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Abstract

In this work, we propose a novel method to learn the

mapping to the common space wherein different modalities

have the same information for shared representation learn-

ing. Our goal is to correctly classify the target modality with

a classifier trained on source modality samples and their

labels in common representations. We call these represen-

tations modality-invariant representations. Our proposed

method has the major advantage of not needing any labels

for the target samples in order to learn representations. For

example, we obtain modality-invariant representations from

pairs of images and texts. Then, we train the text classifier

on the modality-invariant space. Although we do not give

any explicit relationship between images and labels, we can

expect that images can be classified correctly in that space.

Our method draws upon the theory of domain adaptation

and we propose to learn modality-invariant representations

by utilizing adversarial training. We call our method the

Deep Modality Invariant Adversarial Network (DeMIAN).

We demonstrate the effectiveness of our method in experi-

ments.

1. Introduction
Significant improvements have been made in classify-

ing various modalities including images, texts, and videos,

which use large-scale labeled datasets [28, 13, 23]. How-

ever, high labor costs are involved in collecting such a large

amount of labeled samples.

Shared representation learning (SRL) is based on two

modalities of information, namely, the source modality and

target modality. During the training time, we are given

paired source and target modality samples. Also, we are

provided with labeled source modality samples although we

do not have access to labeled target ones. In the training

phase, we learn the mapping to the common space by using

the paired samples, and then, under the common space, we

train a classifier by using the labeled source samples. The

goal is to classify the target samples using the learned clas-

sifier. For SRL, we have to consider learning mapping to
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Figure 1. Illustration of our proposed method. We proposed a

method that learns modality-invariant representations for shared

representation learning. We can utilize the labeled source modality

information to classify unlabeled target modality in this method.

(A) We aim to learn modality-invariant representations by utiliz-

ing the relationship between paired samples and making the distri-

butions similar. (B) We obtain decision boundaries from labeled

source modality. (C) We can classify unlabeled target modality by

the learned boundaries through modality-invariant representations.

the common space, where different modality samples have

the same information, and a classifier is trained using source

modality samples and their labels. If the target samples are

correctly classified in the space, we do not need any labels

for the target samples.

Then, we propose a novel method that aims to learn rep-

resentations from two modalities, which are interchange-

able in a classification problem. We call such represen-

tations modality-invariant representations. We show the

overview of our method in Fig. 1.

We define modality-invariant representations as rep-

resentations that perform two functions. The first is

that the representations include discriminative information.

Learned representations must contain discriminative infor-

mation to categorize them correctly. The second is that, un-

der modality-invariant representations, the classifier trained

on one modality can be transferred to the other modality.
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We have to incorporate the following three properties in

the common space to realize the functions above.

1. The paired samples are placed close together.

2. The distributions of different modalities match.

3. The projected samples are made dissimilar with each

other.

Here, we provide a detailed explanation on why unlabeled

modalities can be categorized correctly using modality-

invariant representations.

The first and second properties are based on the domain

adaptation (DA) theory. DA deals with samples generated

from various domains, which are related but different from

each other. DA mainly assumes the existence of two do-

mains, the source and target domains. One aims to trans-

fer the knowledge gained from labeled source samples to

target samples, and classify the target samples accurately.

David et al. [4] demonstrates that the expected error in tar-

get samples is bound by the summation of three terms:(i)

the expected error on source domain; (ii) the divergence be-

tween source and target domains; and (iii) the minimum of

the summation of the error in the source and target domains.

The third term is considered to be very low when the rep-

resentations are sufficiently discriminative. In our problem

setting, we regard the source and target domains as the la-

beled and unlabeled modality, respectively.

The first property ensures that the first and third terms

will be low. We can extract co-occurring information by

utilizing paired samples. We think that the co-occurring in-

formation between modalities includes high-level informa-

tion; thus, we can obtain discriminative representations.

The second property decreases the second term in the

theory. Previous studies have shown that matching the dis-

tributions between different domains is effective in reducing

the second term [4, 17, 9].

The third property is for avoiding bad representations.

When considering only the first and second properties, the

learned representations can be made very similar. If the

learned representations are reduced to similar points, the

first and second properties are satisfied, but contain little

information. Therefore, we can state that the property that

prevents the reduction is required.

One can think that projecting paired samples into exactly

the same point will achieve distribution matching. However,

the constraints of distribution matching are easier to sat-

isfy than projecting paired samples into the sample point.

Furthermore, considering the fact that our goal is to clas-

sify learned representations, we do not need to completely

project into the same point.

In this paper, we propose a novel method for learning

modality-invariant representations from paired modalities,

which satisfy the three important properties above. We in-

corporate the idea of matching paired samples and making

the distributions of two modalities similar in order to ob-

tain the representations. For this purpose, we utilize adver-

sarial training, namely a minimax two-player game involv-

ing a generator and discriminator. We call our proposed

method the Deep Modality Invariant Adversarial Network

(DeMIAN). Our contributions are as follows:

• We propose a novel method to learn interchangeable

representations between different modalities for zero-

shot learning.

• We demonstrate the effectiveness of our method

through experiments.

2. Related Works

2.1. Multimodal Learning

Here, we focus on obtaining interchangeable representa-

tions between modalities. Ngiam et al. [21] used canonical

correlation analysis (CCA) to learn the latent space between

audio and video features, trained a classifier using only one

modality, and tested it on the other modality. Sharma et

al. [30] proposed a supervised extension of CCA, which

utilized the label information along with the paired rela-

tionship. Our method focuses on the case where we have

no access to complete training sets, namely, paired samples

and the corresponding labels. In our algorithm, we propose

to utilize the relationship between paired samples by min-

imizing the distance used in the CCA formulation. More-

over, we added a term that makes the distribution of differ-

ent modalities similar. Thus, our model can be regarded as

one that efficiently incorporates a modality-invariant factor

with multimodal learning.

2.2. Domain Adaptation

In unsupervised DA, since one is provided with labeled

source samples and unlabeled target samples, minimizing

errors on source samples and domain divergence is required

to obtain a good classifier in the target domain. For this

purpose, many previous methods [9, 17, 1, 33] proposed

the reduction of the divergence between the distributions of

the source and target representations. Ganin et al. [9] in-

troduced the idea of generative adversarial networks [10]

for DA. They used adversarial training for domain-invariant

feature extraction that identified the domain from which

hidden features were generated. They trained two models to

obtain domain-invariant representations: one was the main

network classifier, a convolutional neural network (CNN);

the other was a domain-classifier network, which distin-

guished the domain labels of hidden features extracted from

the main network. To obtain domain-invariant discrimina-

tive representations, they trained the two networks simulta-

neously: the main CNN was trained to classify source sam-

ples correctly and to deceive the domain classifier, while

the domain network classifier was trained to identify the
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Figure 2. The proposed model: Deep Modality Invariant Adversar-

ial Network. We aim to learn modality-invariant representations

using a minimax two-player game involving a generator and dis-

criminator. The discriminator tries to minimize the loss of predict-

ing the modality of the input. The generator tries to minimize the

distance between paired samples in the latent space and to maxi-

mize the error of the discriminator.

domain from which the hidden features were generated.

Through this training, they observed that the distribution of

different domains matched their hidden feature space.

3. Proposed Method

In this section, we describe the details of the proposed

model. We first explain the problem setting and require-

ments for our model. Then, we discuss the components of

our model for satisfying the requirements. Finally, we ex-

plain the learning procedure. We present an overview of our

model in Fig. 2.

We are given two kinds of training sets: paired modal

samples
{

(xi, yi)
}n

i=1
∈ R

dx × R
dy , and one modality

with the corresponding labels
{

(yi, ti)
}m

i=1
∈ R

dy × C.

Our goal is to learn mapping to a common space Gx :
R

dx → R
dz , Gy : Rdy → R

dz from
{

(xi, yi)
}n

i=1
and a

classifier h : Rdz → C from
{

(Gy(yi), ti)
}m

i=1
, such that

both classifiers h ◦ Gx and h ◦ Gy work well. We first

learn mapping using paired samples
{

(xi, yi)
}n

i=1
, then

train a classifier by learned representations. We call the

function Gx, Gy as generators. We denote the parame-

ters of the generators as θx, θy , and denote the representa-

tions obtained from each generator as fx = Gx(x; θx) and

fy = Gy(y; θy).
The following three properties are required to obtain

modality-invariant representations as discussed in the Sec.

1,

1. We have to project samples into a common space by

considering the relationship between paired samples.

2. We have to make the distribution of fx, fy similar. (We

utilize the idea of DA)

3. We have to make each of fx, fy dissimilar.

For the first requirement, we obtain discriminative informa-

tion using the relationship between paired samples. With re-

gard to the second requirement, from the perspective of DA,

we assume that we can train a classifier that works well for

both modalities by making the distribution similar. To make

the projected points informative, we need the third require-

ment. We have to train the generators that simultaneously

satisfy the three requirements.

3.1. Learning Relationship between Modalities

For the first requirement, we define the objective for this

matching as

J(θx, θy) =

n
∑

i=1

d(Gx(xi), Gy(yi)) (1)

where we use the l2-squared distance or cosine distance

for d(Gx(xi), Gy(yi)), which can consider the matching of

paired modality as used in CCA.

3.2. Modality-Discriminator to Match Distributions

For the second requirement, we have to measure the di-

vergence between distributions fx and fy . However, diver-

gence measurement is non-trivial, given that fx and fy are

high dimensional, and that distributions change constantly

as learning progresses. Hence, we utilize the modality-

discriminator, Dd with the parameters θd. We can estimate

divergence by looking at the loss of Dd, provided that Dd

has been trained to discriminate between fx and fy . If the

trained discriminators are deceived by the generated repre-

sentations, then the distributions will match correctly.

Therefore, we seek the parameters θx and θy that maxi-

mize the loss of Dd, while simultaneously seeking the pa-

rameters θd that minimize the loss of Dd. This is the ad-

versarial training method for our model. In other words, we

seek to minimize the loss of J(θx, θy), as well as the loss

for adversarial training.

3.3. Gaussian Prior

The learned generator can always produce the similar

points with the two training objectives mentioned above.

The objectives do not include any terms that will make the

generated points more dissimilar to each other. If the gener-

ator produces the similar points, the demands for the paired

relationship will be met and the discriminator can be de-

ceived easily. However, such a point does not have any dis-

criminative information. A similar problem is reported in

training generative adversarial networks [29].

In our work, we try to solve this problem by utilizing

samples generated from Gaussian distributions. We input

the samples generated from Gaussian distributions that have
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Dataset loss activation λ image units language units batch size learning rate

MNIST L2-squared ReLU 5.0 [392,1000,50] [392,1000,50] 500 2.0×10−4

Mir Flickr L2-squared ReLU 5.0 [3857,1000,200] [2000,1000,200] 500 2.0×10−3

SUN (Zero-Shot) cosine distance ReLU 10.0 [4096,2000,1000] [102,2000,1000] 1000 2.0×10−4

CUB-200-201 cosine distance ELU 10.0 [4096,1000,1000] [312,1000,1000] 1000 2.0×10−4

Table 1. The architectures used for DeMIAN. Note that image units and language units mean the structure used for the network. In the

experiment on MNIST, we input image features for both units.

the same dimensions as fx and fy , to the discriminator as

well as fx and fy . Then, we train the discriminator to clas-

sify samples from the Gaussian distributions as modality

z. That is, we expect fx and fy to follow Gaussian distri-

butions. With this objective, the projected features will not

contract into similar points, because the randomly generated

samples from Gaussian distributions are dispersed. Our fi-

nal objective for the generator consists of two terms: the

loss of the deceiving discriminator in a three-class classifi-

cation problem, and the loss of the paired relationship. We

can avoid the contraction of representations by effectively

utilizing the adversarial network structure.

3.4. Formulation of DeMIAN and its Optimization

Given the discussion above, the objective for our model

can be written as follows:

zi ∼ N(0, Izd)

L(θx, θy, θd) = log (Pr(Dd(Gx(xi)) = 1))

− log (Pr(Dd(Gy(yi)) = 1))

− log (Pr(Dd(zi) = 1))

+ log (Pr(Dd(Gy(yi)) = 2))

+ log (Pr(Dd(zi) = 3))

E(θx, θy, θd) = J(θx, θy)− λL(θx, θy, θd).

(2)

where λ is a parameter for balancing the loss of multi-

modal matching and adversarial training. We chose this

parameter by validation split of each dataset. We assign

the domain labels 1, 2, 3 respectively for modality x,y,z.

Pr(Dd(Gx(xi)) = 1) denotes the probability that gener-

ated features came from modality x, and likewise for other

modalities. We seek network parameters by playing the fol-

lowing two-player minimax game,

min
θx,θy

max
θd

E(θx, θy, θd). (3)

At the saddle point, the parameters θx, θy minimize both

the modality classification loss and the loss for matching

paired samples.

For the activation function, we used ReLU or ELU [8]

and BatchNormalization (BN) [12] after the activation. BN

is known to be highly effective for optimizing generative

adversarial networks [26], and we confirmed that BN can

also stabilize and improve the performance of our model.

For the discriminator, we used ReLU for activation in all

the experiments.

4. Experiment

We tested our model by classification for SRL and zero-

shot learning. The difference between SRL and zero-shot

learning is that we completely omitted the unseen target

samples for zero-shot learning, while we used samples

from all classes to train the model for SRL. For SRL, we

used MNIST and Mir Flickr [11]. For zero-shot learning,

we used SUN attribute [24] and Caltech-UCSD Birds-200-

2011 (CUB-200-2011) [34], which are the benchmark im-

age datasets for zero-shot learning. In all the experiments,

we used Adam [14] for optimization of our model.We eval-

uated both deep and shallow models in SRL experiments.

The effect of distribution matching will be seen in the shal-

low models. Note that the notation DeMIAN in our results

refers to our proposed model with three layers, while MIAN

refers to our model with two layers, namely the shallow

model. MIAN includes linear and non-linear models, which

we will describe clearly. We trained the logistic regres-

sion of learned representations for SRL and the multilayer-

perceptron for zero-shot learning experiments. We show

the architectures used to train DeMIAN in Table 1. The

architectures include the activation function for the gener-

ator, loss function of d(Gx(xi), Gy(yi)), the value of λ,

the structure of networks, batch size, and learning rate. We

show the hyperparameters of MIAN in our supplementary

material. In the SRL experiment, we compared our method

to deep CCA (DCCA) [3] in addition to CCA. We used the

optimization method proposed in [35] and the same struc-

ture as our proposed method and added the BN layer for a

fair comparison.

4.1. MNIST

We divided a digital image into a left half and a right half

as in [3] to input in our model separately. We normalized

the raw pixel values to 0-1 before splitting. We regarded

the left half and right half of images with 392 dimensions

as different modalities. There exists a clear relationship be-

tween the paired half images and we evaluated our model’s

ability to extract modality-invariant information from these

paired samples. We used 60,000 paired samples for train-

ing and 10,000 for testing. We followed Andrew et al., [3],

wherein 6,000 samples of the training dataset were used in

validation split. We tested the non-linear models of MIAN

and DeMIAN in this experiment.

Table 2 shows the recognition experiment results learned
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(a) CCA (b) DCCA (c) MIAN (d) DeMIAN

Figure 3. Comparison of the embedding in the MNIST experiments. Red points are left half samples and blue points are right half ones.

Source modality →Target modality

Method Left → Right Right → Left Left → Left Right → Right

CCA 0.703 0.675 0.857 0.843

DCCA 0.147 0.139 0.618 0.553

MIAN (non-linear) w/o z 0.702 0.712 0.724 0.719

MIAN (non-linear) 0.716 0.731 0.762 0.751

DeMIAN w/o z 0.523 0.520 0.529 0.516

DeMIAN 0.810 0.804 0.820 0.794

Table 2. Result of the MNIST recognition experiment. Source modality means the input modality for the supervised training, whereas

Target modality means the input modality when testing.

Source modality →Target modality

Method Tag → Image Image → Tag Tag →Tag Image →Image Tag and Image→Tag and Image

DBM – – – – 0.528

CCA 0.312 0.404 0.428 0.381 0.496

DCCA 0.438 0.455 0.463 0.464 0.570

MIAN (linear) w/o z 0.451 0.417 0.419 0.485 0.486

MIAN (linear) 0.458 0.438 0.528 0.548 0.598

DeMIAN w/o z 0.367 0.361 0.366 0.367 0.398

DeMIAN 0.544 0.487 0.512 0.567 0.599

Table 3. Result of Mir Flickr recognition experiment based on MAP. Source modality means the input modality when training a linear

classifier. Target modality means the input for the testing. Note that we show the result where we had access to 25,000 labeled samples.

The result of DBM is from [32].

by each model. Our proposed model achieved better perfor-

mance compared to CCA and DCCA. The model showed

little change in accuracy despite the difference in training

modality; for example, Left → Right and Right → Right in

DeMIAN. This indicates that making distributions similar

enabled the adaptation of different modalities in this clas-

sification task. On the other hand, while CCA showed the

best performance in a standard classification setting, such

as Right → Right, its performance substantially declined

in Right → Left. This is because CCA did not include a

mechanism for learning modality-invariant representations.

Our model showed significantly better performance than

our model without z ∼ N(0, Iz). Thus, merely introducing

BN is not sufficient to obtain good representations. This

suggests that the introduction of prior z can lead to much

better representations, especially in training a deep model.

We visualized the learned representation using t-SNE [18]

in Fig. 3. From this figure, we can observe that the distribu-

tion between the left half and right half digits in the learned

common space densely matched compared to the embed-

ding of CCA.

4.2. Mir Flickr

This dataset consists of 1 million images from the social

photography website Flickr, along with their user-assigned

tags. Twenty-five thousand images were annotated for 38

classes, where each image may belong to several classes

[11]. We used 15,000 images for training and 10,000 for

testing within labeled samples. Five thousand images of the

training split were used for validation. We used the mean

average precision (MAP) for the evaluation based on an

existing work [32]. Each tag input was represented using

the vocabulary of the 2,000 most frequently used tags. The

images were represented by 3,857-dimensional features ex-

tracted by concatenating the pyramid histogram of word

features [5], gist features [22], and MPEG-7 descriptors

[19](EHD, HTD, CSD, CLD, SCD).

We show the results of Mir Flickr in Table 3. In this

table, we show the modality used for training and testing

in supervised training. Image → Tag means that we used
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(a) Training with z (b) Training without z

Figure 4. Visualization of representations embedded by PCA in

Mir Flickr experiment. We show the top two principal compo-

nents. The red points are image features and the blues ones are tag

features. Left: Representations learned by DeMIAN with prior z.

Right: Representations learned by DeMIAN without prior z.

the image features and its labels for supervised training,

and tested Tag features. Image and Tag → Image and Tag

means that we used both the image features and Tag fea-

tures for supervised training, and tested both features. We

averaged the output of the classifier for image features and

tag features in this setting. Our model achieved better per-

formance compared to other existing methods for both Im-

age → Tag and Tag → Image. Comparing CCA and MIAN

(linear), we can see the direct effect of our modality adap-

tation method. Our model learned rich representations that

were useful for both the source modality and target modal-

ity. From the results of Image and Tag → Image and Tag,

our model performed better than DBM [32], which is one

of the most successful models for multimodal learning. The

results also show that representations from both modalities

were effective for training a linear classifier. In this sense,

our proposed model learned modality-invariant rich repre-

sentation. Furthermore, the clear effects of samples from

Gaussian distributions in training DeMIAN were evident in

the results. We also visualized the learned representations

in Figure. 4. It shows that when training without modality

z, the projected points can be very similar. On the other

hand, training with modality z makes each projected point

dissimilar.

4.3. SUN Attribute

The SUN attribute database contains 717 classes of im-

ages and annotations.

For zero-shot learning, unlike in the experiment with

SRL, we did not use unseen image features for training.

We completely omitted the unseen image features in both

the unsupervised and supervised training phases. We fol-

lowed the protocol of [38] for image features and splitting

datasets. We used the VGGNet [31] features and selected 10

classes from the unseen classes following their setting. We

tuned the parameters of our model using 10 classes of the

seen classes. Then, we reported the the 10-times average

of the best scores during supervised training for zero-shot

learning.

We show the results of the zero-shot recognition ex-

Method CUB-200-2011 SUN Attribute

Akata et al. [2] 40.3 –

Kodirov et al. [15] 47.9 –

Peng et al. [25] 49.87

Lampert et al. [16] – 72.00

Paredes et al. [27] – 82.10± 0.32
SSE-ReLU[37] 30.41± 0.20 82.50± 1.32

JLSE [38] 42.11± 0.55 83.83± 0.29
Bucher et al. [7] 43.29± 0.38 84.41± 0.71

Hard Negative [6] 45.87± 0.34 86.21± 0.88
Morgado et al. [20] 59.5 –

Xu et al. [36] 53.6 84.5

DeMIAN w/o z 12.0± 0.82 43.5± 1.2
DeMIAN 57.5± 0.56 87.6± 1.3

[27] + SP-ZSR[39] – 89.5
JLSE + SP-ZSR[39] 55.34± 0.77 86.12± 0.99

Table 4. Result of the zero-shot learning. Our model achieved

the highest accuracy for the SUN and CUB-200-2011 dataset. In

particular, SUN’s score was the best one including the ensemble

method.

periment with SUN in Table 4. Our model improved the

state-of-the-art accuracy by approximately 2%. Notably,

our model achieved state-of-the-art accuracy using a sin-

gle method, whereas the state-of-the-art accuracy was pre-

viously achieved by an ensemble of methods [27] + SP-ZSR

[39].

4.4. CUB-200-2011
We used the VGGNet [31] features and attributes fea-

tures following [38]. We used 150 bird species as the seen

classes for training and the remaining 50 species as the un-

seen classes [38] for testing. We selected 50 seen classes

for validation as in SUN.

Then, we reported the 10 times average of the best scores

during the supervised training for zero-shot learning.

We show the results in Table 4. Our model improved

state-of-the-art accuracy by approximately 3%. The effect

of using prior is also clear in this experiment.

5. Conclusion

In this paper, we proposed a novel method to learn

modality-invariant representations for shared representa-

tion learning, called the Deep Modal Invariant Adver-

sarial Network (DeMIAN). Our network incorporated the

idea of domain adaptation and multimodal learning. We

learned modality-invariant representations through adver-

sarial training and observed the effect of our network in em-

bedding learned representations. Our proposed algorithm

showed excellent performance in experiments on SRL and

zero-shot learning.
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