
The Do’s and Don’ts for CNN-based Face Verification

Ankan Bansal Carlos Castillo Rajeev Ranjan Rama Chellappa

UMIACS

University of Maryland, College Park

{ankan,carlos,rranjan1,rama}@umiacs.umd.edu

Abstract

While the research community appears to have devel-

oped a consensus on the methods of acquiring annotated

data, design and training of CNNs, many questions still

remain to be answered. In this paper, we explore the fol-

lowing questions that are critical to face recognition re-

search: (i) Can we train on still images and expect the

systems to work on videos? (ii) Are deeper datasets bet-

ter than wider datasets? (iii) Does adding label noise lead

to improvement in performance of deep networks? (iv) Is

alignment needed for face recognition? We address these

questions by training CNNs using CASIA-WebFace, UMD-

Faces, and a new video dataset and testing on YouTube-

Faces, IJB-A and a disjoint portion of UMDFaces datasets.

Our new data set, which will be made publicly available,

has 22,075 videos and 3,735,476 human annotated frames

extracted from them.

1. Introduction

The re-emergence of deep convolutional neural networks

has led to large improvements in performance on several

face recognition and verification datasets [12, 20, 17]. How-

ever, the face recognition problem isn’t “solved” yet. The

process of training a face recognition system starts with

choosing a dataset of face images, detecting faces in im-

ages, cropping and aligning these faces, and then training

deep networks on the cropped and possibly aligned faces.

Every step of the process involves many design issues and

choices.

Some issues have received significant attention from re-

searchers. These include choices about the architecture of

neural networks. On the other hand, there are several other

design choices which require more attention. These arise at

every stage of the process from face detection and thumb-

nail (image obtained after cropping and aligning the face

image) generation to selecting the training dataset itself. We

tackle some of these design questions in this paper. We

also introduce a dataset of 22,075 videos collected from

YouTube of 3,107 subjects. These subjects are mainly from

batch-1 of the recently released UMDFaces [2] dataset. We

release face annotations for 3,735,476 frames from these

videos and the corresponding frames separately. We use

this dataset to study the effect of using a mixture of video

frames and still images on verification performance for un-

constrained faces such as the IJB-A [17] and YTF [37] sets.

Face detection is the first step in any face recognition

pipeline. Several CNN-based face and object detectors have

been introduced which achieve good detection performance

and speeds [26, 30, 29, 21, 27, 40, 28, 11]. Each of these de-

tectors learns a different representation. This leads to gener-

ation of different types of bounding boxes for faces. Verifi-

cation accuracy can be affected by the type of bounding box

used. In addition, most recent face recognition and verifi-

cation methods [35, 31, 33, 5, 10, 34] use some kind of 2D

or 3D alignment procedure [41, 15, 28, 8]. All these vari-

ables can lead to changes in performance of deep networks.

To the best of our knowledge there has been very little sys-

tematic study of effects of the thumbnail generation process

[25] on the accuracy of deep networks. In section 3.4 we

study the consequences of using different thumbnail gen-

eration methods. We show that using a good keypoint de-

tection method and aligning faces both during training and

testing leads to the best performance.

Other questions concern the dataset collection and clean-

ing process itself. The size of available face datasets can

range from a few hundred thousand images [2, 39, 24, 37]

to a few million [16, 23, 7, 6, 25]. Other datasets, which

are not publicly available, can go from several million

faces [35] to several hundred million faces [32]. Much of

the work in face recognition research might behave differ-

ently with such large datasets. Apart from datasets geared

towards training deep networks, some datasets focus on

evaluation of the trained models [12, 17]. All of these

datasets were collected using different methodologies and

techniques. For example, [37] contains videos collected

from the internet which look quite different from still im-

age datasets like [39, 2, 7]. We study the effects of this

difference between still images and frames extracted from

12545



videos in section 3.1 using our new dataset. We found

that mixing both still images and the large number of video

frames during training performs better than using just still

images or video frames for testing on any of the test datasets

[17, 37, 2].

In section 3.2, we investigate the impact of using a deep

dataset against using a wider dataset. For two datasets with

the same number of images, we call one deeper than the

other if on average it has more images per subject than the

other. We show that the choice of the dataset depends on the

kind of network being trained. Deeper networks perform

well with deeper datasets and shallower networks work well

with wider datasets.

Label noise is the phenomenon of assigning an incorrect

label to some images. Label noise is an inherent part of the

data collection process. Some authors intentionally leave in

some label noise [25, 6, 7] in the dataset in hopes of making

the deep networks more robust. In section 3.3 we examine

the effect of this label noise on the performance of deep net-

works for verification trained on these datasets and demon-

strate that clean datasets almost always lead to significantly

better performance than noisy datasets.

We make the following main contributions in this paper:

• We conduct a large scale systematic study about the

effects of making certain apparently routine decisions

about the training procedure. Our experiments show

that data diversity, number of individuals in the dataset,

quality of the dataset, and good alignment are keys to

obtaining good performance.

• We suggest some general rules that could lead to im-

provement in the performance of deep face recognition

networks. These practices will also guide future data

collection efforts.

• We introduce a large dataset of videos of over

3,000 subjects along with 3,735,476 human annotated

bounding boxes in frames extracted from these videos.

2. Dataset

Still photos from the internet cannot match the amount of

variation that videos provide. Videos (and frames extracted

from the videos) are under-utilized because of the difficulty

in cleaning and annotating the data. There is a need for

effective methods for annotating video data. We describe a

new dataset1 aimed at face recognition research. It contains

22,075 videos of 3,107 subjects collected from YouTube.

We provide bounding box annotations for 3,735,476 frames

from the videos. We explain our methodology of collecting

this dataset which, we hope, will be useful to researchers

working on face verification and related problems.

1http://umdfaces.io/

2.1. Collecting data

We searched YouTube for over 3000 subject identities

(from batch-1 of UMDFaces [2]) and tried to download the

first 20 videos for each person. We used the open source

system youtube-dl [1] for searching and downloading the

videos. We downloaded a total of about 40,000 videos.

2.2. Automated filtering

From each video, we extracted either all the frames or the

first 4,000 frames, whichever is lower. This process gave us

over 140 million frames. We randomly selected about 10%

of these frames to process further. Next we detected faces in

the retained frames. At the time of collecting this data, most

detection systems were too slow to be of use. Faster RCNN

[30] claimed to detect objects at 7 frames per second. We

decided to use the, then newly introduced, YOLO detector

[29]. We trained the YOLO detector on the WIDER dataset

[38] and fine-tuned on the FDDB dataset [13]. We were able

to run the trained detector at about 25 frames per second

on a Titan X GPU. This enabled us to detect all faces in

these 14 million images in less that one week. This gave us

over 40 million face boxes in 14 million frames. We again

randomly selected 4000 face boxes for each subject identity

finally leaving ourselves with about 14 million boxes.

Our next task was to remove all face box proposals which

did not belong to the person in question. We used the all-in-

one method proposed in [28] to detect key landmark points

on each face and used them to align the faces. We used

the images in batch-1 of the UMDFaces dataset [2] as refer-

ence images for the subjects. Our problem now reduced to

a verification problem. For each subject we need to verify

whether a face box belongs to that person.

We used the verification method proposed in [5] for fil-

tering the proposal boxes which are not of the person in

question. We extracted features (using a network trained in

the same way as [39, 5]) for all images in batch-1 of UMD-

Faces [2] and take their average over a subject to obtain one

feature vector for the subject. Then, for each face box in our

dataset for the subject, we compared the feature vector with

the reference feature vector obtained above and kept only

those boxes with similarity with the reference feature vector

above a threshold. We used cosine similarity as the similar-

ity metric and used a low threshold to avoid removing the

hard-positive examples from the dataset as these are very

valuable. This leaves us with about 4 million face boxes.

2.3. Crowdsourcing final filtering

To obtain the final dataset, we use Amazon Mechani-

cal Turk (AMT) to filter the proposals. We show each pro-

posal to 2 ‘mechanical turkers’. Each screen in our AMT

task contains 50 images to be filtered and 3 reference im-

ages of a subject obtained from the UMDFaces dataset [2].

We requested the mechanical turkers to select images which

2546

http://umdfaces.io/


Figure 1: Some sample annotated bounding boxes from the dataset. Each row contains frames from a video. There is a large

amount of pose and expression variation in each video.

do not belong to the subject under consideration. We re-

moved all the faces boxes which were selected by at least

one turker. To ensure high quality annotations, we adopted

the following quality control method.

2.4. Quality control through sentinels

We used the method similar to the one used in [3, 2] for

controlling the quality of annotations. Each screen of 50

images contains 5 known images of another subject. De-

pending on whether the turkers select these ‘sentinel’ im-

ages, they get an accuracy score. We only considered the

votes of turkers with high accuracy scores.

2.5. Result

After the final filtering through human annotators, we

have 3,735,476 annotated frames in 22,075 videos. We will

publicly release this massive dataset for use by the computer

vision community.

Next, we use this dataset to show the importance of us-

ing video frames for training while testing on real world

scenarios like IJB-A and YTF in section 3.1. We show that

utilizing the vast amounts of video data and mixing video

frames with still images can give a significant boost in ver-

ification performance over using only video frames or still

images.

3. Questions and Experiments

We show that judicious decisions about the training set

and procedures can lead to large improvements in verifica-

tion accuracy of deep networks. We first use the introduced

dataset to show the importance of using video frames while

training for verification. Then we investigate some more

questions that will guide researchers towards good practices

for training deep networks for face verification and identi-

fication. These include: (i) whether deep datasets are bet-

ter than wide datasets (section 3.2); (ii) whether label noise

helps in improving performance (section 3.3); and (iii) how

important is the thumbnail generation method for training

and testing deep networks (section 3.4). We use the Caffe

[14] framework for all experiments.

3.1. Do deep recognition networks trained on stills
perform well on videos?

Images in most still image datasets [12, 22, 19] are taken

with high quality cameras in good lighting. Photos of

celebrities on the internet are often selected from among

several taken by a professional photographer. This intro-

duces a bias towards high quality images. Models trained on

only still images perform poorly on frames extracted from

videos [17]. These frames are extremely challenging be-

cause of pose, expression, and lighting variations. At the

same time, models trained only on videos perform poorly

on still images. There is a huge amount of video data avail-

able and only a limited number of still images. We show

that training on a mixture of images and video frames is re-

ally important for achieving good verification performance.

We train deep networks on the following five sets and

compare the verification performance of these networks:

• Stills: Some part (batch-1) of the UMDFaces [2]

dataset. This comprises of about 140,000 still images.

We train an Alexnet-derived architecture [31] on these

images for 100,000 iterations with a batch size of 128

and initial learning rate of 0.01 and reduced by half

every 15,000 iterations.

• Frames: The same number (140,000) of video frames

from our dataset (section 2). Each subject has the same

number of images as the case above (Stills). We used

the same training method as above.

• Frames++: The same number of subjects as above but

using many more video frames per subject for a total

of about 1 million video frames. We trained this model

2547



for 100,000 iterations and decreased the learning rate

by half every 20,000 iterations.

• Mixture: A mixture of still images and video frames

from UMDFaces and our dataset. We took 50% of im-

ages from batch-1 of UMDFaces and the other 50%

from our video frames dataset for a total of about

140,000 images. We trained this network for 100,000

iterations.

• Mixture++: The same number of still images as

‘Stills’ but about 1 million video frames. We again

train the network on this dataset for 100,000 iterations.

Note that we are using far more images in the Frames++

and Mixture++ cases than the other cases. However, we be-

lieve that it is fair to compare these five methods because

it is much easier to obtain millions of video frames than to

obtain millions of still images. There is a lot more varia-

tion in 100 images than there is in 100 continuous video

frames. Also, in real world scenarios, the amount of video

data is increasing rapidly and the majority of recognition

has to happen in videos.

We use an architecture [31] derived from Alexnet [18]

due to it’s easy availability and practicality. It is very fast to

train and is perfectly suited for large-scale experiments like

ours. Also, it provides excellent results [31]. However, we

believe that, in this case, our observations are general and

will be valid for other network architectures too.

We trained networks on these five sets and compare per-

formance of the trained models on IJB-A [17], YouTube

Faces datasets [37] and batch-3 of the UMDFaces [2]

dataset. In this experiment and the rest of the paper, un-

less otherwise stated, we train the same architecture of net-

works on different datasets for a fixed number of iterations

(100,000). We adopt the 1:1 verification protocol similar to

the one introduced in [17] for evaluating the performance

of these deep networks. We give a brief description of the

evaluation protocol next.

3.1.1 Protocol

The IJB-A 1:1 verification protocol [17] uses a decision er-

ror tradeoff (DET) curve for evaluation. The DET curve is

equivalent to an ROC curve. In our examples we evaluate

the performance for 1:1 verification on pairs of images or

templates for different datasets [12, 37, 2]. For all experi-

ments, we use ROC curves for evaluation.

3.1.2 Results

Figures 2 and 3 show the performance of the above five ex-

periments. They clearly show the importance of using a

mixture of video frames and still images for all cases. We

see that while the performance of the ‘Stills’ and ‘Mixture’

10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Stills vs Frames. Test: UMDFaces

Stills (TPR@FPR=0.01: 0.669)
Frames (TPR@FPR=0.01: 0.505)
Frames++ (TPR@FPR=0.01: 0.633)
Mixture (TPR@FPR=0.01: 0.666)
Mixture++ (TPR@FPR=0.01: 0.706)

Figure 2: Verification performance of networks trained on

‘Stills’, ‘Frames’, ‘Mixture’, ‘Frames++’, ‘Mixture++’ and

tested on UMDFaces batch-3 [2]. Note that the test set com-

prises of only still images. The performance of ‘Stills’ and

‘Mixture’ is very similar. However, ‘Mixture++’ performs

best. ‘Stills’ performs the next best after ‘Mixture++’ in this

case.

cases is very close for both IJB-A and UMDFaces, the per-

formance of ‘Frames’ is very poor. This is because of the

presence of many still images in the test sets and the low

variety in the few training frames. On the other hand, note

that the performance of the ‘Mixture++’ case is much better

than any other case, even better than ‘Frames++’ which has

similar number of images. This shows the importance of

using both still images and the ample number of frames ex-

tracted from videos for improving verification performance

on unconstrained faces.

Also, note from figure 3 that when testing on a dataset

which contains a mixture of still images and video frames

[17], the performance of ‘Mixture++’ is the highest and

‘Frames++’ is the second highest. However, when testing

on the UMDFaces dataset [2] which contains only images,

‘Stills’ performs second best after ‘Mixture++’ (figure 2).

Similarly, when testing on the completely video-based test-

ing set YTF [37], from figure 4, ‘Mixture++’ performs the

best and ‘Frames++’ performs a bit worse than it. Also note

that ‘Mixture’ performs better than ‘Stills’ and ‘Frames’.

Collecting millions of still images with enough variations is

extremely difficult. It is much easier to collect and annotate

millions of video frames. Also, using a combinations of a

large number of video frames and relatively few still images

gives a significant boost in performance over using only still

images or video frames.

3.2. What is better: deeper or wider datasets?

For datasets with the same number of total (still) images,

we call a dataset with more images per subject deeper than

2548



10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Stills vs Frames. Test: IJB-A

Stills (TPR@FPR=0.01: 0.794)
Frames (TPR@FPR=0.01: 0.710)
Frames++ (TPR@FPR=0.01: 0.845)
Mixture (TPR@FPR=0.01: 0.805)
Mixture++ (TPR@FPR=0.01: 0.874)

Figure 3: Verification performance of the five networks

(Stills, Mixture, Frames, Mixture++, and Frames++) on

IJB-A test set [17]. The IJB-A test set contains a mixture

of still images and video frames. Again, the performance of

‘Stills’ and ‘Mixed’ are almost the same and ‘Mixture++’

is better than everything else. However, unlike figure 2, the

performance of ‘Frames++’ is better than ‘Stills’.

10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Stills vs Frames. Test: YTF

Stills (TPR@FPR=0.01: 0.688)

Frames (TPR@FPR=0.01: 0.621)

Frames++ (TPR@FPR=0.01: 0.756)

Mixture (TPR@FPR=0.01: 0.720)

Mixture++ (TPR@FPR=0.01: 0.780)

Figure 4: Verification performance of the five networks

(Stills, Mixture, Frames, Mixture++, and Frames++) on

YTF test set [37]. The test set contains only frames ex-

tracted from videos. Again, the performance of ‘Mix-

ture++’ is better than everything else. Also, ‘Mixture’ per-

forms better than ‘Stills’ in this case.

another dataset with fewer images per subject. We call the

latter dataset wider than the prior. An example of a deep

(deeper than many other still image datasets) dataset is the

VGG-Face dataset [25] which has about 2.6 million images

of 2,622 subjects. On the other hand CASIA-WebFace[39]

can be considered a wide dataset. An extreme example of a

wide dataset is the MegaFace training dataset [16, 23] which

has over 670,000 subjects and only about 7 images per sub-

ject.

It is not intuitively clear whether it’s better to use deeper

datasets or wider for training deep networks. Given enough

images, both deep and wide datasets can contain a variety

of face images. Deep datasets are more varied in pose, ex-

pression, illuminations etc. On the other hand wide datasets

contain large variations because of the large number of

unique identities. In this section, we try to resolve the

dilemma of choosing one kind of dataset over the other.

We use the UMDFaces [2], MS-Celeb-1M [7] and

CASIA-WebFace [39] datasets to analyze the question. We

treat batch-1 and batch-2 of UMDFaces as the training set.

To explore the question of deeper vs wider datasets, we

divide the training datasets into two as follows: We sort

the subjects according to the number of images they have;

then we start with the subject with the maximum number

of images and put the subject in one set (head); we then

take the subject with next highest number of images and

add him/her to the head set; we continue this process till

we have collected close to half the total number of images.

Now we have divided each dataset into two parts. The first

part (which we call ‘head’) contains the deeper half of the

dataset. The other half is called the ‘tail’. For CASIA-

WebFace, the ‘head’ dataset contains 1,738 subjects and

247,196 images and the ‘tail’ set contains 8,437 subjects

and 247,218 images. Similarly, the UMDFaces ‘head’ set

has 2,142 subjects with 144,371 images and the ‘tail’ set

has 4,092 subjects and 144,348 images.

We first train the same architecture networks on the

‘head’ and ‘tail’ sets of both CASIA-WebFace and UMD-

Faces. We test these networks using the protocol from sec-

tion 3.1.1 on the UMDFaces batch-3 [2], IJB-A [17], and

Labeled Faces in the Wild (LFW) [12] datasets. The results

are shown in figures 5, 6, and 7. We note that the perfor-

mance of the network trained on the ‘tail’ sets is better than

the corresponding network trained on the ‘head’ sets for all

three test sets. This means that, for a given number of im-

ages, it is better to have more subjects than having more

images for fewer subjects.

On the other hand, if we train deeper networks, the per-

formance of networks trained on the ‘head’ sets is better

than the corresponding network trained on the ‘tail’ sets.

This can be seen in figure 8 where we train ResNet-101 [9]

networks on the ‘head’ and ‘tail’ sets of UMDFaces [2] and

MS-Celeb-1M [7] datasets and test on the IJB-A protocol

[17].

This observation is important because it can guide re-

searchers towards better practices to follow while collecting

data or selecting data for training deep networks. Data ac-

quisition is an expensive and time consuming process and

these experiments shine a light on how to obtain the max-

imum benefit from the investment. This is an interesting

direction for future work.

2549



10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Deep vs Wide. Train: UMDFaces

head - easy (TPR@FPR=0.01: 0.789)

tail - easy (TPR@FPR=0.01: 0.801)

head - moderate (TPR@FPR=0.01: 0.710)

tail - moderate (TPR@FPR=0.01: 0.733)

head - difficult (TPR@FPR=0.01: 0.610)

tail - difficult (TPR@FPR=0.01: 0.634)

Figure 5: Training on UMDFaces [2] batch-1 and batch-

2 and testing on batch-3. Solid lines represent training on

the ‘tail’ (wide) set and dashed lines represent training on

the ‘head’ set. We show the performance over three parts

of the test dataset: easy, moderate, and hard. These parts

are based on the difference in pose of the pair of images.

The performance of the network trained on the ‘tail’ set is

invariably better.

10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Deep vs Wide. Train: CASIA WebFace

head - easy (TPR@FPR=0.01: 0.688)

tail - easy (TPR@FPR=0.01: 0.733)

head - moderate (TPR@FPR=0.01: 0.574)

tail - moderate (TPR@FPR=0.01: 0.639)

head - difficult (TPR@FPR=0.01: 0.463)

tail - difficult (TPR@FPR=0.01: 0.536)

Figure 6: Verification performance of the networks trained

on CASIA-WebFace [39] ‘head’ and ‘tail’ sets. We see sim-

ilar trends as figure 5.

3.3. Does some amount of label noise help im
prove the performance of deep recognition
networks?

In face identification and verification research, the ef-

fect of label noise in the training set for deep networks has

not been studied extensively [7, 6]. Label noise essentially

means that some of the images have incorrect labels. Some

[25, 7] have suggested that deep networks are robust to label

noise.

We again use CASIA-WebFace [39] and UMDFaces [2]

10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Deep vs Wide. Test: IJB-A

Train: CASIA-head (TPR@FPR=0.01: 0.805)
Train: CASIA-tail (TPR@FPR=0.01: 0.826)
Train: UMD-head (TPR@FPR=0.01: 0.818)
Train: UMD-tail (TPR@FPR=0.01: 0.833)

(a) IJB-A

10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Deep vs Wide. Test: LFW

Train: CASIA-head (TPR@FPR=0.01: 0.906)

Train: CASIA-tail (TPR@FPR=0.01: 0.931)

Train: UMD-head (TPR@FPR=0.01: 0.920)

Train: UMD-tail (TPR@FPR=0.01: 0.927)

(b) LFW
Figure 7: Performance on (a) IJB-A [17] and (b) LFW [12]

of the networks trained on CASIA [39], and UMDFaces [2]

‘head’ and ‘trail’ sets. The performance of the networks

trained on ‘tail’ are better across the range of false positive

rate. (Best viewed digitally)

10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Head vs Tail UMDFaces. Test: IJB-A

HEAD (TPR@FPR=0.01: 0.873)

TAIL (TPR@FPR=0.01: 0.864)

(a) UMDFaces

10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Head vs Tail MS1M. Test: IJB-A

HEAD (TPR@FPR=0.01: 0.929)

TAIL (TPR@FPR=0.01: 0.873)

(b) MS1M
Figure 8: Performance on IJB-A [17] of ResNets trained

on UMDFaces [2], and MS-Celeb-1M [7] ‘head’ and ‘trail’

sets. The ‘head’ sets are better.

batch-1 and batch-2 for training the networks and LFW

[12], IJB-A [17], UMDFaces batch-3 for evaluating the per-

formance of these trained networks. We use the protocol

explained in section 3.1.1 for evaluation.

For both training datasets, we train recognition networks

with 0, 2%, 5%, and 10% label noise in the dataset. We

would like to point out these percentages assume that the

original datasets do not already contain any label noise.

This assumption might not be true for many face datasets

like MS-Celeb [7] and VGG-Face [25] which already con-

tain some label noise.

Figure 9 shows the verification performance of networks

trained on the CASIA-WebFace dataset for the UMDFaces

test set and figure 10 shows the same for networks trained

on UMDFaces dataset. There is a clear degradation in per-

formance with increasing noise level. For both datasets, the

performance of the network trained on clean data is mostly

better than the performance of networks trained with even

small amounts of noise. Label noise does not improve per-

formance over clean data for face recognition. However,

the difference in performance between networks trained on

clean data and data with low levels of label noise is rela-

tively low. But the percentage of noisy labels should be

relatively low (less than 5%) because from figures 9 and 10,

we notice that for a label noise level of 10%, the perfor-

mance invariably declines.

2550



10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
u
e 

p
os

it
iv

e 
ra

te

Label Noise. Train: CASIA WebFace

base (TPR@FPR=0.01: 0.701)
2 (TPR@FPR=0.01: 0.689)
5 (TPR@FPR=0.01: 0.682)
10 (TPR@FPR=0.01: 0.672)

Figure 9: Performance on UMDFaces batch-3 for networks

trained on CASIA WebFace [39]. Similar to figure 10 the

network trained with no label noise performs best.

10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Label Noise. Train: UMDFaces

base - easy (TPR@FPR=0.01: 0.828)
2 - easy (TPR@FPR=0.01: 0.824)
5 - easy (TPR@FPR=0.01: 0.814)
10 - easy (TPR@FPR=0.01: 0.810)
base - moderate (TPR@FPR=0.01: 0.767)
2 - moderate (TPR@FPR=0.01: 0.757)
5 - moderate (TPR@FPR=0.01: 0.752)
10 - moderate (TPR@FPR=0.01: 0.743)
base - difficult (TPR@FPR=0.01: 0.686)
2 - difficult (TPR@FPR=0.01: 0.676)
5 - difficult (TPR@FPR=0.01: 0.667)
10 - difficult (TPR@FPR=0.01: 0.660)

Figure 10: Verification performance on UMDFaces [2]

batch-3 of deep networks trained on batch-1 and batch-2

with different noise levels. The colors represent the diffi-

culty of test set (in terms of the difference in pose). Dif-

ferent line types represent different amounts of label noise

added to the train set. Except for a small region in easy

cases, using clean data is better than using data with label

noise.

Similar trends can be seen for the LFW dataset in fig-

ure 11b. However, when testing on the IJB-A dataset [17],

we notice that this observation does not hold, as shown in

figure 11a. We believe that this is because the IJB-A pro-

tocol comprises of video frames which introduces another

dimension of complexity for the model. Sometimes these

video frames might not look like the person under consid-

eration. We believe that such frames might be acting like

a kind of label noise in the test set. That is why adding la-

bel noise to the training set might make the networks robust

to such frames. However, label noise and its removal are

10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Label Noise. Test: IJB-A

CASIA-base (TPR@FPR=0.01: 0.877)

CASIA-2pct noise (TPR@FPR=0.01: 0.880)

CASIA-5pct noise (TPR@FPR=0.01: 0.879)

UMD-base (TPR@FPR=0.01: 0.873)

UMD-2pct noise (TPR@FPR=0.01: 0.873)

UMD-5pct noise (TPR@FPR=0.01: 0.865)

(a) UMDFaces

10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Label Noise. Test: LFW

UMD - base (TPR@FPR=0.01: 0.963)
UMD - 2 pct (TPR@FPR=0.01: 0.953)
UMD - 5 pct (TPR@FPR=0.01: 0.942)
CASIA - base (TPR@FPR=0.01: 0.967)
CASIA - 2 pct (TPR@FPR=0.01: 0.958)
CASIA - 5 pct (TPR@FPR=0.01: 0.953)

(b) CASIA
Figure 11: Verification results on IJB-A [17] of networks

trained on (a) UMDFaces [2], and (b) CASIA WebFace

[39]. Contrary to earlier observations from figures 10 and

9, the performance on IJB-A seems to improve with adding

some label noise to the train dataset. (Best viewed digitally)

definitely problems worthy of further research.

3.4. Does thumbnail creation method affect perfor
mance?

Detecting [11, 27, 38, 13, 4, 36], cropping, and aligning

the faces in the dataset is the first step in many face recog-

nition pipelines. Alignment is the process of transforming

a face into some canonical view. This is usually done by

detecting locations of keypoints [15, 28] in the face image

and then using some kind of similarity transform to trans-

form the faces to a canonical view [25]. We refer to the

images of faces obtained after cropping and/or alignment as

‘thumbnails’.

We investigate whether the performance of deep recog-

nition networks is affected by the thumbnail generation

process. We compare two popular alignment techniques

[28, 15] against very simple thumbnail generation tech-

niques which only require keypoint locations and do not

involve calculating any similarity transforms.

We compare three different types of thumbnails for eval-

uating verification performance. These are: (i) Keypoints

from All-in-one CNN [28] with similarity transform align-

ment, (ii) DLIB keypoint detection and alignment [15], and

(iii) Bounding box using keypoints from [28] without any

alignment. In each case, we also study the effect of using

tight thumbnails (tight crop of the face) vs loose thumbnails

(including more context information). We try these meth-

ods for both training and testing and present the accuracies

for the best performing cases in figures 12 and 13. We use

two different datasets for training: batch-1 and batch-2 of

UMDFaces [2] and CASIA-WebFace [39], and UMDFaces

batch-3 for evaluating the performance of the trained net-

works.

All the above mentioned variations give us the fol-

lowing seven methods of thumbnail generation: (1) loose

alignment using [28] keypoints (aligned uf loose), (2) tight

alignment using [28] keypoints (aligned uf tight), (3) loose

alignment using [15] keypoints (aligned dlib loose), (4)

2551



10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 r
at

e

Thumbnail Generation. Train: UMDFaces

TRN:aligned_uf_loose-TST:aligned_uf_loose (TPR@FPR=0.01: 0.759)

TRN:aligned_uf_tight-TST:aligned_uf_tight (TPR@FPR=0.01: 0.765)

TRN:aligned_uf_tight-TST:aligned_dlib_tight (TPR@FPR=0.01: 0.704)

TRN:aligned_dlib_loose-TST:aligned_uf_loose (TPR@FPR=0.01: 0.738)

TRN:aligned_dlib_loose-TST:aligned_dlib_loose (TPR@FPR=0.01: 0.742)

TRN:unaligned_uf_plus_10-TST:aligned_uf_tight (TPR@FPR=0.01: 0.711)

TRN:unaligned_uf_plus_10-TST:unaligned_uf_plus_10 (TPR@FPR=0.01: 0.718)

Figure 12: The performance of seven sets of train and test

thumbnail generation methods. These seven were selected

among all pairs of train-test pairs possible as explained in

section 3.4. The training set was the UMDFaces [2] dataset

in each case and the testing set was batch-3 of UMDFaces.

It is clear that tightly aligning both training and testing

sets using the method from [28] gives the best performance

(green). (Best viewed digitally)

tight alignment using [15] keypoints (aligned dlib tight),

(5) no alignment with extremely tight crops (max extent

of the keypoints minus 10% of the height and width from

both sides) based on keypoints obtained from [28] (un-

aligned uf minus 10), (6) no alignment with moderately

tight crops (max extent of the keypoints) based on key-

points obtained from [28] (unaligned uf tight), and (7) no

alignment but loose crops of the faces (max extent of the

keypoints plus 10% of the height and width on both sides)

using keypoints from [28] (unaligned uf plus 10).

We train neural networks on UMDFaces [2] and CASIA-

WebFace [39] using these 7 thumbnail generation methods

and test on batch-3 of UMDFaces [2] using the same 7 dif-

ferent thumbnail generation methods. Hence, for both train-

ing sets, we have 49 (7× 7) pairs of train and test sets. For

both training sets, we select the seven pairs which give the

highest performance and plot them in figures 12 and 13.

We note that there is a clear dependence of performance

on the type of thumbnail used for training and testing. Us-

ing a good keypoint detection method and alignment proce-

dure for both training and testing is essential for achieving

good performance. Note that using a tight alignment using

keypoints detected using [28] for both training and testing

gives the best performance among all the cases of networks

trained on UMDFaces. This pair is also a very close second

among networks trained on CASIA-WebFace. As keypoint

detection and alignment methods continue to improve, we

expect the face verification performance to improve too.

10-5 10-4 10-3 10-2 10-1 100

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tru
e 

po
sit

iv
e 

ra
te

Thumbnail Generation. Train: CASIA WebFace

TRN:aligned_uf_loose-TST:aligned_uf_loose (TPR@FPR=0.01: 0.701)

TRN:aligned_uf_tight-TST:aligned_uf_tight (TPR@FPR=0.01: 0.700)

TRN:aligned_uf_tight-TST:aligned_dlib_tight (TPR@FPR=0.01: 0.639)

TRN:aligned_dlib_loose-TST:aligned_uf_loose (TPR@FPR=0.01: 0.689)

TRN:aligned_dlib_loose-TST:aligned_dlib_loose (TPR@FPR=0.01: 0.646)

TRN:unaligned_uf_plus_10-TST:aligned_uf_tight (TPR@FPR=0.01: 0.679)

TRN:unaligned_uf_plus_10-TST:unaligned_uf_plus_10 (TPR@FPR=0.01: 0.669)

Figure 13: The performance of seven sets of train and test

thumbnail generation methods with CASIA WebFace as the

training set and UMDFaces batch-3 [2] as the test set. We

again see that aligning both training and testing sets using

[28] gives the best performance. Also, using a loose align-

ment gives the best performance (blue) just slightly ahead

of using a tight alignment (green).

4. Conclusion

In this work we studied the effects of certain decisions

about datasets and the training procedures for training deep

convolutional neural networks for face verification. Care-

fully making these decisions is important for developing

face recognition systems. This paper provides some guide-

lines about the decision making process. There is an abun-

dance of video data which contain much more pose and

expression variations than still images. To ensure that re-

searchers can take advantage of this potential, we intro-

duced a new dataset of 22,075 videos and 3,735,476 anno-

tated frames. The importance of removing label noise from

the dataset and selecting wider or deeper datasets cannot

be ignored. Similarly, aligning faces using accurate key-

points during both training and testing gives a boost in per-

formance. We hope that this work will encourage people to

dig deeper into these and other decisions.

Acknowledgments

This research is based upon work supported by the Of-

fice of the Director of National Intelligence (ODNI), In-

telligence Advanced Research Projects Activity (IARPA),

via IARPA R&D Contract No. 2014-14071600012. The

views and conclusions contained herein are those of the au-

thors and should not be interpreted as necessarily represent-

ing the official policies or endorsements, either expressed

or implied, of the ODNI, IARPA, or the U.S. Government.

The U.S. Government is authorized to reproduce and dis-

tribute reprints for Governmental purposes notwithstanding

any copyright annotation thereon.

2552



References

[1] youtube-dl https://github.com/rg3/

youtube-dl. online; accessed 06-march-2017. 2

[2] A. Bansal, A. Nanduri, C. Castillo, R. Ranjan, and R. Chel-

lappa. Umdfaces: An annotated face dataset for training deep

networks. arXiv preprint arXiv:1611.01484, 2016. 1, 2, 3,

4, 5, 6, 7, 8

[3] S. Bell and K. Bala. Learning visual similarity for product

design with convolutional neural networks. ACM Transac-

tions on Graphics (TOG), 34(4):98, 2015. 3

[4] D. Chen, G. Hua, F. Wen, and J. Sun. Supervised transformer

network for efficient face detection. In European Conference

on Computer Vision, pages 122–138. Springer, 2016. 7

[5] J.-C. Chen, V. M. Patel, and R. Chellappa. Unconstrained

face verification using deep cnn features. In Applications of

Computer Vision (WACV), 2016 IEEE Winter Conference on,

pages 1–9. IEEE, 2016. 1, 2

[6] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m:

Challenge of recognizing one million celebrities in the real

world. 1, 2, 6

[7] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m:

A dataset and benchmark for large-scale face recognition. In

European Conference on Computer Vision, pages 87–102.

Springer, 2016. 1, 2, 5, 6

[8] T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face

frontalization in unconstrained images. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4295–4304, 2015. 1

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 5

[10] G. Hu, X. Peng, Y. Yang, T. Hospedales, and J. Ver-

beek. Frankenstein: Learning deep face representations us-

ing small data. arXiv preprint arXiv:1603.06470, 2016. 1

[11] P. Hu and D. Ramanan. Finding tiny faces. arXiv preprint

arXiv:1612.04402, 2016. 1, 7

[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.

Labeled faces in the wild: A database for studying face

recognition in unconstrained environments. Technical re-

port, Technical Report 07-49, University of Massachusetts,

Amherst, 2007. 1, 3, 4, 5, 6

[13] V. Jain and E. G. Learned-Miller. Fddb: A benchmark for

face detection in unconstrained settings. UMass Amherst

Technical Report, 2010. 2, 7

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceed-

ings of the 22nd ACM international conference on Multime-

dia, pages 675–678. ACM, 2014. 3

[15] V. Kazemi and J. Sullivan. One millisecond face alignment

with an ensemble of regression trees. In CVPR, 2014. 1, 7, 8

[16] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and

E. Brossard. The megaface benchmark: 1 million faces for

recognition at scale. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016. 1, 5

[17] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney,

K. Allen, P. Grother, A. Mah, and A. K. Jain. Pushing

the frontiers of unconstrained face detection and recognition:

Iarpa janus benchmark a. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1931–1939, 2015. 1, 2, 3, 4, 5, 6, 7

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 4

[19] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.

Attribute and simile classifiers for face verification. In Com-

puter Vision, 2009 IEEE 12th International Conference on,

pages 365–372. IEEE, 2009. 3

[20] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li,

and G. Hua. Labeled faces in the wild: A survey. In Advances

in Face Detection and Facial Image Analysis, pages 189–

248. Springer, 2016. 1

[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European Conference on Computer Vision, pages 21–37.

Springer, 2016. 1

[22] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face

attributes in the wild. In Proceedings of International Con-

ference on Computer Vision (ICCV), 2015. 3

[23] A. Nech and I. Kemelmacher-Shlizerman. Megaface 2:

672,057 identities for face recognition. 2016. 1, 5

[24] H.-W. Ng and S. Winkler. A data-driven approach to clean-

ing large face datasets. In 2014 IEEE International Con-

ference on Image Processing (ICIP), pages 343–347. IEEE,

2014. 1

[25] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In British Machine Vision Conference, vol-

ume 1, page 6, 2015. 1, 2, 5, 6, 7

[26] R. Ranjan, V. M. Patel, and R. Chellappa. A deep pyramid

deformable part model for face detection. In Biometrics The-

ory, Applications and Systems (BTAS), 2015 IEEE 7th Inter-

national Conference on, pages 1–8. IEEE, 2015. 1

[27] R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep

multi-task learning framework for face detection, landmark

localization, pose estimation, and gender recognition. arXiv

preprint arXiv:1603.01249, 2016. 1, 7

[28] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chel-

lappa. An all-in-one convolutional neural network for face

analysis. arXiv preprint arXiv:1611.00851, 2016. 1, 2, 7, 8

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 779–788, 2016. 1, 2

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1, 2

[31] S. Sankaranarayanan, A. Alavi, C. D. Castillo, and R. Chel-

lappa. Triplet probabilistic embedding for face verification

and clustering. In Biometrics Theory, Applications and Sys-

tems (BTAS), 2016 IEEE 8th International Conference on,

pages 1–8. IEEE, 2016. 1, 3, 4

2553

https://github.com/rg3/youtube-dl
https://github.com/rg3/youtube-dl


[32] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015. 1

[33] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face

recognition with very deep neural networks. arXiv preprint

arXiv:1502.00873, 2015. 1

[34] Y. Sun, X. Wang, and X. Tang. Hybrid deep learning for

face verification. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1489–1496, 2013. 1

[35] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:

Closing the gap to human-level performance in face verifica-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1701–1708, 2014. 1

[36] P. Viola and M. J. Jones. Robust real-time face detection.

International journal of computer vision, 57(2):137–154,

2004. 7

[37] L. Wolf, T. Hassner, and I. Maoz. Face recognition in uncon-

strained videos with matched background similarity. In Com-

puter Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 529–534. IEEE, 2011. 1, 2, 4, 5

[38] S. Yang, P. Luo, C. C. Loy, and X. Tang. Wider face: A

face detection benchmark. arXiv preprint arXiv:1511.06523,

2015. 2, 7

[39] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

1, 2, 5, 6, 7, 8

[40] C. Zhu, Y. Zheng, K. Luu, and M. Savvides. Cms-rcnn: con-

textual multi-scale region-based cnn for unconstrained face

detection. arXiv preprint arXiv:1606.05413, 2016. 1

[41] S. Zhu, C. Li, C.-C. Loy, and X. Tang. Unconstrained face

alignment via cascaded compositional learning. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3409–3417, 2016. 1

2554


