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Abstract

This paper presents a method of zero-shot learning (ZSL)

which poses ZSL as the missing data problem, rather than

the missing label problem. Specifically, most existing ZSL

methods focus on learning mapping functions from the im-

age feature space to the label embedding space. Whereas,

the proposed method explores a simple yet effective trans-

ductive framework in the reverse way – our method esti-

mates data distribution of unseen classes in the image fea-

ture space by transferring knowledge from the label embed-

ding space. Following the transductive setting, we leverage

unlabeled data to refine the initial estimation. In experi-

ments, our method achieves the highest classification ac-

curacies on two popular datasets, namely, 96.00% on AwA

and 60.24% on CUB.

1. Introduction

The recent success of deep learning heavily relies on a

large amount of labeled training data. Popular deep neural

networks, e.g. VGG [19], GoogLeNet [21] and ResNet [6],

require hundreds to thousands of labeled training data to

learn a new concept. For some classes, e.g., rare wildlife

and unusual diseases, it is expensive even impossible to

collect training samples. Traditional supervised learning

frameworks cannot work well in this situation. Zero-shot

learning (ZSL) that aims to recognize instances from un-

seen classes is considered to be a promising solution.

In ZSL, data are split into labeled seen classes (source

domain) and unlabeled unseen classes (target domain where

labels are missing). The seen classes and unseen classes are

disjointed. Therefore, “auxiliary information” is introduced

to enable knowledge transfer from seen classes to unseen

ones so that given a datum from the unseen classes, its label

can be predicted. Often used auxiliary information includes

attributes[9], textual description[10] and word vectors of

labels[20], etc. In most practice, labels are embedded in

“label embedding space” using auxiliary information. Data

(e.g., images) are embedded in (e.g., image) feature space

(using hand-craft or deep learning feature extractors). In the

following of this paper, we introduce ZSL in the context of

image recognition.

One popular type of ZSL is implemented in an inductive

way, i.e. models are trained on seen classes then applied

to unseen classes directly. Usually, inductive ZSL includes

three steps: i) embedding images and labels in the image

feature space and label embedding space respectively; ii)

learning the mapping function from the image feature space

to the label embedding space (F→E) using seen classes da-

ta; iii) mapping an unseen image to the label embedding

space using the learned mapping function and predicting its

label. In this way, ZSL is posed as a missing label prob-

lem. Many existing methods of this type (e.g., [20][2][16])

assume a global linear mapping F→E between the two s-

paces. Romera-Paredes et al.[17] present a very simple ZS-

L approach using this assumption, and extend the approach

to a kernel version. However, the global linear mapping as-

sumption can be over-simplified. Wang et al.[23] propose

to utilize local relational knowledge to synthesize virtual

unseen image data, but then back to the global linear as-

sumption to learn the mapping F→E using both the seen

data and synthesised unseen data. We observe that the syn-

thesized data of unseen classes are not accurate, in addition,

back to the global linear mapping assumption further dam-

age the ZSL performance. Hence we propose to adjust the

synthesized unseen data according to the manifold structure

of real unseen data.

Accordingly, some transductive ZSL approaches are pro-

posed for alleviating the domain shift problem[5]. In

transductive ZSL, (unlabeled) real unseen data are utilized

for refining the trained model, e.g., the label embedding

space[11] and the mapping function. In [7], a dictionary for
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Figure 1. Illustration of the proposed method. The manifold structure (the straight lines) in the label embedding space is transferred to the

image feature space for synthesizing the virtual cluster center (the purple star) of an unseen class. The purple arrow points to a refined

cluster center (the red star), which demonstrates that the synthesized virtual cluster center is optimized after running the Expectation-

Maximization algorithm so that unseen data are assigned to labels according to the data distribution.

the target domain is learned using regularised sparse cod-

ing, and the dictionary learned on the source domain serves

as the regularizer. In [27], a structured prediction approach

is proposed. Clusters on unseen data are generated using K-

means, then a bipartite graph matching between these clus-

ters and labels is optimized based on the learned similarity

matrix on seen data.

Most aforementioned methods aim at learning a poten-

tially complex mapping from F→E. Under circumstances

such as the number of classes is large and there exists poly-

semy in text labels, such many-to-one “clean mapping” can

be hard to learn. In this paper, we study a novel transductive

zero-shot learning method (shown in Figure.1), which trans-

fers the manifold structure in the label embedding space to

the image feature space (E→F), and adapts the transferred

structure according to the underlying data distribution of

both seen and unseen data in the image feature space. As the

proposed method associates data to the label, we categorize

it as a missing data method in contrast to the conventional

missing label methods.

Our method is based on two assumptions, i) data of each

class in the image feature space approximately follow a

Gaussian distribution, ii) the manifold structure of label em-

beddings is approximate to that of cluster centers in the im-

age feature space. It is observed that data in each class form

a tight cluster[27]. The cluster center serves as the repre-

sentation of each class. Hence, the cluster center and corre-

sponding label embedding of each class form a datum pair.

In this paper, data distributions are modeled by Gaussians,

and the cluster center is defined as the mean of a Gaussian.

Our method consists of three main steps:

i) The cluster center of each seen class is estimated in the

image feature space. ii) The manifold structure is estimated

in the labeling embedding space, and is transferred to the

image feature space so as to synthesize virtual cluster cen-

ters of the unseen classes. iii) The virtual cluster centers are

refined, at the same time, each unseen instance is associat-

ed to an unseen label (label prediction) by the Expectation-

Maximization (EM) algorithm.

We verify the effectiveness of our two assumptions in

sufficient experiments. Experiments show that the pro-

posed method outperforms the state-of-the-art on two pop-

ular datasets, namely, the Animals with Attributes (AwA)

and the Caltech-UCSD Birds-200-2011 (CUB).

2. The Proposed Method

Ns seen classes data are denoted as (Xs,Y s) =
{(xs

1
, ys

1
), ..., (xs

Ns , ysNs)}, and Nu unseen classes data are

denoted as (Xu,Y u) = {(xu
1
, yu

1
), ..., (xu

Nu , yuNu)}. Each

datum xs
i or xu

i ∈ ℜd×1 is a d-dimensional feature vec-

tor in the image feature space. ysi or yui denotes the label-

s. The label yui of each unseen instance xu
i is unknown.

The label sets of the seen and unseen classes are disjointed,

i.e. Y s ∩ Y u = ∅. Attributes or/and word vectors (auxil-

iary information) are used as label embeddings denoted as

Es = {es
1
, ..., esKs} and Eu = {eu

1
, ..., euKu} for seen and

unseen classes respectively. esk and euk ∈ ℜd′
×1. Using the

seen data pairs (xs
i , y

s
i ), ZSL aims to predict labels yui for

each unseen instance xu
i by leveraging the auxiliary infor-

mation Es and Eu for knowledge transfer.

2.1. Estimation of Seen Cluster Centers

In the image feature space, data from different classes are

separable. By dimensionality reduction (using t-SNE[13]),

it is observed that data in each class form a tight cluster

(shown in Figure. 2). Similar to recent ZSL works, e.g.,

[27] [23], we assume that

Assumption 1 Data of each class approximately follow a

Gaussian distribution X ∼ N (μ,Σ) in the image feature

space.
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Figure 2. Visualization of the data (CNN features) in default 10

unseen classes of Animals with Attributes dataset using t-SNE.

Although the assumption of Gaussian distribution may not

be very precise, it works well in our and others’ experi-

ments.

It is worth noting that, in the literature people used

Nearest-Neighbor classifiers to assign labels to unseen data,

e.g., [15] [7], the underlying assumption is that the distribu-

tion of data is isotropic Gaussian. Different from them, we

estimate the parameters of the Gaussians.

The data (image features) in each class form a clus-

ter. With our assumption, we formulate each cluster using

Gaussian parameters (μk,Σk), i.e. the mean and covari-

ance. The cluster centers, i.e. the mean, of all classes in

the image feature space are denoted as M = {μ1, ...,μK}.

The cluster center and corresponding label embedding of

each class form a datum pair (μk, ek).

As the labels of seen classes data are provided, we can

estimate cluster centers of seen classes directly, denoted as

M s.

2.2. Synthesis of Virtual Unseen Cluster Centers

One of the key challenges in ZSL is to explore the rela-

tionship between the image feature space and the label em-

bedding space. The label embedding is either pre-designed

(e.g. by the annotated attribute vectors) or pre-trained on a

large corpus (e.g. by word vectors). Although there may

not be an accurate global linear mapping from the image

feature space to the label embedding space, manifold struc-

tures in the two spaces may be similar. For instance, ”cat”

is more close to ”dog” than ”elephant” in the visual space.

This closeness is kept in the (semantic) label embedding s-

pace, e.g. the attribute space or word vector space. In this

paper we focus on exploiting the manifold structure rather

than the global one. Hence we assume that

Assumption 2 The manifold structure of label embeddings

is approximate to that of cluster centers in the image feature

space and can be transferred for synthesizing the virtual

cluster centers of the unseen classes.

This is formulated as

Eu = R (Es) ⇒ M̂u = R (M s) , (1)

where M̂u = {μ̂u
1
, ..., μ̂u

Ku} denotes the synthesized

(namely estimated) virtual cluster centers of the unseen

classes. There are many choices of the synthesis function

R(·) that can approximate the manifold structure of the la-

bel embeddings, such as Sparse Coding[14], Locally Linear

Embedding[18] and so on.

Our assumption is more general than the traditional glob-

al linear mapping assumption. It can be proven that, when

the synthesis function R(·) is a linear mapping, this synthe-

sis process is equivalent to learning a linear mapping from

the label embedding space to the image feature space using

balanced samples in each class. The more interesting prop-

erty is that we can choose R(·) with locality to explore the

manifold structure rather than the global structure in the two

spaces.

In the literature, many works assume the two spaces ob-

serve a global linear transformation so that the structure of

the image features can be transferred to the label embed-

dings via a global linear mapping, e.g., [2][16]. We ob-

serve that such an assumption is over-simplified. There are

works assuming that a global non-linear mapping may ex-

ist between the two spaces[17], e.g., using kernel methods.

However, it is prone to get overfitting on the seen data and

obtain bad performance on the unseen data. In contrast, our

manifold preserving assumption works well empirically in

the experiments.

2.2.1 Synthesis via Sparse Coding

We choose Sparse Coding[14] (inspired by [23]) to approxi-

mate the manifold structures of the image features and label

embeddings. In our implementation, label embeddings of

the seen classes serve as the dictionary. Then we compute

the sparse linear reconstruction coefficients of the bases for

unseen label embeddings. According to the Sparse Coding

theory, we minimize the following loss function to obtain

the coefficients α.

min
α

‖euk −Esα‖2 + λ|α|1, (2)

where α = [α1, ..., αKs ]
T

. This loss function is convex and

easy to optimize.

Then, we transfer such local structure from the label em-

bedding space to the image feature space and synthesize the

virtual cluster center of each unseen class using the same

set of coefficients, i.e. μ̂u
k = M sα, where the components

in Es and M s correspond to each other. This transferring

is valid because the distribution of an unseen class in the

image space is assumed to be Gaussian and the components

either in Es or M s are assumed to be independent.
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After synthesizing all unseen cluster centers (say Ku of

them), the distribution of all unseen instances {xu
n} in the

image feature space is a Gaussian Mixture Model (GMM),

p (xu
n) =

Ku∑

k=1

πkN (xu
n|μk,Σk) (3)

πk denotes the kth mixing coefficient and its initial value is

assumed to be 1/Ku. The value of μk = μ̂u
k . We initialize

each Σk using an identity matrix. xu
n denotes the nth image

in Xu.

The synthesized virtual cluster centers approximate the

distribution of the unseen data in the image feature s-

pace. However, they may not be accurate. Next, we op-

timize/refine the cluster centers, at the same time, associate

each unseen image to an unseen label. This is the reason we

pose our ZSL as a missing data problem.

2.3. Solving the Missing Data Problem

We impute unseen image labels and update the GMM

parameters using the Expectation-Maximization (EM) al-

gorithm.

The objective function is defined as the log of the likeli-

hood function,

ln p (Xu|π,μ,Σ) =

Nu∑

n=1

ln

Ku∑

k=1

πkN (xu
n|μk,Σk) (4)

In the Expectation step, the conditional probability of the

latent variable yun = k given xu
n under the current parameter

is

p(yun = k|xu
n) =

πkN (xu
n|μk,Σk)∑Ku

j=1
πjN (xu

n|μj ,Σj)
. (5)

This is the posterior probability of an unseen image xu
n be-

longing to label k.

In the Maximization step, the model updates the param-

eters using the posterior probability.

μnew
k =

1

Nu

Nu∑

n=1

p(yun = k|xu
n)x

u
n (6)

Σ
new
k =

1

Nu

Nu∑

n=1

p(yun = k|xu
n)(x

u
n − μnew

k )T (xu
n − μnew

k )

(7)

πnew
k =

Nu
k

Nu
(8)

where

Nu
k =

Nu∑

n=1

p(yun = k|xu
n) (9)

Ku and Nu denote the number of all unseen classes and in-

stances respectively. We iterate the E-step and M-step until

convergence. After the convergence, the parameters of the

data distribution are refined and the unseen instances are as-

signed with labels.

2.3.1 Regularization

During the EM process when estimating the GMM, each

covariance matrix Σk should be nonsingular, i.e. invertible.

For a reliable computation, empirically, the number of data

in each class Nk should be greater than the square of feature

dimension, i.e. ∀k, Nk ≥ λd2, s.t. λ ≥ 1. λ is a coefficient.

However, this may not be satisfied in some situations when

feature dimension is high but only a small number of data

are provided per class.

We employ two tricks to solve this problem, namely, di-

mensionality reduction and regularization of Σk. For di-

mensionality reduction, we choose to use linear dimension

reduction methods, e.g. principal components analysis (P-

CA), to reduce the image feature representation to d dimen-

sional, which is much smaller than the original one.

If we only choose to stabilize the computation by re-

ducing the image feature dimension, the label prediction

accuracy will degrade quickly. Hence, we also resort to

another solution, i.e., regularizing Σk. Here, we present

two regularization methods of Σk, namely, diagonal Σk,

s.t. Nk ≥ λd and unit Σk, s.t. Nk ≥ 1. Diagonal Σk

means that Σk is assumed to be a diagonal matrix. Unit Σk

means that Σk is an identity matrix. These two regulariza-

tion methods simplify Σk in an increasing order. We choose

to use a simpler one if the number of the data is smaller.

3. Experiments

3.1. Datasets & Settings

We evaluate the proposed method by conducting exper-

iments on two popular datasets, i.e., the Animals with At-

tributes (AwA) [8] and the Caltech-UCSD Birds-200-2011

(CUB) [22]. i) AwA contains 50 animal classes (coarse-

grained) and 85 manual attributes (both binary and contin-

uous). Ten classes serve as the unseen classes and the re-

maining forty are utilized as the seen classes. ii) CUB is

a fine-grained image dataset which contains 200 species of

birds annotated with 312 binary attributes. Commonly, 50

species are chosen as the unseen classes, and the rest are the

seen classes.

For AwA, we use i) VGG-fc7, ii) GoogLeNet, iii)

ResNet features. For CUB, we use iv) GoogLeNet and v)

ResNet. i) is provided along with the dataset[8]. Image fea-

tures (ii, iii, iv) and label embeddings (attributes and word

vectors) are provided by [23]. The parameter λ used in the

loss function of Sparse Coding is set as a fixed value (0.5)

in all experiments for speeding up training process.

In the analysis of our assumptions, we evaluate our

method using ”Many random splits”. We report the average

results of 300 random splits for the high reliability. When

compared to the state-of-the-art (in Sec. 3.5), we follow the

default splits [23] on AwA and CUB that are widely used.
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Setting VGG (%) GoogLeNet (%) ResNet (%) GoogLeNet+ResNet (%)

AwA
Random

94.26 92.55 88.80 90.71

CUB - 81.73 82.63 86.06

AwA
Default

96.52 94.58 90.74 92.64

CUB - 81.24 80.03 85.03

Table 1. Evaluation of data distribution assumption. Our data distribution assumption is effective in different kinds of feature spaces. The

experimental upper bound performance on the default splits of AwA and CUB are 96.52% and 85.03% respectively.

3.2. Evaluation of Data Distribution Assumption

First, we examine if Assumption 1 is a reasonable as-

sumption, i.e. the data of each class approximately subject

to a Gaussian distribution in the image feature space. The

idea is to show that under this assumption the upper bound

performance of the proposed method exceeds the state-of-

the-art performance by a considerable margin.

To obtain the upper bound performance of the proposed

method under Assumption 1, we conduct an upper-bound

experiment (traditional supervised learning), in which the

labels of all data (both seen and unseen) are given. Data are

separated into training and testing parts. We estimate the

Gaussian distribution for each unseen class according to the

ground-truth labeled training data. Then the label of each

testing datum is predicted as the one with the maximum

likelihood of the Gaussians/classes. The mean classification

accuracy consequently can be computed.

Table1 shows the upper-bound classification perfor-

mances of the proposed method based on Assumption 1

in different image feature spaces. The result on CUB using

VGG features is not reported due to the lack of data. We

implement experiments on both random and default splits.

The experimental upper bound performance under As-

sumption 1 on the default splits of AwA and CUB are

96.52% and 85.03% using VGG and GoogLeNet+ResNet

features respectively. According to Table3, the proposed

upper-bound performance is much higher than the corre-

sponding state-of-the-art performance – 81.41% on AwA

and 55.59% on CUB, which is achieved by repeating the

experiment in [23] using the same data. Therefore, the

Gaussian assumption of the distribution of data is reason-

ably good currently when comparing the proposed method

with the other state-of-the-arts.

3.3. Effectiveness of Manifold Transfer

To justify Assumption 2, we evaluate the classification

performance using synthesized virtual cluster centers di-

rectly (without EM optimization). This strategy can be

viewed as the inductive version of our method (denoted as

Ours I). We run 300 random trials on AwA and CUB re-

spectively. Features extracted from VGG-fc7 (4096-dim)

for AwA and GoogLeNet+ResNet (3072-dim) for CUB are

utilized. We use the same label embeddings as those in [23].

According to our analysis in Sec.2.3.1, the image feature

dimension is reduced to 80-dim on AwA, because the mini-

mum number of images of each class is 92. We also reduce

the feature dimension of CUB data to 400-dim for speed-

ing up the computation. Three types of label embedding

are tested, namely, attributes(A), word vectors(W) and at-

tributes with word vectors(A+W). Results using different

settings are shown in Table2.

We also implement a baseline experiment to illustrate the

priority of our manifold transfer assumption. In the baseline

experiment, we use the global linear mapping to synthesize

virtual cluster centers. Then we use these virtual cluster

centers to classify unseen data directly, which is denoted as

Base.-Syn.-Cen. in Table2.

As shown in Table2, the classification accuracies using

synthesized cluster centers without EM step (denoted as

Syn.-Cen.) are 73.39% on AwA and 59.94% on CUB (us-

ing A+W label embeddings). This result outperforms that

of the global linear mapping (Base.-Syn.-Cen.) with the im-

provement of 1.15% on AwA and 10.88% on CUB. It is ob-

served that the gap between Syn.-Cen. and Base.-Syn.-Cen.

is wider on the larger scale dataset (CUB). The reason is that

the estimated manifold structure is more reliable on larger

datasets which have denser data.

According to Table3, the inductive version of our method

(Ours I) outperforms state-of-the-art method (RKT) on

both AwA and CUB. This result also verifies the effective-

ness of our manifold transfer assumption.

3.4. Evaluation of the EM Optimization

Here, we evaluate the gain brought by the EM optimiza-

tion (shown in Table2). All data (features, label embed-

dings, random splits) are consistent with those in the pre-

vious subsection. GMM with diagonal Σk (GMM-EM-D)

and unit Σk (GMM-EM-U) are tested. For AwA, GMM-

EM-U brings about 13% improvement of classification ac-

curacy using the three label embeddings on average. Us-

ing GMM-EM-D increases nearly 1% classification accu-

racy over the GMM-EM-U. For CUB, nearly 6% improve-

ment is brought by using GMM-EM-U. The experiment us-

ing GMM-EM-D on CUB is not reported due to the lack

of training data (about 60 data in each class, which is ex-

plained in Sec.2.3.1). These results show that the transduc-

tive EM optimization improves classification performances

in different settings.
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Label

Embedding

Acc. % of

Syn.-Cen.

Acc. % of

GMM-EM-U

Acc. % of

GMM-EM-D

Acc. % of

Base.-Syn.-Cen.

Acc. % of

Base.-GMM-EM-U

AwA

A 74.60 85.23 86.21 59.05 75.92

W 60.99 75.31 76.31 61.02 73.61

A+W 73.39 86.14 87.11 72.24 84.92

CUB

A 56.21 61.27

-

37.18 46.40

W 47.31 55.62 37.38 42.66

A+W 59.94 63.37 49.06 55.73

Table 2. Evaluate the synthesized virtual cluster centers with and without the EM optimization algorithm under the 300-random-split

setting. Syn.-Cen. denotes classification directly using the synthesized virtual cluster centers. GMM-EM-D and GMM-EM-U are two reg-

ularization methods that use diagonal and unit Σk in the EM step. Base.-Syn.-Cen. and Base.-GMM-EM-U are two baseline experiments.

ESZSL[17] RKT[23] Ours I Ours

AwA 79.53 81.41 83.24 96.00

CUB 51.90 55.59 57.31 60.24

Table 3. Performance (%) compared to state-of-the-art methods

on the default splits by repeating their experiments. Ours I is the

inductive version of our method.

In the baseline experiment (Base.-GMM-EM-U), EM

optimization is initialized by the virtual cluster centers syn-

thesized by the global linear mapping. The classification ac-

curacies of GMM-EM-U are 1.22% and 7.64% higher than

those of Base.-GMM-EM-U on AwA and CUB respective-

ly. The reason is that the performance of local optimization

relies heavily on the initialization and our method can es-

timate more accurate virtual cluster centers. This result il-

lustrates that the performance improvement of our method

relay on both the estimation of virtual cluster centers and

the transductive EM optimization.

3.5. Comparison to the State-of-the-Art

We repeat experiments of two state-of-the-art inductive

methods, namely ESZSL [17] and RKT [23], using provid-

ed codes and the same data (including image features, label

embeddings) as the aforementioned in Sec.3.3. Although

we have to reduce image feature dimensions in our method,

we use the original image features for their methods. We

compare to these two methods using the widely used de-

fault split of each dataset.

As shown in Table3, our inductive method (Ours I) out-

performs RKT with 1.83% and 1.72% improvement on

AwA and CUB. By leveraging unlabeled data, our trans-

ductive method (Ours) outperforms RKT with 14.59% and

4.65% improvement on AwA and CUB respectively.

We also compare to the reported results of state-of-the-

art methods including both inductive and transductive meth-

ods. Inductive methods include DAP/IAP [9], VSAR [12],

SJE [1], SC struct [3], LatEm [24] and JLSE [26]. Trans-

ductive methods include UDA [7], SSE [25], TMV-HLP [4]

and SP-ZSR [27].

From Table4, it can be seen that our method (Ours I)

Methods Split AwA (%) CUB (%)

In
d
u
ct

iv
e

DAP/IAP[9]

Default

41.4/42.2 -

VSAR[12] 51.75 -

SJE[26] 66.7 50.1

SC struct[3] 72.9 -

LatEm[24] 76.1 47.4

JLSE[26] 80.46 42.11

Ours I 83.24 57.31

T
ra

n
sd

u
ct

iv
e UDA[7] 75.6 40.6

SSE[25] 76.33 30.41

TMV-HLP[4] 80.5 47.9

SP-ZSR[27] 92.08 55.34

Ours 96.00 60.24

Table 4. Comparison to reported results of the state-of-the-art

methods on the default splits.

achieves the best performance on both AwA and CUB

datasets compared to those inductive methods. The perfor-

mance (83.24% on AwA and 57.31% on CUB) achieved by

Ours I is 2.78% and 7.21% higher than that of the runner-up

methods (JLSE and SJE) respectively.

In the transductive setting, our method (Ours) achieves

the highest classification accuracies on two datasets, name-

ly, 96.00% on AwA and 60.24% on CUB. This result is

3.92% and 4.90% higher than that of the runner-up method

SP-ZSR (92.08% on AwA and 55.34% on CUB). Overal-

l, by leveraging unlabeled data, transductive setting brings

significant performance improvement based on inductive

setting. The improvement on AwA is more remarkable than

that on CUB. The reason is that the unlabeled data are used

only for local optimization and the average inductive per-

formance on AwA is much higher than that on CUB.

4. Conclusion

In this paper, we propose a transductive ZSL method

based on the estimation of data distribution by posing ZSL

as a missing data problem. We focus on exploiting the man-

ifold structure in two spaces rather than the global mapping.

Experiments show that our method outperforms other state-

of-the-art methods on two popular datasets.
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