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Abstract

In the era of deep learning, many domain adaptation

studies have been done on RGB images but not on depth.

One of the reasons is that there are few databases available

for researchers to explore domain shift on depth images.

The contribution of this paper is to provide a benchmark to

the community to study and evaluate deep domain adapta-

tion methods on depth images, and compare the results with

those obtained on the corresponding RGB data. We use two

variants dataset that follow the settings from the first intro-

duced RGB-D object dataset with 51 categories taken from

multiple views. We also explore different colorization meth-

ods for depth images such as Colorjet and DE2CO[3]. The

experiments are conducted on several deep domain adap-

tation approaches on RGB and depth images. Our results

show that current deep DA methods can work well for RGB

images but how to tackle the domain shift problem on depth

is still an open question.

1. Introduction

The ability to recognize objects across different visual

domains is essential for the use of computer vision technol-

ogy in a wide range of applications, from autonomous vehi-

cles to intelligent security systems to service robotics. Tra-

ditionally, the visual information is considered in the form

of RGB images, and indeed almost all of previous work has

focused on this type of visual information[18, 10, 11, 6, 4].

Still, depth is an equally important source of perceptual in-

formation, especially in robotics and autonomous systems

where artificial agents are expected to move and act in the

environment. This topic is at the moment less investigated,

due to the lack of a suitable database supporting a system-

atic study of the domain adaptation problem on depth.

This paper fills this gap, presenting a new testbed for

depth domain adaptation. We started from the Washing-

ton Database[9], one of the most popular existing RGB-

D databases supporting object categorization, and we ac-

quired two new versions of it in two different domain, the

Institute for Artificial Intelligence at Bremen University and

the VANDAL Laboratory at the Sapienza Rome University,

acquired in the city of Latina. The two new acquisitions

preserved the exact same object categories contained in the

Washington database, but the statistic of the objects per cat-

egory, and the acquisition protocol changed for the two do-

mains, hence leading to a tangible shift across domains.

Upon acceptance of the paper, the new databases, together

with all the scripts necessary to replicate our experimental

setup, will be made available to the community.

To assess the data, we performed a benchmark evalua-

tion, selecting five deep domain adaptation algorithms that

can be considered as representative of the current research

trends in the domain adaptation community, as well as le-

gitimate ’off-the-shelf’ state of the art choices [20]. This

opens the question of how to use algorithms designed and

trained so to work on RGB images (hence concretely build-

ing over deep networks pre-trained over ImageNet [5]) on

depth images. To address this issue, we leveraged over re-

cent trends in the robot vision community and mapped the

depth images into 3 channel images, hence mimicking a sort

of colorization [3].

Our results show that (a) algorithms obtaining the best

performance on RGB data do not maintain their edge on

the depth modality, and (b) a straightforward combination

of results obtained over RGB and depth images does not

achieve strong results. These two findings clearly call for

a research effort specifically targeted at deep depth domain

adaptation. The rest of the paper is organized as follows:

section 2 introduces the databases, the colorization meth-

ods adopted in the paper, and the deep domain adaptation

algorithms we chose for our benchmark. Section 3 reports

our experimental results.

2. Methods

2.1. Dataset

We use the Washington dataset [9], the Bremen variant,

and the Latina dataset. In figure 1 we show a few images

from each.
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Dataset Apple Coffee Mug Flashlight Greens Soda Can Toothpaste

Washington

Bremen

Latina

Figure 1. Images of six categories from each dataset.

Washington It contains 300 objects organized in 51 cate-

gories1. For each object, there are three turntable sequences

captured from different camera elevation angles (30◦, 45◦,

60◦). The sequences were captured with an ASUS Xtion

Pro Live camera in both RGB and depth channels. The

dataset provides an object segmentation based on depth and

color. Since two consecutive views are extremely similar,

only 1 frame out of 5 is used for evaluation purposes [2].

Bremen The Bremen variant, captured in collaboration

with and at the Bremen Institute for Artificial Intelligence,

has the same 51 classes used in Washington, with one object

instance per class. Data was collected using an Asus Xtion

Pro kept at 1m distance from the objects. Items where posi-

tioned on a turntable and a full sequence, containing around

171 images, was captured at angles of 30◦, 45◦ and 60◦.

Both RGB and Depth was recorded.

Latina The dataset has 51 categories with a total of 301

objects. The dataset is collected using a wearable device

developed by the Cognitive Robotics Laboratory ALCOR

at DIAG, Sapienza Rome University. The device used here

is a Gaze Machine, a head mounted device composed of

four cameras [12, 14]. The dataset is a collection of 35 im-

ages for each object with varies of 11 degrees angle per two

consecutive images.

Description Washington Bremen Latina

Number Of Class 51 51 51

Total Images 207920 26248 9874

Instances per Category 3-14 1 3-14

Table 1. Dataset summary

Latina is the smallest dataset among all databases and

Bremen has only one instance for each category (Table 1).

2.2. Colorization Methods

RGB-D object recognition is a crucial element for real-

world robotics application. RGB images provide informa-

tion about appearance and texture, on the other hand depth

1https://rgbd-dataset.cs.washington.edu/

data contains additional information about object shape and

it is invariant to lighting or color variations. The approach

currently consists of designing ad-hoc colorization method,

where ColorJet has become the off-the-shelf state of the

art colorization approach for depth-based object recognition

[5]. We explore two different approaches used for depth

colorization: shallow and deep depth colorization. Figure 2

shows depth images with three different colorization meth-

ods.

Shallow Depth Colorization: ColorJet The ColorJet

technique [5] works by assigning different colors to dif-

ferent depth values. The original depth map is normalized

between 0-255 values. The first step in colorization is to

map the lowest value to the blue channel and the highest

value to the red channel. The middle value is mapped to

green and the intermediate values are arranged accordingly.

The resulting image exploits the full RGB spectrum, with

the intent of leveraging the filters learned by deep networks

trained on very large scale RGB datasets like ImageNet.

The method shows very strong results when tested on the

Washington database but was not designed to create realis-

tic looking RGB images for the objects depicted in the orig-

inal depth data. This simple method outperformed more

sophisticated approaches, for example a method proposed

by Schwarz et al. [16]. Hence, we prefer to use ColorJet in

our experiments.

Deep Depth Colorization: (DE)2CO The method [3]

tries to feed the depth maps, normalized into grayscale im-

ages, to a colorization network linked to a standard CNN

architecture, pre-trained on ImageNet. The architecture

uses 1×228×228 input depth map (i.e. grayscale image),

reduced to 64×57×57 size by convolutional and pooling

layer, passes through a sequence of 8 residual blocks, com-

posed by 2 small convolutions with batch normalization

layer and leackyReLu as non linearities. The last residual

block output is convolved by a three features convolution to

form the 3 channels image output. Its resolution is brought

back to 228×228 by a deconvolution (upsampling) layer.
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Dataset Grayscale ColorJet DE2CO Grayscale ColorJet DE2CO

Washington

Bremen

Latina

Figure 2. Grayscale, ColorJet, and DE2CO colorization methods on apple and coffee mug classes.

2.3. Algorithms

We use recently published deep domain adaptation meth-

ods to assess the performance of the algorithms on depth

and RGB images.

DDC The method [18] was designed to minimize the dis-

tance between source and target distributions, it trained

a classifier on the source labeled data and applied them

directly to the target domain with minimal loss in accu-

racy. To minimize the distance, the authors use the stan-

dard distribution distance metric, Maximum Mean Discrep-

ancy (MMD). This distance is computed with respect to the

source and target data points. Minimizing the distance be-

tween domains (or maximizing the domain confusion), the

method has a strong classification representation and uses

MMD to decide which layer to use activations from to min-

imize the domain distribution distance. This representation

can be used to train another classifier for the classes that we

are interested in recognizing.

DAN Long et al. [10] proposed a method to bound the

target error by the source error plus a discrepancy metric

between the source and the target. The method uses the

multiple kernel variant of MMD (MK-MMD) [7], which is

formalized to jointly maximize the two-sample test power

and minimize the failure of rejecting a false null hypothesis.

The method fine-tunes CNN on the source labeled exam-

ples and requires the distributions of the source and target

to become similar under the hidden representations of fully

connected layers fc6-fc8. This can be established by adding

an MK-MMD based multi-layer adaptation regularizer to

CNN risk. With DAN optimization framework, we learn

transferable features from a source domain to a related tar-

get domain. The learned representation can both be salient

benefiting from CNN and unbiased thanks to MK-MMD.

RTN The focus of RTN [11] is to reduce the mismatches

in both features and classifiers by fixing the joint adaptation

of features and classifiers. Classifier adaptation is more dif-

ficult than feature adaptation because it is directly related

to the labels but the target domain is fully unlabeled. Deep

features must eventually through transition from general to

specific along the network and the transferability of features

and classifiers will decrease when the cross-domain discrep-

ancy increases [19]. In other words, the shifts in the data

distributions linger even after multilayer feature abstrac-

tions, therefore the feature distributions need to be adapted

on multiple layers across domains. As feature adaptation

cannot remove the mismatch in classification models, RTN

performs classifier adaptation using a residual function. The

residual networks are used to bridge the inputs and outputs

of the residual layers by the identity mapping which is sim-

ilar to the perturbation function across the source and target

classifiers.

GRL The method proposed by Ganin and Lempitsky [6]

focuses on optimizing the features as well as two discrim-

inative classifiers operating on: the label predictor and the

domain classifier. The label predictor predicts class labels

and is used both during training and at test time. The do-

main classifier discriminates between the source and the tar-

get domains during training. While the parameters of the

classifiers are optimized in order to minimize their error on

the training data, the parameters of the underlying deep fea-

ture mapping are optimized in order to minimize the loss of

the label classifier and to maximize the loss of the domain

classifier. During the forward propagation, GRL behaves

as an identity transform. However during the backpropa-

gation, GRL takes the gradient from the subsequent level,

multiplies with a constant and passes it to the preceding

layer. Implementing the layer using existing object-oriented

packages for deep learning is simple, as defining procedures

for forward-propagation, back-propagation, and parameter

update is trivial.

DIAL The approach tries to couple the training process

and the domain adaptation step within deep neural net-

works, but ignoring the assumption that the domain align-

ment satisfies by applying the same predictor to the source

and target domains [4]. Motivated by [1], the authors as-

sume that the source and target predictors are in general dif-

ferent functions. The common hypothesis couples explicitly
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two predictors, but it is not directly involved in the align-

ment of the source and target domains. The source and tar-

get predictors are implemented as two deep neural networks

being almost identical, however the two networks contain

also a number of special layers, called Domain-Alignment

layers, which implement a domain-specific operation. In

general, when considering channel-wise linear transforma-

tions and a standard normal distribution as reference, DA-

layer can be built from Batch Normalization, concatenate

and split the layers. The outputs of the BNs are then con-

catenated again and fed to the following layer.

3. Experiments

3.1. Setup

We perform evaluations on five different deep do-

main adaptation networks: DDC2, DAN, RTN3, GRL4,

and DIAL5, with three colorization methods. We use

SourceOnly as the lower-bound for testing the target-

domain data (i.e. no domain classifier branch included into

the network). All methods are assessed on all six transfer

tasks B→W, W→B, W→L, L→W, B→L, and L→B.

Depth Colorization We colorize all depth images using

three different methods: Grayscale, ColorJet, and DE2CO.

We include grayscale colorization for our experiments,

which has one color channel, as a baseline for DE2CO

method. The colorized depth images become an input to

the deep domain adaptation networks.

Training The model is trained on 128-sized batches for

both source and target samples. We follow the default

parameters proposed by each algorithm, using total of 60

epochs for all scenarios. We use grid-search for having

the best learning rate {1−5
, · · · , 1−2} on DE2CO. We use

ImageNet pre-trained model for ColorJet and Grayscale

colorization methods and JHUIT-50 pre-trained model for

DE2CO [3]. For Washington dataset, we left out one in-

stance from each object for testing and training [2] but use

all samples for Bremen and Latina. We follow the settings

for the unsupervised deep domain adaptation in our experi-

ments [6].

3.2. Results: Depth Only

First, we show the classification accuracies for depth

channels on different colorization methods. We want to un-

derstand how good the depth images only on the deep do-

main adaptation networks, then we present the results for

the RGB images (Table 5).

2https://gist.github.com/jhoffman/

9a28bcaf354f21ad3169f0679d73f647
3https://github.com/thuml/transfer-caffe
4https://github.com/ddtm/caffe/tree/grl
5https://github.com/ducksoup/autodial

Method B→W W→B W→L L→W B→L L→B

SourceOnly 24.74 35.2 12.45 12.13 4.87 7.25

DDC 29.86 38.4 9.97 15.23 5.19 9.19

DAN 26.73 42.27 11.9 13.21 5.94 8.84

RTN 29.56 41.94 9.23 11.74 5.65 8.83

GRL 32.58 38.82 14.35 14.92 8.97 7.74

DIAL 29.09 39.31 12.2 16.61 7.79 8.57

Table 2. Accuracy on Grayscale using standard unsupervised do-

main adaptation protocol.

Method B→W W→B W→L L→W B→L L→B

SourceOnly 28.02 31.26 10.54 10.45 4.96 7.18

DDC 31.88 42.92 13.28 14.1 5.17 9.54

DAN 31.14 42.81 14.82 14.06 8.07 10.6

RTN 32.67 39.61 15.16 12.16 7.4 10.33

GRL 33.24 42.77 12.22 17.35 7.63 13.77

DIAL 29.45 36.82 15.9 15.47 8.65 11.58

Table 3. Accuracy on ColorJet using standard unsupervised do-

main adaptation protocol.

Method B→W W→B W→L L→W B→L L→B

SourceOnly 29.5 34.4 7.37 8.52 4.45 4.77

DDC 32.21 40.4 8.25 12.07 5.75 10.35

DAN 32.03 42.02 12.82 15.46 5.92 8.06

RTN 33.46 39.03 10.52 14.22 6.88 7.52

GRL 34.08 44.45 14.54 19.28 8.7 11.06

DIAL 35.23 45.04 15.15 13.18 9.74 12.03

Table 4. Accuracy on DE2CO using standard unsupervised domain

adaptation protocol.

We see that DE2CO (Table 4) shows competitive accura-

cies with ColorJet (Table 3), with B→W, W→B, L→W, and

B→L work best with DE2CO. DIAL outperforms all com-

parison methods for DE2CO, while GRL performs slightly

better for ColorJet and Grayscale. Grayscale gives the low-

est accuracies compared to ColorJet and DE2CO, as we ex-

pect to happen to the images with one color channel (Ta-

ble 2). B→L and L→B settings have the lowest accuracy

on depth images for all colorization methods, but only B→L

task on RGB images shows the lowest result comparing to

all tasks (Table 5). For RGB images, DAN and DIAL meth-

ods perform better than other deep networks. Overall, we

see that domain adaptation strategies are an important fac-

tor to reduce the distribution shift between domains, where

the experiments show that deep domain adaptations meth-

ods (i.e. DDC, DAN, RTN, GRL, and DIAL) work better

than SourceOnly even on depth only images.

Method B→W W→B W→L L→W B→L L→B

SourceOnly 35.43 50.92 31.25 24.29 19.5 17.39

DDC 31.58 55.12 30.85 22.05 23.56 25.46

DAN 38.73 59.44 43.03 40.59 33.28 44.02

RTN 35.13 56.19 36.88 37.64 30.3 38.83

GRL 35.39 56.91 34.35 30.36 28.62 38.58

DIAL 34.81 76.17 41.78 35.4 34.56 55.72

Table 5. Accuracy on RGB using standard unsupervised domain

adaptation protocol.
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3.3. Results: Depth+RGB

We extend the experiments by combining the depth and

RGB channels. It is normal to have a better classification

result on RGB channels, as we have clearer RGB images

(Figure 1) than depth images (Figure 2). The idea of the

following experiments is to understand how much improve-

ment we can get when we use both channels. For example,

adding information about object shape to RGB images can

help home robot to differentiate better between soda can and

coffee mug.

We combine both depth and RGB channels by finding

the max value over 51 sized vectors to determine the object

class. This approach can be considered as the high-level

integration scheme [15, 13]. We use this simple approach as

a step stone to understand how to combine different image

channels on deep domain adaptation architectures.

Method B→W W→B W→L L→W B→L L→B

SourceOnly 1.75 2.04 1.64 1.75 1.64 2.04

DDC 32.03 56.06 19.41 27.46 12.34 25.3

DAN 36.81 59.16 35.8 35.79 20.9 38.07

RTN 30.88 56.17 31.05 34.51 20.02 36.64

GRL 34.34 53.73 41.86 32.06 24.77 40.9

DIAL 41.93 75.96 24.52 27.14 24.69 53.39

Table 6. Accuracy on Grayscale+RGB using standard unsuper-

vised domain adaptation protocol.

Method B→W W→B W→L L→W B→L L→B

SourceOnly 1.75 2.04 1.64 1.75 1.64 2.04

DDC 38.92 60.23 25.98 24.27 13.57 28.02

DAN 39.8 62.23 35.91 37.21 22.3 36.08

RTN 37.68 57.62 30.68 35.46 22.36 38.64

GRL 39.17 54.96 40.92 29.29 24.98 40.88

DIAL 47.38 72.25 24.5 26.36 24.08 51.17

Table 7. Accuracy on ColorJet+RGB using standard unsupervised

domain adaptation protocol.

Method B→W W→B W→L L→W B→L L→B

SourceOnly 1.75 2.04 1.64 1.75 1.64 2.04

DDC 45.97 60.9 20.22 28.24 11.84 25.7

DAN 42.33 60.75 33.7 35.75 24.43 36.41

RTN 37.62 56.61 30.51 31.78 21.69 33.39

GRL 41.29 52.87 37.95 32.03 24.29 35.42

DIAL 48.73 77.83 19.25 20.87 24.74 55.89

Table 8. Accuracy on DE2CO+RGB using standard unsupervised

domain adaptation protocol.

From Table 8, we see that B→W achieves more than

10% improvement on DE2CO+RGB comparing the clas-

sification on RGB only (Table 5). However, W→B set-

ting does not show significant improvement, even Color-

Jet+RGB (Table 7) and Grayscale+RGB (Table 6) have

lower accuracy than RGB. The combination of depth and

RGB channels on W→L, L→W, and B→L settings get ac-

curacies below the RGB classification and it occurs on all

Dataset ColorJet DE2CO

Washington

Bremen

Latina

Figure 3. T-SNE visualization of CNN-based features on 51

classes.
ColorJet DE2CO

Figure 4. T-SNE visualization on depth images for Bremen and

Latina dataset

colorization methods. The Grayscale+RGB performs bet-

ter on W→B, W→L and L→B than ColorJet+RGB. The

L→B task on Grayscale+RGB and DE2CO+RGB show rel-

atively same behavior with RGB channel. Overall, we see

at Table 9 that DIAL performs the best on all colorization

methods. In average, combining depth and RGB channels

here does not give the best classification result comparing

to RGB channel. This might happen, where we use the sim-

plest way to combine the depth and RGB channels, by av-

eraging the-fc7 activation of depth and RGB domain adap-

tation networks. There are different ways to combine the

depth and RGB channels where we do not explore further

in our experiments, such as plug-in depth and RGB images

directly to the CNN networks [5, 8] while at the same time

considering the domain shift between domains [17].

We visualize the depth images based on the CNN-

features, where the Latina dataset seems to be denser than

others (Figure 3). When visualizing Bremen and Latina to-

gether, we see that Latina clustered in the center where Bre-

men surrounding it (Figure 4). This might become one of

the reason that the domain adaptation does not work well

for this case. Meanwhile, Washington and Bremen are well

clustered and overlapped with each other (Figure 5). We see

this as a good challenge for further research on deep domain

adaptation problem, specifically to have more complex deep

domain adaptation networks.

4. Conclusions

This paper presents a new benchmark for studying do-

main adaptation on depth images. We collected two
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Method RGB Grayscale ColorJet DE2CO RGB+Graycale RGB+ColorJet RGB+DE2CO

SourceOnly 29.8 16.11 15.4 14.84 1.81 1.81 1.81

DDC 31.43 17.97 19.48 18.17 28.77 31.83 32.15

DAN 43.18 18.15 20.25 19.39 37.76 38.92 38.9

RTN 39.16 17.83 19.55 18.61 34.88 37.07 35.27

GRL 37.37 19.56 21.16 22.02 37.94 38.37 37.31

DIAL 46.41 18.93 19.65 21.73 41.27 40.96 41.22

Table 9. Summary of mean classification accuracy on all domain adaptation scenarios.

ColorJet DE2CO

Figure 5. T-SNE visualization on depth images for Washington

and Bremen dataset

databases that replicate the structure of the Washington

database, and we assess this new domain adaptation testbed

using three different colorization methods and five different

deep domain adaptation approaches. Our results show that

domain alignment in the depth space is a challenging and

open problem, calling for specific research efforts by the

community.
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