3.40 2.38 2.33 2.65 2.35 1.75 1.65 2.07

GEI 4.03 2.57 2.41 2.44 2.75 1.60 1.46 1.65

GEnI 5.31 3.50 2.71 2.72 2.80 1.89 2.05 1.80

85 MGEI 6.51 3.73 3.38 3.62 3.49 2.36 2.26 2.25

EGEI 5.34 3.49 2.67 2.77 3.05 2.01 1.75 1.85

GFI 4.08 2.78 2.58 2.53 3.36 2.12 2.17 1.90

Table 2: Comparison of EERs (%) in gait verification based on DistLLRDistLLRDistLLR metric, after applying PCA and NMF+JB transformations on

different gait features under cross-view and non cross-view settings
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