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Abstract

Person re-identification in large-scale multi-camera net-

works is a challenging task because of the spatio-temporal

uncertainty and high complexity due to large numbers of

cameras and people. To handle these difficulties, additional

information such as camera network topology should be

provided, which is also difficult to automatically estimate.

In this paper, we propose a unified framework which jointly

solves both person re-id and camera network topology in-

ference problems. The proposed framework takes general

multi-camera network environments into account. To ef-

fectively show the superiority of the proposed framework,

we also provide a new person re-id dataset with full an-

notations, named SLP, captured in the synchronized multi-

camera network. Experimental results show that the pro-

posed methods are promising for both person re-id and

camera topology inference tasks.

1. Introduction

Person re-identification (i.e. re-id) is the task of automat-

ically recognizing and identifying a person across multiple

views in multi-camera networks, and has been studied for

last decades. Nevertheless, the re-id in large-scale multi-

camera networks still remains a challenging task because

of the large spatio-temporal ambiguity and high complex-

ity due to large numbers of cameras and people. Especially,

it becomes more challenging when camera views are not

overlapped each other. As shown in Fig. 1, spatio-temporal

uncertainty due to the unknown geometrical relationship be-

tween cameras in a multi-camera network makes the re-id

difficult. Unless some prior knowledge about the camera
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Figure 1. Challenges of large-scale person re-identification

: spatio-temporal uncertainties between cameras.

network is given, re-id should be done by thoroughly match-

ing the person of interest with all other people appeared in

the other camera within some time interval. This exhaustive

search method is slow in general and shows unsatisfactory

results in many cases because it is hard to find a correct

match among a large number of candidates — among the

large number of candidates, there might be many people

having similar appearances with the person of interest.

However, most of the previous works [11, 13] conduct

the exhaustive search to re-identify people across multiple

cameras, relying solely on the appearance information of

people. These methods work quite well when the numbers

of cameras and people are small, but cannot effectively han-

dle the aforementioned challenges in the large-scale prob-

lem. To resolve the complexity problem and to improve

the accuracy of the large-scale person re-id, the number of

matching candidates of a person of interest should be con-

strained and reduced by inferring and exploiting the spatio-

temporal relation between cameras, referred to as the cam-

era network topology. In recent years, several camera net-

work topology inference methods [20, 22] have been pro-

posed. Those methods infer the topology of a camera net-

work based on the simple occurrence correlation between

entering and exiting events of people. However, since they

do not perform any appearance-based validation for topol-
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ogy inference, the inferred topology can be inaccurate in

crowded scenes.

The main idea of this paper is that the camera network

topology inference and person re-id can be solved jointly

while complementing each other. Based on this idea, we

propose a unified framework which automatically solves

both person re-id and camera network topology inference

problems together. To the best of our knowledge, this is

the first attempt to solve both problems jointly. In the pro-

posed framework, we first infer the initial camera network

topology using only highly reliable re-id results obtained

by the proposed multi-shot matching method. This initial

topology is used to improve the person re-id results, and

the improved re-id results are then used to refine the cam-

era network topology. This procedure is repeated until the

estimated camera network topology converges. Once we es-

timate the reliable camera network topology in the training

stage, we can utilize it for the online person re-id and update

the camera network topology with time.

To sum up, we propose a multi-shot person re-id method

which exploits time-efficient random forest (Sec. 3.1). We

also propose fast and accurate camera network topology

inference method in Sec. 3.2. It is worthy to note that

our proposed framework runs fully automatic with minimal

prior knowledge about the environments. Besides the pro-

posed methods, we also provide a new synchronized large-

scale person re-id dataset named SLP (Sec. 4). To vali-

date our unified framework, we extensively evaluate the per-

formance of the proposed method and compare with other

state-of-the-art methods.

2. Previous Works

Person re-id methods can be categorized into non-

contextual and contextual methods as summarized in [3]. In

general, non-contextual methods rely only on appearances

of people and measure visual similarities between people

to establish correspondences, while contextual methods ex-

ploit additional contexts such as human pose prior, camera

parameters, geometry, and camera topology.

Non-contextual Methods In order to identify people

across non-overlapping views, most of works generally rely

on appearances of people by utilizing appearance-based

matching methods with feature learning or metric learning.

For the feature learning, many works [13, 19, 30] have tried

to design visual descriptors to well describe the appearance

of people. Regarding the metric learning, several methods

such as KISSME [16] and LMNN-R [12] have been pro-

posed and applied to the re-id problem [25, 28].

Although many non-contextual methods have improved

the performance of person re-id, the challenges such as

spatio-temporal uncertainty between non-overlapping cam-

eras and high computational complexity still remain.

Contextual Methods Several works [1,10,29] using hu-

man pose priors have been proposed recently. Exploiting

human poses mitigates ambiguities by seeking pose vari-

ations of people but spatio-temporal ambiguities between

cameras still remain.

To resolve the spatio-temporal ambiguities, many works

have tried to employ camera network topology and camera

geometry. Several works [6, 15, 24] assume that the camera

network topology is given, and show the effectiveness of the

topological information. However, the topology is not given

in the real-world scenario; thus, many works have tried

to infer the camera network topology in an unsupervised

manner. Makris et al. [22] proposed a topology inference

method that simply observes entering and exiting events of

targets and measures correlations between the events to es-

tablish the camera network topology. This method was ex-

tended in [8,23,26]. Similarly, Loy et al. [20] also proposed

topology inference methods to understand multi-camera ac-

tivity by measuring correlation or mutual information be-

tween simple activity patterns.

The aforementioned topology inference methods [8, 20,

22, 26], so-called, event-based approaches, are practical

since they do not require any appearance matching steps

such as re-id or inter-camera tracking for topology infer-

ence. However, the topology inferred by the event-based

approach can be inaccurate since the topology may be in-

ferred from false event correlations.

3. Proposed Unified Framework

Figure 2 illustrates the proposed unified framework for

person re-id and camera network topology inference. In the

proposed framework, we first train random forest-based per-

son classifiers (Sec. 3.1) for efficient person re-id. Subse-

quently, we jointly estimate and refine the camera network

topology and person re-id results (Sec. 3.2) using the trained

random forests.

3.1. Random Forestbased Person Reidentification

Most of previous works mainly focused on enhancing re-

id performance. However, when handling a large number of

people, time complexity is also very important for building

a practical re-id framework. To this end, we utilize a ran-

dom forest algorithm [5] for the multi-shot person re-id and

incorporate it into our framework. We denote the k-th ap-

pearance of person i in camera cA as v
cA
i,k. A set of the

appearances of people in the camera is expressed as,

DcA =
{(

v
cA
i,k, yi

)

|1 ≤ i ≤ N cA , 1 ≤ k ≤ KcA
i

}

, (1)

where yi is the label of person i is the number of people in

camera cA and KcA
i is the number of appearances of per-

son i in camera cA. We then train a random forest classi-

fier using the appearance set DcA . After the random forest
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Figure 2. The proposed unified framework for person re-

identification and camera network topology inference.

classifier is trained, we have the probability distribution of

classification as pcA (y|v).
To obtain a multi-shot person re-id result, we test mul-

tiple appearances of each person and average the multiple

results as pcA(y|vcB
j ) = 1

K
cB
j

∑K
cB
j

l=1
pcA(y|vcB

j,l ), where

KcB
j is the number of appearances of the probe. Among

the probability distribution pcA
(

y|vcB
j

)

, we choose a final

matched label y∗i which maximizes pcA(yi|v
cB
j ). As the

result of the multiple appearance matching test, we have a

corresponding pair (vcA
y∗

i
, vcB

j ) between camera cA and cB .

Finally, we calculate a similarity score of the corresponding

pair by selecting the smallest matching score as in [13]. We

denote the similarity score as S
(

v
cA
y∗

i
,vcB

j

)

. The score lies

on [0, 1] and it is used in Sec. 3.2 for inferring the topol-

ogy. The tree structure of the random forest method makes

the multi-shot test very fast. Besides the superiority of the

computational cost, our method gives high person re-id ac-

curacy as shown in Sec. 5.1.

3.2. Camera Network Topology Initialization

Camera network topology represents spatio-temporal re-

lations and connections between cameras in the network.

It involves with the inter-camera transition distributions be-

tween two cameras, which denote transition distributions of

objects across cameras according to time, and represents the

strength of connectivity between cameras. In general, the

topology is represented as a graph G = (V,E), where ver-

tices V denote cameras and edges E denote inter-camera

transition distributions as shown in Fig. 5 (b).

3.2.1 CAM-to-CAM topology inference

First, we estimate transition distributions between cameras

to build the CAM-to-CAM topology. In this work, we es-

timate the transition distributions based on the person re-id

results. We first split a whole group of people into several

sub-groups according to their time-stamps and train a series

of random forest classifiers with time window T . Next, we

search correspondences of people disappeared in a camera

using the trained random forest classifiers of other cameras.

Initially, we have no transition distributions between cam-

eras to utilize. Hence, we consider every pair of cameras

in the camera network and search correspondences within

wide time interval. When a person disappears at time t in a

certain camera, we search the correspondence of the person

from the other cameras within time range [t− T, t+ T ].
When these initial correspondences are given, we in-

fer transition distributions between cameras using highly

reliable correspondences only. We regard a correspon-

dence as a reliable one with a high similarity score when

S(vcA
y∗

i
,vcB

j ) > θsim. Transition distribution inference pro-

cedure is as follows: (1) calculating time difference be-

tween correspondences and making a histogram of the time

difference; (2) normalizing the histogram by the total num-

ber of reliable correspondences. We denote the transition

distribution as p (∆t). Figure 3 shows two distributions:

Fig. 3 (a) comes from a pair of cameras having strong con-

nection, and Fig. 3 (b) from a pair of cameras having a weak

or no connection.

Connectivity Check Based on the estimated transition

distributions, we automatically identify whether a pair of

cameras is connected or not. We assume that the transi-

tion distribution follows a normal distribution if there is a

topological connection. Based on this assumption, we fit

a Gaussian model N(µ, σ2) to the distribution p (∆t) and

measure the connectivity of a pair of cameras based on the

following observations:

• Variance of p (∆t): In general, most of people re-appear

around the certain transition time µ; therefore, the variance

of the transition distribution (σ2) is not extremely large and

the distribution shows a clear peak.

• Fitting error: Although the distribution comes from a

pair cameras with a weak connection, the variance of the

distribution can be small and the distribution can have a

clear peak due to noise. In order to measure the connec-

tivity robust to noise, we consider the model fitting error

E (p (∆t)) ∈ [0, 1] calculated by R-squared statistics.

Based on the above observations, we newly define a con-

nectivity confidence between a pair of cameras as

conf (p (∆t)) = e−σ · E (p (∆t)) . (2)

The connectivity confidence lies on [0, 1]. We regard a pair

of cameras as a valid link when conf (p (∆t)) > θconf .

Compared with a previous method [22] which only consid-

ers the variance of a distribution, our method is more robust

to noise of distributions. Using the defined confidences,

we check every pair of cameras and reject invalid links as

shown in Fig. 5. We can see that many camera pairs in the
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Figure 3. Examples of estimated transition distributions

with connectivity confidences.

camera network have weak connection; therefore, we can

greatly reduce computation time and save resources. Only

the valid pairs of cameras are proceeding to the next step.

3.2.2 Zone-to-Zone topology inference

In this step, we estimate transition distributions between

zones in cameras and build a Zone-to-Zone topology. For

each camera, a set of entry and exit zones is automatically

learned by [21]. Note that, we only consider exit-to-entry

zone pairs when two zones belong to different cameras.

Other pairs of zones such as exit-to-exit, entry-to-entry, and

entry-to-exit are not considered.

A person disappeared at an exit zone at time t is likely

to appear at entry zone in a different camera within the cer-

tain time interval T . Therefore, we search the correspon-

dence of the disappeared person from entry zones in dif-

ferent cameras within time range [t, t + T ]. Similarly as

in Sec. 3.2.1, we train a series of random forest classifiers

for each entry zone and measure connectivity confidences

of all possible pairs of zones using only reliable correspon-

dences. Through this step, many invalid pairs of zones be-

tween cameras are ignored. In the next section, we itera-

tively update the valid links between zones and build a cam-

era topology map of the camera network.

3.2.3 Iterative update of person re-identification

and camera network topology

After the Zone-to-Zone topology inference, we have an ini-

tial topology map between every pair of zones in the cam-

era network. However, the initial topology map can be in-

accurate, since it is inferred by noisy initial re-id results.

As mentioned before, camera network topology informa-

tion and re-id results can be used for each other: the inferred

topology of the camera network can enhance the person re-

id performance, and person re-id can assist the topology in-

ference. Therefore, we update person re-id results and the

camera network topology in an iterative manner as follows:

• Step 1. Update the time window T . The initial time win-

dow T was set quite wide, but now we can narrow it down

based on the inferred topology. To this end, we find lower

and upper time bounds (TL, TU ) of the transition distri-

bution p (∆t) with a constant R as,

p (TL ≤ ∆t ≤ TU ) =
R

100
. (3)

We set R as 95, following 3-sigma rule, in order to cover

the most of the distribution (95%) and ignore some out-

liers (5%). Then, using the obtained time bounds, the

time window T is updated as,

T =
1

1− E (p (∆t))
(TU − TL) , (4)

where E (p (∆t)) is a topology fitting error rate. When

the fitting error is large, the time window T becomes

large. Thanks to our update strategy, we can avoid the

overfitting of the topology during the update steps.

• Step 2. Re-train a series of random forests of an entry

zone with the updated time window T .

• Step 3. Find correspondences of disappeared people at an

exit zone. Based on the topology, a person disappeared

at time t at the exit zone is expected to appear around the

time (t + µ) at the entry zone of the other camera. Us-

ing the topological information, we search the correspon-

dence of the person from a trained random forest having

the center of time slot close to (t+ µ).

• Step 4. Update a topology using reliable correspon-

dences with a high similarity score S(vcA
y∗

i
,vcB

j ) > θsim.

This procedure (Step 1 – Step 4) is repeated until the

topology converges. The above procedure improves the per-

formance of re-id as well as the accuracy of the topology

inference. We empirically set parameters θsim, θconf , T as

0.7, 0.4, 600 based on an extensive evaluation.

4. A New Person Re-id Dataset : SLP

To validate the performance of person re-id methods, nu-

merous datasets have been published. For example, [14]

was constructed by two cameras and contains 632 people.

Each camera provides one single image for one person. On

the contrary, [4] includes 150 people captured from eight

cameras. In this dataset, each camera provides multiple im-

ages for a person. However, despite the outburst of pub-

lished datasets, none of them reflect practical large-scale

surveillance scenarios, in which (1) video frames captured

from multiple synchronized cameras are available, and (2)

both the numbers of people and cameras are large.

Most of the public datasets include a small number of

people (# IDs < 200) [2,4,9,32] or cameras (# cam < 5) [7,

9, 14, 17, 27, 32]. Moreover, some datasets provide single-

shot of each person [14, 20] or do not provide annotation

information of people (track gt) throughout the entire video

sequences [2,9,17,31,32]. Furthermore, there are only a few
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Table 1. Details of our new dataset: SLP.

Index CAM 1 CAM 2 CAM 3 CAM 4 CAM 5 CAM 6 CAM 7 CAM 8 CAM 9 Total

# ID 256 661 1,175 243 817 324 516 711 641 2,632
# frames 19,545 65,518 104,639 41,824 78,917 79,974 93,978 53,621 42,347 580,363

# annotated box 47,870 205,003 310,262 65,732 307,156 160,367 78,259 176,406 117,087 1,468,142
Duration 2h 13m 2h 12m 2h 22m 2h 2h 21m 2h 2h 38m 2h 29m 2h 28m –
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Figure 4. A new synchronized large-scale person re-

identification dataset: SLP.

datasets which provide camera synchronization information

or time stamps of all frames (sync) [7].

In this paper, we provide a new synchronized large-scale

person re-id dataset called SLP constructed for practical

large-scale surveillance scenarios. The main characteristics

of our dataset are as follows: The total number of people in

the dataset is 2,632. The layout of the camera network and

example frames are shown in Fig. 4. It provides extracted

feature descriptor of each person1. The ground truth of ev-

ery person is available. Table 1 shows the details of SLP.

It is available on online. https://sites.google.com/

view/yjcho/project-pages/re-id_topology.

5. Experimental Results

Experimental settings

1In this version, we do not provide the entire video frames but pro-

vide extracted feature descriptors due to legal problem. However we will

provide entire video frames in the near future.

Since we mainly focus on person re-identification and

camera topology inference problems, we assume that per-

son detection and tracking results are given. We divide our

dataset into two subsets according to time: The first subset

contains 1-hour data starting from the global start time (AM

11:20). It is used in an camera network topology train-

ing stage. The latter subset including the remaining data

is utilized in a person re-id test stage. We used LOMO fea-

ture [18] to describe the appearances of people. Note that

our method can adopt any kind of feature extraction meth-

ods.

Evaluation methodology

To evaluate the performance of person re-id, we measure

the re-id accuracy (Re-id acc) defined as TP
Tgt

, where TP

is the number of true matching results and Tgt is the total

number of ground truth re-id pairs in the camera network.

To evaluate the accuracy of the camera network topology,

we measure topology distance (Top dist). When an in-

ferred transition distribution and a ground truth are given

as (p(∆t)∼N
(

µ, σ2
)

, pgt(∆t)∼N
(

µgt, σ
2

gt

)

), we defined

the topology distance based on Bhattacharyya distance

which measures the difference between two probability dis-

tributions as dB(p, pgt)=−ln
(

∫ √

p(∆t)pgt(∆t) d∆t
)

. If

there are multiple links in the camera network, we measure

each evaluation metric for all links and average them to get

the final topology distance.

5.1. Camera Network Topology Training Results

CAM-to-CAM topology inference result

For all of camera pairs, we illustrate a color map of esti-

mated CAM-to-CAM connectivity confidence in Fig. 5 (a).

Each row and column indicate the index of the camera.

When the confidence value is greater than θconf , we regard

the corresponding camera pair as a valid link. As a result,

the valid camera links are drawn as Fig. 5 (b). Each vertex

indicates the index of the camera and valid links are repre-

sented by edges. Unfortunately, CAM6 failed to be linked

to CAM5. That is because the size of the person image

patches is very small due to far distance from the camera;

therefore it is hard to distinguish the appearances of people.

In addition, CAM6 is quite isolated from other cameras.

Camera topology training results

Figure 6 (a) represents the accuracy of person re-id in

each of proposed training steps such as CAM-to-CAM,

Zone-to-Zone, and iterative update steps (Sec. 3.2.1–3.2.3).
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Figure 6. Results of the person re-identification through the

camera topology training (with iteration).

The accuracy of person re-id is 28.54% at the beginning,

but it is consistently improved by using inferred and re-

fined camera topology information. As a result, our method

reaches 62.55% accuracy at the last step of the topology

training. In addition, it took only 112.46 seconds to conduct

both person re-id and camera topology inference tasks with

a large number of people in the nine cameras (using Intel

i7 CPU in MATLAB). Figure 6 (b) shows the comparison

with a conventional approach which fully compares multi-

ple appearances between people and exhaustively searches

the correspondences of people between the entry/exit zones

without using camera topology information. It shows lower

performance (52.06% person re-id accuracy) compared to

the proposed method, and moreover it takes much more

Table 2. Valid Zone-to-Zone links and ground-truths.

Exit Entry µ µgt σ σgt Exit Entry µ µgt σ σgt

C1,Z1 C2,Z5 34.4 34.7 6.25 6.04 C2,Z5 C1,Z1 40.4 40.4 7.62 5.93

C2,Z2 C3,Z1 36.7 36.3 8.03 5.79 C3,Z1 C2,Z2 37.6 37.0 10.3 8.90

C3,Z2 C5,Z6 -0.42 -0.57 3.49 3.23 C5,Z6 C3,Z2 0.70 1.59 3.43 2.32

C3,Z3 C7,Z3 4.8 4.3 4.8 3.5 C7,Z3 C3,Z3 3.75 4.68 2.16 3.04

C4,Z4 C5,Z2 30.2 30.1 13.4 12.5 C5,Z2 C4,Z4 39.5 28.6 3.82 14.8

C7,Z1 C8,Z2 28.2 28.4 21.3 6.36 C8,Z2 C7,Z1 31.9 30.0 2.41 4.02

C8,Z1 C9,Z2 11.6 11.7 4.82 4.24 C9,Z2 C8,Z1 10.5 10.5 4.03 4.08

time (337.27 seconds) than ours.

A list of valid Zone-to-Zone links inferred by the pro-

posed methods is summarized in Table. 2, and the overall re-

sults of our method are close to ground-truth N
(

µgt, σ
2

gt

)

.

The previous methods [8, 22, 23] showed unclear and noisy

distributions for both valid and invalid links as shown in

Fig. 7 (a-c). On the other hand, our results are very similar

with the ground truth (Fig. 7 (d-e)).

5.2. Person Reidentification Test Results

Based on the inferred camera topology in the training

stage, we conducted person re-id for the remaining se-

quence and compared with two different approaches. The

first approach estimates the camera topology based on Ex-

haustive search in the training stage (11:20 – 12:20) and

uses the inferred topology for the re-id test (12:21 – 13:20).

Note that this approach exploits inferred topology but still

fully compares multiple appearances of people to find corre-

spondences in the test stage. The second approach based on

True matching estimates the camera topology using ground

truth re-id pairs in the training stage and perform the re-id

test in the same way with our method. As shown in Table. 3,

the performance of our re-id test is comparable to that of

True matching. Our method also outperforms Exhaustive

search in terms of both re-id and topology accuracies. It

supports that our iterative topology update and re-id meth-

ods are effective and complement each other.
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Table 3. Performance comparison in training & test stages.

Training stage Test stage

Re-id acc Top dist Re-id acc

Exhaustive 52.1 % 5.620 65.6 %

Ours 62.5 % 0.076 72.3 %

True matching 100 % 0 75.6 %

6. Conclusions

In this paper, we proposed a unified framework to au-

tomatically solve both person re-id and camera network

topology inference problems. Besides, in order to vali-

date the performance of person re-id in the practical large-

scale surveillance scenarios, we provided a new person re-

id dataset called SLP. We qualitatively and quantitatively

evaluated and compared the performance of the proposed

framework with state-of-the-art methods. The results show

that the proposed framework is promising for both person

re-id and camera topology inference and superior to other

frameworks in terms of both speed and accuracy.
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