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Abstract

Domain Adaptation (DA) exploits labeled data and mod-

els from similar domains in order to alleviate the annota-

tion burden when learning a model in a new domain. Our

contribution to the field is three-fold. First, we propose a

new dataset, LandMarkDA, to study the adaptation between

landmark place recognition models trained with different

artistic image styles, such as photos, paintings and draw-

ings. The new LandMarkDA proposes new adaptation chal-

lenges, where current deep architectures show their limits.

Second, we propose an experimental study of recent shallow

and deep adaptation networks, based on using Maximum

Mean Discrepancy to bridge the domain gap. We study dif-

ferent design choices for these models by varying the net-

work architectures and evaluate them on OFF31 and the

new LandMarkDA collections. We show that shallow net-

works can still be competitive under an appropriate feature

extraction. Finally, we also benchmark a new DA method

that successfully combines the artistic image style-transfer

with deep discrepancy-based networks.

1. Introduction

Domain adaptation (DA) has recently received a lot of

attention in computer vision (see [6] for a comprehensive

survey). Early DA models such as manifold-based feature

augmentation [14, 15], feature space alignment [9, 26] and

unsupervised feature transformation [24, 2, 22] exploit di-

rectly the data distribution in the source and target domains

without the class labels; they build cross-domain represen-

tations that allow models learned with the labeled source

data be suitable to classify instances in the target domain.

Recently, deep learning methods allowed a significant

improvement of the categorization accuracy over the state-

of-the-art solutions. Furthermore, it was shown that features

extracted from the activation layers of the deep CNNs can

be re-purposed to novel tasks [8] even when the new tasks

differ significantly from the task originally used to train the

model. The OFF31 dataset, frequently used to study the DA

case, contains images similar to the ImageNet images usu-

ally used to train the CNN models. Therefore training or

fine-tuning a classifier on the source with these features of-

ten performs well on the target domain even without specific

adaptation [4, 26]. This is not anymore true when we want

to reuse features/models between domains with important

domain differences such as e.g. photos and paintings, draw-

ings, clip art or sketches [19, 5, 3, 33]; hence the need for

DA becomes more crucial.

On one hand, deep CNN architectures can be used as fea-

tures extractors and shallow DA methods applied on source

and target sets represented by these features [8, 26, 7, 25].

On the other hand, recently deep learning architectures

have been designed for DA. These methods in general fol-

low a Siamese architectures with two streams, representing

the source and target models, and combine classification

loss with DA specific losses. These include discrepancy

loss [32, 21, 13, 27, 23], confusion loss [30], inverted label

GAN loss [31] or integrates a gradient reversal layer into

the standard architecture to promote features discriminative

for the task and invariant with respect to the domain [10].

In this paper we focus on discrepancy-based adapta-

tion networks for unsupervised DA. We propose a compar-

ative experimental study of various shallow (SDAN) and

deep (DDAN) architectures, under different weight sharing

strategies and discrepancy choices.

To challenge these methods with stronger domain differ-

ences than in the OFF31 dataset, we propose a new dataset

called LandMarkDA that contains photos, paintings and

drawings of 25 landmark places and monuments around the

world such as Eiffel Tower or Machu Pitchu (see Figure 1).

To further study the role of image style change between

domains and the possibility of model adaptation between

them, we propose a method that successfully combines

DDAN with artistic image style-transfer [11, 12].

To summarize, the paper brings the following contribu-

tions: (1) a comparative experimental study of SDAN and

DDAN models, under different weight sharing strategies

and various marginal and joint discrepancies between the
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Figure 1. Examples from the LandMarkDA dataset. Each line cor-

responds to one image modality (domain) and each column refers

to one landmark (class).

domains; (2) a new DA dataset to evaluate adaptation of

landmark recognition model between photos, paintings and

drawings; and (3) a new DA method that combines DDAN

with artistic style-transfer between images.

The remainder of the paper is organized as follows. In

section 2 we describe the SDAN and DDAN models as

well as marginal and joint distribution discrepancies used

by these models. Then, in section 3 we present an artistic

style-transfer based DDAN. We report experimental results

and our findings in section 4 and we conclude in section 5.

2. Discrepancy-based adaptation networks

2.1. Deep Networks (DDAN). We consider Deep

Discrepancy-based Adaptation Networks (DDAN) as the

set of two stream Siamese deep networks (see an example

in Figure 2), with the streams representing the source and

target models, and the model is learned using a combina-

tion of class prediction loss with a discrepancy loss based

on the Maximum Mean Discrepancy (MMD) criterion [17].

The models proposed in [32, 21, 27, 23] are different vari-

ants of the DDAN family.

2.2. Shallow Networks (SDAN). As an alternative to

deep architectures, shallow networks (1-layer) can also be

considered for domain adaptation as in [13]. The Shal-

low Discrepancy-based Adaptation Network (SDAN) is a

Siamese architecture (see Figure 3), where source and tar-

get streams are shallow networks built on image representa-

tions, each with a fully connected layer corresponding to the

transformation learning (latent feature layer X̂) and with a

corresponding class prediction layer Ŷ.

SDAN is built directly on vectorial image representa-

tions similarly to standard shallow DA methods [24, 2, 7].

As such, it is independent from the feature extraction pro-

cess and can be applied to any type of data allowing vecto-

rial representation.

2.3. Variants of Maximum Mean Discrepancy. The

MMD is an effective non-parametric criterion that com-

Figure 2. Diagram of the DDAN built on the GoogleNet Inception

V3 model (denoted by GNet). The discrepancy loss is defined

between either class prediction layer, activation layers or both.

pares the distributions of two sets of data. Let Xs =
{xsi}, i = 1, . . . , Ns, and Xt = {xti}, j = 1, . . . , Nt be

the sample sets from distributions pX = P (Xs) (source)

and qX = P (Xt) (target), respectively.

In DA, the goal is to minimize the discrepancy between

marginal distributions p and q to reduce the domain shift.

In practice, this is done by estimating MMD by the square

difference between two empirical kernel mean embeddings:

DMMD =

∥∥∥∥∥
1

N

Ns∑

i

φ(xsi )−
1

M

Nt∑

i

φ(xti)

∥∥∥∥∥

2

F

,

where φ(·) ∈ F is the mapping of X to the RKHS, and

k(·, ·) = 〈φ(·), φ(·)〉 is the universal kernel associated with

this mapping.

The MMD between the marginal distributions has been

extended in [23] to joint distributions P (X,Y). The JDD

measures the discrepancy between two joint distributions

p = P (Xs,Ys) and q = P (Xt,Yt) as squared dis-

tance between the corresponding kernel embeddings, where

Ys = {ysi }, i = 1, . . . , Ns, and Yt = {yti}, j = 1, . . . , Nt
contain binary labels or class predictions corresponding to

Xs and Xt, respectively. Its empirical estimate, denoted by

DJDD, is given by:

∥∥∥∥∥
1

Ns

Ns∑

i

φ(xsi )⊗ ψ(ysi )−
1

Nt

Nt∑

i

φ(xti)⊗ ψ(ysi )

∥∥∥∥∥

2

F⊗G

,

where ψ(·) ∈ G is the mapping of Y to the RKHS.

3. Style-transfer for domain adaptation

One major motivation of this paper is to cope with adap-

tation when we have different artistic image styles such as

photos, paintings and drawings. In addition to evaluating

various SDAN and DDAN models on the LandMarkDA

dataset, we also design a new DA method based on recent

artistic style-transfer methods [11, 12, 18].
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Figure 3. Diagram of SDAN built on the features extracted from

the Prelogit layer of GNet (X). The discrepancy loss is defined

between either the class prediction layers (Ŷ), the latent feature

layer (X̂) or both (see details in section 2.3.).

The main idea is the following. We consider a set of

labeled source images, for example Photos, on which we

train a source model. The aim is to adapt this model to

target Paintings or Drawings for which the labels are not

available. Given a source-target image pair, we can apply

an artistic style-transfer method [11, 12] to generate a new

style-transfered source image with the semantic content un-

changed but the artistic style borrowed from the target im-

age1

As the style-transfer is completely unsupervised, a new

image can be generated from any source-target pair of im-

ages (see examples in Figure 4). The generated images in-

heriting the label from the source images, form a new la-

beled ”source” set, called style-transferred (ST) source set

that can be used to train or refine the model for the target

set. As experiments in Section 4 show, these new models

outperform significantly the fine-tuned or DA based models

obtained with the original source data.

4. Experimental Results

4.1. Datasets. First, in our experiments we consider the

Office 31 (OFF31) [14] dataset as it is the most used to eval-

uate visual DA methods. We also propose a new DA dataset,

called LandMarkDA2, created to assess how DA methods

can cope with adaptation of landmark recognition models

between domains such as Photos (Ph), Paintings (Pt) and

Drawings (Dr). The dataset contains images of 25 differ-

ent touristic landmark places (classes) such as The Eiffel

Tower, Golden Gate, The Statue of Liberty, Taj Mahal (see

Figure 1). The dataset includes in average 60 images per

class and modality, in total about 1500 per modalities.

4.2. Features. We consider several deep architectures

pretrained on ImageNet, such as AlexNet (ANet), VG-

1Note that the method works also well with a small accuracy decrease if

we use random images corresponding to the target style, such as paintings

or photos, but not necessarily the target images.
2The dataset is available at https://www.researchgate.

net/publication/319208011_LandMarkDA_domain_

adaptation_dataset.

Figure 4. Style-transfered (ST) examples. The source image (left)

provides the content, the unlabeled target image (middle) the artis-

tic style. The resulting ST source image (right) inherit the label

from the source, but is closer in artistic style to the target images.

GNET (VNet), ResNet50 (RNet) and GoogleNet Inception

V3 (GNet) as feature extractors. The output activations of

the fully connected layer fc6 is considered for ANet and

VNet, and the activations of the last fully connected layer

(PreLogit) preceding the class prediction layer (Logit) in

the case of RNet and GNet. In what follows, we use the no-

tations ANet, VNet, RNet and GNet both to design the deep

models as well as the considered activation features. Note

that SDAN can be applied to any vectorial representation. In

addition, we consider the Regional Maximum Activations

of Convolutions (RMAC) [29] model trained on ImageNet

as well as fine-tuned (RMAC-FT) on a large Landmark re-

trieval (LandmarkRet) dataset [1] and the Learned RMAC

(LRMAC) model [16] trained in an end-to-end manner on

the LandmarkRet using a ranking loss within a three-stream

Siamese network. These models were used as black box

feature extractors, and the features were used only to per-

form the SDAN experiments. The original RMAC was also

used in the case of OFF31.

4.3. Discrepancy. When we compute the empirical esti-

mates of the discrepancies, we consider for both classes of

functions F and G, a set of Gaussian kernels [13, 21, 23].

We experiment with the marginal MMD between the activa-

tion layers X̂ (the corresponding discrepancy loss denoted

by MMD-X) and between class predictions Ŷ (MMD-Y).

In addition to considering them individually, we compare

their sum (MMD-XY) to the corresponding joint discrep-

ancy (JDD-XY). In all cases, we use an average of Gaussian

kernel embeddings with the following range of σ values:

kφ(xi,xj) = 1/9
∑

8

m=0
e−‖xi−xj‖/10

m

and kψ(yi,yj) =

1/4
∑

0

m=−3
e−‖yi−yj‖/10

m

.

4.4. Experimental Setup. Both SDAN and DDAN are

initialized by training independently the source stream (up-
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Figure 5. Fine-tuning GNet up to inception block 7c, 7d, etc. or

training only the classifier layer (Lg) on source.

per parts in Figures 2 and 3)with the source data using cross-

entropy loss only. Then both streams in the Siamese archi-

tecture are initialized with the weights of the source network

and the model weights are learned with the union of the la-

beled source and unlabeled target set. This is done by error

back-propagation based on the average between the cross-

entropy loss on the source data and the discrepancy loss

defined between the source and target sets. We compared

different discrepancy losses MMD-X, MMD-Y, MMD-XY

and JDD-XY (see definitions above).

To evaluate a particular architecture, we train the model

several times, using a predefined number of iterations (early

stopping criteria) and average their results. We used the

overall classification accuracy as evaluation measure. If not

explicitly mentioned, results are averaged over all source-

target configurations of a dataset.

4.5. Fine-tuning on the source domain. First, we eval-

uate how pre-trained ImageNet models, fine-tuned on the

source set perform on the target. This can be seen as a base-

line which uses no adaptation to the target (NA). Note that

previous studies on deep model fine-tuning were done in

the context of image categorization, i.e. the training and test

sets come from the same domain. The DA case is different

from it because the model is fine-tuned on one domain and

tested on another one. Additional difficulty in the case of

unsupervised DA is that no labels are available to select the

parameters using cross validation and cross validating the

parameters on the source often works poorly (probably due

to over-fitting on the source).

In this paper we mainly focus on GoogleNet [28], as it

yields much better results than AlexNet or VGGNet and as

it was less studied in the context of DA. We experimented

with fine-tuning3, the whole ImageNet model, fine-tuning

part of it (e.g. up to inception block 7a) or training only the

3We used tensorflow implementation and pre-trained model

from https://github.com/tensorflow/models/tree/

master/slim with 10K batches of 128 images, a momentum of 0.9 and

initial learning rate of 0.1 with a decay of 0.95.

Figure 6. SDAN results on the OFF31. using different image rep-

resentations described in Independently of the image representa-

tion used (see section 4.2), SDAN outperforms the baseline with-

out adaptation (BL-NA). However, while the gain over BL-NA

using SDAN-MMD-X is relatively small, SDAN-JDD-XY signif-

icantly outperformed both.

Logit layer. We denote any model by the layer up to which

the model was fine-tuned: e.g. FT(7a) means that all layers

preceding the inception block 7a were frozen and the others

including 7a were fine-tuned. FT(all) means that all layers

were fine tuned.

In the case of OFF31, the best results were obtained ei-

ther with FT(Lg) or FT(7c). The main reason is that im-

ages in OFF31 are similar to ImageNet and the main focus

should be on the classifiers and not on the features. In the

LandMarkDA dataset, where both the images and tasks are

different from the ImageNet, we observe a very different

behavior. We show our results in Figure 5. From these re-

sults we can see that in general the accuracy increases with

the number of layers fine-tuned, but after a while the gain

becomes less important while the training cost continues to

increase and we might even observe a slight decrease.

4.6. Comparison of SDAN architectures. First, prelim-

inary experiments have shown that results with non shared

parameters, i.e. using domain specific transformations and

classifiers (Ws 6= Wt and Bs 6= Bt in Figure 3) were in

general similar or below the results obtained with shared pa-

rameters4 (Ws 6= Wt and Bs 6= Bt). Therefore, we only

consider here SDAN with shared parameters.

Willing to compare different discrepancy choices, we

consider a variety of feature representations, for OFF31 and

LandMarkDA. We show results averaged over all source-

target pairs in Figures 6 and 7, respectively. For the sake of

better visualization, we only show the results for MMD-X

and JDD-XY, as JDD-XY performed on average the best,

and MMD-X is similar to the model proposed in [13]. Note

4The latter is strongly related to feature transformation based shallow

DA methods that learns a common projection of the data into a latent

space where the domain shift is minimized and a cross-domain classifier is

trained in this space using the source set [24, 2, 7]. SDAN combined these

two steps learning the feature transformation and the source classifier si-

multaneously.
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Figure 7. SDAN results on LandMarkDA. Best results are obtained

with SDAN-JDD-XY which significantly outperforms both BL-

NA and SDAN-MMD-X independently of the image representa-

tion used (see section 4.2).

that MMD-Y (not shown) outperforms MMD-X, suggest-

ing that minimizing the discrepancy between class predic-

tions is more important than minimizing the discrepancy be-

tween the latent features. Nevertheless, they complement

each other within MMD-XY or JDD-XY.

These models are compared to the following baseline.

We consider the pretrained source stream (the upper part of

SDAN in Figure 3), used to initialize the target stream in

SDAN, and evaluate it on the target set. This model, de-

noted by BL-NA, is trained only on the source without any

adaptation to the target. From the results in Figures 6 and

7, we can see that both SDAN-MMD-X and SDAN-JDD-

XY are able to take advantage of the unlabeled target data

with, SDAN-JDD-XY performing much better than SDAN-

MMD-X.

Finally, we compare the OFF31 results to shallow meth-

ods using deep features reported in the literature. These

methods use in general DeCAF6 features, which are the

same as our ANet features except an L2 normalization. Us-

ing these features, [26] reports an average of 62.2% with-

out adaptation (NA-fc6), 49.1% using GFK [14] or SA [9],

50.9% using TCA [24] and 64% using CORAL-fc6 [26].

First, we can observe that both our BL-NA baseline (67.8%)

and SDAN-JDD-XY (71.3%) perform significantly better

than these shallow methods. The SDAN-JDD-XY performs

similarly to several deep DA architectures such as DDC [32]

(70.6%), DeepCORAL [27] (72.1%), DAN [22] (72.9%)

but remain below JAN-xxy [23] (76%).

4.7. Comparison of DDAN architectures. In our DDAN

experiments we mainly focus on the GNet model, and

we initialize the two streams in the Siamese architecture

with the best fine-tuned models, i.e. FT(7c) for OFF31 and

FT(6a) for LandMarkDA. Then the model is trained with

batches of source and target instances where the error back-

propagation relies on both the source cross-entropy loss and

the discrepancy loss.

As best performances were obtained in general with

JDD-XY, we only consider DDAN-JDD-XY compared to

Figure 8. OFF31 results based on GNet. DDAN performs similarly

to SDAN built on the features extracted from the PreLogit layer

and both outperforms FT.

SDAN-JDD-XY. We refer to them as DDAN and SDAN. To

compute the JDD-XY discrepancies we consider the PreL-

ogit layer as X̂ and the Logit layer as Ŷ. Note that we ran

complementary experiments where we added to this loss

the discrepancies defined between other layers. On one

hand, we tried to add JDD-XY defined between the aux-

iliary PreLogit and auxiliary Logit layers, but the gain com-

pared to the cost was relatively small. On the other hand,

when we added discrepancies using additional activation

layers either as MMD-X or JDD-XY (combined with the

Logit layer), the gain was higher but it came with a signifi-

cant extra cost. Therefore, we believe that considering only

the JDD-XY defined with the PreLogit and Logit layers is a

good compromise between accuracy and cost.

We ran another set of experiments to compare weight

sharing strategies. We observed that letting the parameters

in the two branches to be domain specific, yields 1-2% of

accuracy increase in average on LandMarkDA compared to

the shared case, but affects little the OFF31 results, prob-

ably because most layers were initialized with the same

weights and frozen during the training. Hence, in contrast

to SDAN, DDAN results below were obtained with the non-

shared case.

From results for the OFF31 shown in Figure 8 we see

that DDAN (84.2%) built on FT(7c) performed better than

FT (80.7%) and similarly to SDAN using the GNet fea-

tures (84.9%). We have already observed that FT(7c) per-

formed similarly to FT(Lg) where only the source classifier

is learned. All this suggests that in the case of OFF31 the

”domain shift” can be solved by using strong deep archi-

tectures pretrained on ImageNet as feature extractors com-

bined with shallow DA methods.

In case of LandMarkDA, after initializing the two

streams with FT(6a), we trained different models, varying

the amount of layers in the two streams we selected to freeze

during the training, i.e. we update the parameters in the

model up to inception block 7c, 7a, 6d or 6a, respectively.

What we observed was that while updating more layers was

beneficial, in general it was sufficient to focus on the few
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Figure 9. LandmarkDA results based on GNet model. Deep mod-

els (FT and DDAN) significantly outperformed SDAN trained on

the GNet features, but SDAN with feature from the fine-tuned

model performed similarly to to DDAN(6a-7c). Best results were

obtained with DDAN(6a-6d).

last inception blocks. Close to best results were obtained

with DDAN(6a-6d), where FT(6a) was used to initialize the

two streams of the DA model, then the parameters were

updated in both streams up to inception block 6d included

without sharing those weights5.

From the results shown in Figure 9, we can see that the

deep models, both FT(6a) and DDAN, perform significantly

better than SDAN and the gain from FT to DDAN is always

important. In addition we can observe that DDAN(6a-6d)

outperforms significantly DDAN(6a-7c) meaning that go-

ing deeper in adaptation was beneficial. Finally, we also

considered the features extracted from the fine-tuned model

FT(6a) and used in combination with SDAN. While the re-

sults were below DDAN (6a-6d), the method performed

similarly to DDAN (6a-7c) and better than FT(6a). This

means that fine-tuning the deep model on the source and

combining it with shallow method is a good and lower cost

alternative to the deep DA model6.

4.8. Style-transfer based DA. Finally, we evaluate the

artistic style transfer based preprocessing described in sec-

tion 3 on the LandMarkDA dataset. While it is possible

to generate a style transfered (ST) image from all source-

target pairs; instead, we generate only a single image for

each source instance, for which we select randomly a target

image (which in general is from a different class than the

source) and we transfer the artistic style of this target image

to the source (see examples in Figure 4). This new set of

images is referred as ST-source.

We consider the GNet based models FT(6a) and

DDAN(6a-6d) trained similarly as above, but instead of us-

5Note that the weights preceding the block 6d are shared and the

weights preceding 6a are the ones from the Imagnet model.
6Note that similar behavior can be observed if we compare

CORAL [26] results obtained with (69.4%) or without (66.9%) fine-tuned

features and the results of DeepCORAL [27] (72.1%).

ing the the original source set we used the ST-source set. We

did this for the configurations Ph→Pt and Ph→Dr. In both

cases we observed significant improvements compared to

the case when the original source set was used. In the case

of DDAN we get 89.4% on Pt and 91.1% on Dr instead of

85.2% respectively 83.5%. More surprisingly, fine-tuning

on the ST-source set outperformed DDAN trained on the

original source set (as we obtain 86.9% on Pt and 83.9%

on Dr) confirming that with the style-transfer the shift be-

tween the domains was already significantly reduced. The

results confirm experimentally the findings in [20] where it

was shown that the artistic style transfer can be casted as

domain adaptation with a specific MMD. Indeed, as the ST-

source and the target set share the same style, the problem

is reduced to transfer of knowledge on image content (i.e.

the related category labels).

4.9. Findings. First, given a deep architecture, best re-

sults in general are obtained with deep DA models, how-

ever using a fine-tuned deep model as feature extractor com-

bined with SDAN is a good compromise between accuracy

and computational cost. Note that for any representation,

SDAN remains a low cost solution that allows improvement

over baselines obtained without adaptation.

Second, while we observed the importance to minimize

the discrepancy on the class predictions, the data in both

datasets is relatively uniformly distributed over the classes.

Therefore, we run recent experiments with modified distri-

butions and observed a drop both in MMD-Y and JDD-XY

compared to MMD-X. This suggests that for datasets with

unbalanced data, MMD-X remains a safer option.

Third, in the case of DDAN, while considering several

activation layers in the discrepancy space might improve

the results, the gain remains low compared to the high addi-

tional cost. Also we found that while sharing weights per-

formed better for SDAN, allowing DDAN to learn domain

specific weights was in general beneficial.

Finally, we have seen that transferring the target style to

source images and using them to fine-tune the GNet model

allowed a better adaptation to the target than DANN us-

ing the original source set. Using ST-source set to train the

DDAN allows to further improve the results.

5. Conclusion

In this paper we proposed a comparative experimental

study for DA by comparing for both shallow and deep adap-

tation networks different deep architectures and discrepan-

cies. These models were tested on a standard DA dataset,

and on a new DA dataset we proposed. In addition, for

the landMarDA dataset, we have shown that applying artis-

tic style-transfer from random target images to the source

set reduces significantly the domain shift yielding to further

improvements.
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