
   

 

 

 

 

Abstract 

 

Although the importance of the Fourier phase to image 

perception has been addressed, it is unknown whether this 

is the case for texture similarity or not. Based on 

psychophysical experiments, we first show that the phase 

data is more important to human visual perception of 

texture similarity than the magnitude data. We further 

examine the ability of a total of 51 computational feature 

sets on exploiting the phase data for texture similarity 

estimation. However, it is found that for these feature sets 

the magnitude data is more important than phase. Since it 

has been shown in early work that there is inconsistency 

between the similarity data derived from human observers 

and the 51 feature sets, we attribute this outcome 

(magnitude/phase importance) to the difference between 

the manners in which humans and the feature sets exploit 

the phase data. Therefore, we are motivated to enable the 

51 feature sets to exploit the phase data for effective 

estimation of texture similarity. This is achieved by fusing 

the features extracted from the original and phase-only 

images. It is shown that this type of fused feature sets yield 

better results than those derived using the 51 original 

feature sets. In particular, we show that this finding can 

also be propagated to convolutional neural network 

features. We believe that the improved results should be 

attributed to the importance of phase to texture similarity. 

 

 Introduction 

Fourier analysis has been widely used in the studies of 

perception of image appearance [10], [14], [18], [27], [28], 

[38]. Oppenheim and Lim [28] showed that the Fourier 

phase (or phase for simplicity) spectrum is more important 

to perception of natural images than the magnitude data. 

Specifically, an image containing the aperiodic structure 

can still be identified when its power spectrum is replaced 

by a single-valued matrix; while this is not the case when its 

phase spectrum is scrambled (see Figure 1). Existing 

studies [29], [38], [41] also examined the effect of the phase 

and/or magnitude spectra on the appearance of images. To 

the authors’ knowledge, however, none of these studies 

investigate the importance of the phase spectrum to texture 

similarity [7], [9]. Texture similarity estimation is key to 

texture or material recognition. The goal of texture 

similarity studies is to develop certain methods that can 

predict the degree to which pairs of textures manifest 

similar to what humans perceive. 

Dong et al. [7], [9] examined the ability of a total of 51 

existing computational feature sets to estimate perceptual 

texture similarity. They found that none of these feature 
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Figure 1: Each of the two columns presents three images derived 

from the same texture (central quarters are shown). Each of the 

three rows displays the phase-only, original, and magnitude-only 

images in turn. 
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sets performed well compared to the performance of human 

observers. It was also observed that none of the 51 feature 

sets calculate higher order statistics (HOS) within the 

spatial extent larger than 19×19 pixels. Dong and Chantler 

[8] further compared three types of image properties, 

including the magnitude spectrum, local image exemplars 

and contours, for perception of texture. The results showed 

that the contour data encoding long-range HOS provides 

more important visual cues than the other image properties. 

However, contours cannot be accurately detected in some 

cases, for example, if the contrast between the foreground 

and background is low. On the contrary, the phase spectrum 

that also encodes long-range HOS [27] can be easily 

computed. It should be noted that the local phase data, 

which can be calculated based on the short-term Fourier 

transform [26] or quadrature filters [31], only exploits HOS 

in the relatively short-range spatial extent. 

Therefore, we hypothesise that the phase spectrum is 

more important to texture similarity than the magnitude 

data. We are inspired to design and perform a 

psychophysical experiment using human observers. This 

experiment is used to investigate our hypothesis using two 

sets of property images: phase-only and magnitude-only 

(see Figure 1). The two sets of property images can be 

obtained from original texture images and only contain the 

original phase and magnitude spectra respectively. Our 

results show that the humans’ judgements derived using the 

phase-only images are more consistent with those obtained 

using the original images than the judgements that they 

make when the magnitude-only images are shown. In other 

words, the phase spectrum is more important to human 

perceptual texture similarity than the magnitude data. 

We further apply the 51 feature sets that Dong et al. [7], 

[9] examined to texture similarity estimation along with the 

phase-only and magnitude-only images. Surprisingly, the 

results show that the magnitude data is more important to 

these feature sets than phase. Recalling the inconsistency 

between the judgments obtained using humans and the 51 

feature sets [7], as well as the finding derived in the 

psychophysical experiment that the phase data is more 

important to humans than the magnitude data for texture 

similarity, hence, our conjecture is that this inconsistency 

results from the difference in the ability of humans and the 

51 feature sets to exploit the phase data. 

In this context, it is likely that the performance of the 51 

feature sets [7], [9] can be boosted if they are enabled to 

exploit the phase data. To this end, we propose a 

multi-channel feature fusion approach by jointly exploiting 

the features extracted from the original and corresponding 

phase-only images using a feature set. Since the phase-only 

images exclude the interference of the original magnitude 

data, the use of these images makes the exploitation of the 

phase spectrum possible. In contrast, it is not practical to 

directly utilise the (Fourier) phase spectrum because of the 

phase unwrapping issue [40]. The performance of the 51 

fused feature sets is superior to that of the original feature 

sets and that of the fusions of the features computed from 

the original and magnitude-only images, on average. We 

also apply the feature fusion approach to convolutional 

neural network (CNN) features  [33] and obtain the similar 

observation. 

The contributions of this paper include that: (1) the 

confirmation of the importance of phase to perceptual 

texture similarity; (2) the finding that the 51 feature sets [7], 

[9] incline to utilise the magnitude data rather than the 

phase data; (3) the proposal of a multi-channel feature 

fusion method to enable the 51 feature sets use the phase 

data; and (4) the observation that the multi-channel feature 

fusion method can also be generalised to CNN features. 

The rest of this paper is organised as follows. We first 

review the related work in the next section. Then, we 

examine the importance of the phase spectrum to 

perceptual texture similarity in Section 3. In Section 4, we 

investigate the ability of the 51 feature sets to exploit the 

phase spectrum for perceptual texture similarity estimation. 

The multi-channel feature fusion approach is proposed and 

tested in Section 5. Finally, we present our conclusions and 

discuss the future work in Section 6. 

 Related work 

2.1. Fourier analysis in humans’ perception of 

imagery 

Research into the effect of the phase or magnitude 

spectra on humans’ perception of imagery can be traced 

back to 1970s. Kermisch [18] removed the magnitude 

spectrum from images and analysed the effect of the phase 

spectrum on image reconstruction. Given an image, 

Oppenheim and Lim [28] derived two property images: 

magnitude-only and phase-only (see Figure 1). They 

showed that the phase-only image still retains the structure 

contained in the original image while it is not the case for 

the magnitude-only image. 

On the other hand, research has been conducted by 

partially modifying the phase spectrum. Piotrowski and 

Campbell [29] found that the human visual system is able 

to use only a few of phase data for recognition of objects. In 

[38], humans’ visual sensitivity to randomisation and 

quantisation of the phase spectrum of natural images was 

examined. Hansen and Hess [14] investigated the relative 

quantity of the spatial phase alignment that humans use to 

identify natural image structures at different spatial 

frequencies. In [41], it was observed that the thresholds 

required for detecting different types of changes were 

significantly lower when original images were used than 

those required when the phase-scrambled images were used. 

Recently, Emrith et al. [10] examined the effect of the 

randomness of the phase spectrum on humans’ perception 

of the changes in the appearance of surface texture. 
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The existing work also focused on the joint use of the 

phase and magnitude spectra. Bretel et al. [3] presented that 

the disturbances of both magnitude and phase spectra result 

in perceptual distortions. In [36], it was demonstrated that 

not only the phase spectrum but also the magnitude 

spectrum are useful for perception of natural images.  

Although the phase spectrum is important to humans’ 

perception of imagery, phase unwrapping has to be used to 

recover original phase values from the principal value 

range [40]. However, it is still an open problem [40]. This 

problem explains the scarcity of the image features 

designed based on the Fourier phase spectrum. We thus 

managed to enable existing image feature sets to exploit the 

phase data by fusing the features extracted from the original 

and phase-only images. Compared with the original feature 

sets, the fused feature sets utilise more complicated image 

characteristics and are more discriminant. 

2.2. Perceptual texture similarity estimation 

Texture similarity can be divided into perceptual and 

computational similarity according to different acquisition 

sources, i.e. humans and computer algorithms, respectively. 

Texture similarity estimation yields a quantitative value or 

a qualitative judgement concerning the likeness of two 

textures. This task is key to texture or material recognition. 

Compared to other texture analysis topics [19], [24-26], 

[39], perceptual texture similarity estimation [1-2], [37] has 

received less attention. Recently, Dong and Chantler [6], [9] 

evaluated the ability of 51 feature sets to estimate higher 

resolution humans’ perceptual texture similarity rather than 

the binary similarity data (same or different) used in texture 

classification [25], [37] or retrieval [19], [24]. It was found 

that none of the 51 feature sets produced the comparable 

performance to that of humans. The further analysis 

showed that none of these feature sets compute higher order 

statistics (HOS) over the spatial extent larger than 19×19 

pixels. In other words, the 51 feature sets cannot exploit the 

long-range interactions that humans utilise for estimating 

texture similarity [7]. As a type of HOS, the Fourier phase 

spectrum encodes the long-range complicated patterns that 

comprise local phase alignments [14]. Therefore, it is likely 

that the performance of the 51 feature sets can be boosted if 

we enable these to use the phase spectrum. 

In the past few years, deep convolutional neural network 

(CNN) approaches [21], [22], [33] have become prevalent 

in the computer vision community. However, there is still 

no convincing theoretical proof of the availability of these 

approaches [23]. In contrast, we are more interested in the 

understanding of the usefulness of the phase spectrum for 

texture similarity. Also, we do not have sufficient higher 

resolution perceptual texture similarity data as this type of 

data is expensive to derive [8]. The limited data prevents us 

from training a CNN from scratch as those approaches 

normally require a huge number of labelled data for 

training. As a result, we only used the pre-trained and the 

corresponding fine-tuned CNNs in this study. 

 The importance of phase to human 

perceptual texture similarity estimation 

The research of texture similarity estimation using the 

human-derived ground-truth data has been conducted [1-2], 

[7], [9]. The importance of the long-range interactions [12], 

[30], [35] exploited by the human visual system to texture 

similarity was highlighted by Dong et al. [7], [9]. These 

interactions encode the complicated image patterns that can 

be modelled using global higher order statistics (HOS) [27]. 

As a type of global HOS, the phase spectrum is hence 

hypothesised to be important to human perceptual texture 

similarity estimation, particularly, compared to the 

magnitude data. In this section, we investigate this 

hypothesis by performing two new pair-of-pairs 

comparison experiments using the phase-only and 

magnitude-only images respectively. The humans’ 

judgements derived in the original pair-of-pairs experiment 

[4] are used as the benchmark data.  

3.1. Experimental design 

3.1.1 Stimuli 

Considering the higher resolution human perceptual 

similarity data provided along with the Pertex database [5], 

[13], the 334 Pertex textures were used. 

Phase-only images The method that Oppenheim and 

Lim [28] introduced was modified in order to obtain these 

images. Given an image, the Fourier transform was used to 

decompose it into the phase and magnitude spectra: ଵܲ and ܯଵ. The inverse Fourier transform was applied to ଵܲ and a 

single-valued magnitude matrix. The resultant image was 

filtered by a 3×3 Gaussian filter. We further decomposed 

the filtered image into the phase and magnitude spectra: ଶܲ 

and ܯଶ . The magnitude spectrum ܯଶ  and the original 

phase spectrum ଵܲ  were used together with the inverse 

Fourier transform. The resultant image is referred to as the 

phase-only image. The reason for using a second inverse 

Fourier transform is that we want to utilise a more random 

magnitude matrix than the single-valued matrix. Figure 1 

(top) presents two phase-only images derived from the two 

original images shown in Figure 1 (middle) respectively. 

Magnitude-only images These images were generated 

using the approach that Oppenheim and Lim [28] proposed. 

To be specific, an original image was decomposed into the 

phase and magnitude spectra: ଵܲ and ܯଵ using the Fourier 

transform. ଵܲ was replaced by a random noise matrix ଷܲ (∈ሾ−ߨ, ሿߨ ). The magnitude-only image was derived by 

performing the inverse Fourier transform on ଷܲ  and the 

original magnitude spectrum ܯଵ. Figure 1 (bottom) shows 

two magnitude-only images obtained from the two images 

presented in Figure 1 (middle) respectively.  
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3.1.2 Observers 

In the two experiments, ten observers were used. All of 

them were naive to the experiment and with normal or 

corrected-to-normal vision. 

3.1.3 Procedure 

Two different experiments were performed using the 

phase-only and magnitude-only images respectively. The 

magnitude-only experiment was performed at least one 

week earlier than the phase-only experiment. This strategy 

reduces the learning effect on the observers. The procedure 

of each experiment is similar to that of the experiments that 

Clarke et al. [4] and Dong and Chantler [7] conducted. In 

total, 334 trials were performed in each experiment. The 

334 Pertex [5], [13] textures were randomly used in the 334 

trails respectively. In each trial, the observer was shown 

two pairs of images (see Figure 2). These pairs were placed 

at the left and right sides of the screen respectively. The 

task of the observer was to compare the two pairs and 

decide which pair is more similar than the other. If the left 

pair was considered as being more similar, he/she pressed 

the “” key; otherwise, he/she pressed the “” key.  

3.1.4 Equipment 

The stimuli were shown on an NEC LCD2090UXi 

monitor, which was linearly calibrated to ߛ ൌ ͳ . The 

maximum luminance of the monitor was 120cd/mଶ. Thus, 

the stimuli appear that they are rendered using the similar 

lighting conditions to those in a bright room. Besides, the 

stimuli were resized to 512×512 pixels. In contrast, the 

resolution of the monitor was set to 1600×1200 pixels. The 

pixel dimensions of the monitor were 0.255mm×0.255mm 

(= 100 dpi). In this context, the stimuli were shown on the 

monitor with the size of 130.56mm×130.56mm.  

3.1.5 Environment 

The distance between the observer and the monitor was 

kept as around 50cm. This distance approximately 

produced the angular resolution of 17 cycles per degree 

(CPD). As a result, the stimulus subtended an angle of 

14.89° in the vertical direction. We conducted the 

experiment in a dark room. This room has black, matte and 

opaque curtains and the matte walls.  

3.2. Experimental results 

We investigate whether the phase-only image or the 

magnitude-only image yields more significantly different 

judgements from those obtained using the original texture 

image. The method that Dong and Chantler [7] used was 

applied. The humans’ pair-of-pairs judgements derived in 

the original pair-of-pairs experiment [4], i.e. ܱܲܲܬ௉ை௉ , 

were used as benchmarks. The judgements that the 

observers involved in the phase-only or magnitude-only 

experiments made were compared with ܱܲܲܬ௉ை௉ . The 

agreement rate (%) was used as the performance metric, 

which measures the percentage of the number of consisted 

judgements over the number of all judgements. Given an 

observer ݇ (݇ ൌ ͳ, ʹ, … , ͳͲ), the agreement rates computed 

between the judgements that this observer made in the 

phase-only and magnitude-only experiments and ܱܲܲܬ௉ை௉  

are denoted as: ܴܣ௞௉ை and ܴܣ௞ெை, respectively.  

Figure 3 displays the means and 95% confidence 

intervals of ܴܣ௞௉ை and ܴܣ௞ெை. It is shown that the observers 

made more consistent judgements when phase-only images 

were presented with those derived in the original 

pair-of-pairs experiment [4] than the judgements that they 

made when magnitude-only images were shown. Figures 4 

(left) and (right) show the most consistent trials obtained in 

the phase-only and magnitude-only experiments 

respectively. It is suggested that both the periodic and 

aperiodic patterns were available to the observers when the 

phase-only images were used; while only the periodic 

patterns were available when the magnitude-only images 

were used, for the pair-of-pairs comparison task. 

3.3. Analysis 

Furthermore, we examine the significance of the 

difference between ܴܣ௉ை  and ܴܣெை . We first performed 

the K-S test [20], [34] on the difference data in order to test 

its normality. As shown in Table 1, the distribution of the 

difference between ܴܣ௉ை  and ܴܣெை  is normal. Then, a 

dependent t-test [17] was used to examine the significance 

  

Figure 2: A trial and the setup used in the pair-of-pairs

comparison experiment. Here, two pairs (left and right) of

stimulus images are presented simultaneously. The task of the

observer is to compare the similarity between the two pairs and

decide on which pair is more similar than the other pair. 

   

Figure 3: Means and 95% confidence intervals (error bars) of the 

agreement rates computed between the pair-of-pairs judgements 

that each observer made in the phase-only and magnitude-only 

experiments and those (ܱܲܲܬ௉ை௉) obtained in [4]. 
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of the difference data. The results of the t-test are shown in 

Table 2. It shows that the observers agreed with those 

involved in the original pair-of-pairs experiment [4] when 

the phase-only images were used (M = 66.90, SE = 1.22) 

significantly more than that they agreed when the 

magnitude-only images were used (M = 57.82, SE = 2.12), 

t(9) = 6.208, p < 0.05, r = 0.900. These results indicate that 

the phase data is more important to human perceptual 

texture similarity estimation than the magnitude data.  

 How well do computational texture features 

exploit the phase spectrum for texture 

similarity? 

In a survey of 51 feature sets, Dong and Chantler [6], [7] 

found that none of these exploit higher order statistics 

(HOS) over the spatial extent larger than 19×19 pixels. By 

conducting a series of evaluation experiments, they further 

found that those feature sets did not produce the consistent 

texture similarity data with humans’ judgements. The 

inconsistency was attributed to the issue that none of the 51 

feature sets use long-range interactions [12], [30], [35]. The 

complicated image patterns encoded in these interactions 

have been associated with global HOS [27], e.g. the phase 

spectrum. Therefore, we are inspired to investigate the 

ability of the 51 feature sets to exploit the phase spectrum 

for estimating human perceptual texture similarity. (Please 

refer to [6] for the details of these features sets). The 

pair-of-pairs comparison scheme that we used in Section 3 

was used. We tested the 51 feature sets using the 

phase-only and magnitude-only images. The pair-of-pairs 

judgements derived using the two types of images were 

compared with those obtained using the original Pertex [5], 

[13] images, to examine the effect of the phase and 

magnitude spectra on texture similarity.  

4.1.  Experimental setup 

4.1.1 Feature extraction 

We performed feature extraction in the same manner as 

that Dong and Chantler [7] introduced. However, only the 

resolution of 1024×1024 pixels was used for the Pertex [5], 

[13] images. The phase-only or magnitude-only images 

were normalised to obtain the average intensity of 0 and 

standard deviation of 1. This processing eliminates the 

influence of 1st- and 2nd-order grey level statistics.  

4.1.2 Computing pair-of-pairs judgements 

The histogram-based and non-histogram-based feature 

vectors were first ܮଵ and ܮଶ normalised respectively. Then, 

the Chi-Square [32] and Euclidean distances were used to 

compute the distance between the two types of feature 

vectors, respectively. In terms of a feature set, the pair-wise 

distance matrix calculated between the phase-only or 

magnitude-only images was linearly stretched to [0, 1]. The 

similarity matrix was derived by subtracting this matrix 

from 1. The pair-of-pairs judgment was obtained according 

 

 

 

 

Figure 4:  The most consistent trials (central quarters are shown)

used in the two pair-of-pairs experiments: (left) phase-only and 

(right) magnitude-only, in which all ten observers decided that the 

top pair was more similar than the bottom pair. 

t-test  t p r df Is Sig.? ܴܣ௉ை vs. ܴܣெை 6.208 0.000 0.900 9 Yes 

Table 2: The results of the dependent t-test (∂=0.05) performed 

between ܴܣ௉ை and ܴܣெை. ݎ ≥ Ͳ.5 indicates a strong effect [11]. 

K-S Test  Statistic df Sig. (p) Is Normal?ܴܣ௉ை −  ெை 0.250 10 0.077 Yesܴܣ

Table 1: The results of the K-S test performed on the difference 

between ܴܣ௉ை and ܴܣெை. 
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to the difference between the similarities of the two pairs of 

images used in a trial of the pair-of-pairs experiments [7]. 

As a result, two judgement sets were derived using the 

phase-only and magnitude-only images, respectively.  

4.2. Results 

Given a feature set, the two sets of judgements obtained 

above were compared with the judgement set derived from 

the original Pertex [5], [13] images. The agreement rate (%) 

[7] was used to measure the consistency between two 

judgement sets. Using a feature set ݂ (݂ ∈ {ͳ,⋯ 5ͳ}), the 

agreement rate computed between the judgements obtained 

using the original and phase-only images and that 

calculated between the judgements derived using the 

original and magnitude-only images are denoted as: ܣܥ ௙ܴ௉ை 

and ܣܥ ௙ܴெை . Figure 5 shows the values of ܴܣܥ௉ை  and ܴܣܥெை produced by the 51 feature sets.  It can be seen that 

the agreement rate calculated between the judgements 

derived from the original and phase-only images is lower 

than that computed between the judgements obtained from 

the original and magnitude-only images in most cases. 

Furthermore, Figure 6 displays the means and 95% 

confidence intervals of the ܴܣܥ௉ை and ܴܣܥெை  values 

computed across the 51 feature sets. It is shown that the 

average agreement rate computed between the original and 

phase-only judgements is lower than that computed 

between the original and magnitude-only judgements.  

4.3. Analysis 

The t-test [17] was first used to examine the significance 

of the difference between ܴܣܥ௉ைand ܴܣܥெை. Since t-test 

assumes that the input data follows the normal distribution, 

we used the K-S test [20], [34] to examine the normality of 

the difference data. Table 3 reports the results of the K-S 

test. It is shown that the distribution of the difference 

between ܴܣܥ௉ைand ܴܣܥெை is normal. A dependent t-test 

was then applied to ܴܣܥ௉ைand ܴܣܥெை . The results are 

presented in Table 4. As can be seen, the difference 

between the agreement rates computed between the 

judgements obtained using the original and phase-only 

images (M = 57.67, SE = 1.72) is significantly lower than 

those calculated between the judgements derived using the 

original and magnitude-only images (M = 77.88, SE = 4.03), 

t(50) = -11.395, p < 0.05, r = 0.850. The above results 

demonstrate a contradict trend with those obtained using 

human obserbers in Section 3.  

Therefore, we further compared the judgements obtained 

using the 51 feature sets with the humans’ judgements 

obtained in Section 3. Using the phase-only and 

magnitude-only images, two sets of agreement rates were 

produced respectively and are shown in Figure 7. It can be 

seen that none of the 51 feature sets produced the higher 

agreement rate than 67.60% compared against the human 

data no matter whether the phase-only or magnitude-only 

images were used. With regard to the two types of images, 

the average agreement rates computed across the 51 feature 

sets are 54.44%±1.48 and 59.57%±1.33 respectively. In 

particular, the agreement rate calculated between humans’ 

judgments and those obtained using the 51 feature sets went 

up when they could not use the phase data, compared to that 

calculated when they were able to use these data. Since it 

has been shown that humans use the phase data to estimate 

texture similarity, it is likely that the 51 feature sets do not 

exploit this type of data as well as that humans perform. 

  

Figure 6: Means and 95% confidence intervals (error bars) of the 

agreement rates computed between the pair-of-pairs judgements

obtained from the original and phase-only images and those

computed between the judgements obtained from the original and

magnitude-only images using the 51 feature sets. 
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Figure 5: Each bar group shows the agreement rate computed

between the pair-of-pairs judgements obtained from the original

and phase-only images using a feature set (left) and that computed

between the judgements obtained from the original and

magnitude-only images using the same feature set (right). 
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Phase−Only Magnitude−Only K-S Test  Statistic df Sig. (p) Is Normal?ܴܣܥ௉ை −  ெை 0.093 51 0.200 Yesܴܣܥ

Table 3: The results of the K-S test performed on the difference 

between ܴܣܥ௉ை and  .ெைܴܣܥ

t-Test  t p r df Is Sig.? ܴܣܥ௉ை vs. ܴܣܥெை -11.395 0.000 0.850 50 Yes 

Table 4: The results of the dependent t-test (∂=0.05) performed 

between ܴܣܥ௉ை and ܴܣܥெை. ݎ ≥ Ͳ.5 indicates a strong effect. 

2763



   

 

 

 

 The multi-channel feature fusion method 

exploiting the phase spectrum 

In Section 3, it has been shown that the phase data is 

more important to humans for estimating texture similarity 

than the magnitude data. Nevertheless, the opposite 

observation was obtained for the 51 feature sets in Section 4. 

These results indicate that the inconsistency between the 

performance of humans and those obtained using the 51 

feature sets is due to the issue that these feature sets do not 

exploit the phase data as well as that humans do.  

In this context, it is likely that the performance of the 51 

feature sets can be boosted if we enable these to better 

exploit the phase data than that they have performed. The 

straightforward solution can be achieved by extracting 

features from the phase spectrum. To our knowledge, 

however, rare image features are designed based on this 

type of data. This dilemma is due to the known phase 

unwrapping problem [40]. Alternatively, we propose to use 

the phase-only image generated from an image to exploit 

the phase data because this image excludes the interference 

of the original magnitude spectrum. Consequently, we are 

able to “force” the feature set to utilise the phase data by 

fusing the features extracted from the phase-only image 

with those computed from the original image. Considering 

the features based on convolutional neural networks (CNN) 

[21-22], [33] normally produce state-of-the-art results, we 

also propagate this method to CNN features. 

5.1. Multi-channel feature sets exploiting the 

phase data 

Given a feature set ݂, the feature vectors extracted from 

the original and phase-only images are denoted as: ܨை௥௜௚ 

and ܨ௉ை  respectively. The fused feature vector ܨை௥௜௚ା௉ை 

was computed according to: ܨை௥௜௚ା௉ை ൌ ை௥௜௚ܨሺ݁ݏݑ݂ ,  ௉ைሻ, (1)ܨ

where ݂݁ݏݑሺሻ is the fusion method. We used two different 

fusion methods for continuous and histogram-based feature 

vectors respectively. For the continuous feature vectors, we 

used the Canonical Correlation Analysis (CCA) [15] 

method. On the other hand, the histogram-based feature 

vectors were directly concatenated because the CCA 

method cannot generate a histogram-based feature vector. 

We also fused the feature vector ܨை௥௜௚  with that 

extracted from the magnitude-only image for comparison 

purposes. This fused feature vector is denoted as: ܨை௥௜௚ାெை. 

The scheme shown in Eqation (1) was perfomed for each of 

the 51 feature sets and CNN [21-22], [33] feature sets.  

5.2. Perceptual texture similarity estimation using 

the multi-channel feature sets 

We tested the two types of fused feature sets using the 

pair-of-pairs comparison task. The humans’ judgements 

obtained using the original images [7] were used as the 

ground-truth data. The experimental setup that Dong and 

Chantler [7] introduced was used.  

5.2.1 Using the 51 feature sets 

Figure 8 shows three sets of agreement rates calculated 

between humans’ pair-of-pairs judgements and those 

derived using three versions of each of the 51 feature sets: ܨை௥௜௚, ܨை௥௜௚ା௉ை and ܨை௥௜௚ାெை, respectively. It can be seen 

that: (1) the fusion of the features extracted from the 

original and phase-only images, i.e. ܨை௥௜௚ା௉ை, provided the 

higher agreement rate than that of the features computed 

from the original and magnitude-only images, i.e. ܨை௥௜௚ାெை, 

for 30 out of the 51 feature sets. In contrast, this number is 

21 for the case that ܨை௥௜௚ାெை outperformed ܨை௥௜௚ା௉ை; and 

(2) the two types of fused feature sets: ܨை௥௜௚ା௉ை  and ܨை௥௜௚ାெை  usually produced better results than those 

obtained using the corresponding original feature set: ܨை௥௜௚ 

(57.21%±3.62 vs. 55.79%±2.87 and 56.56%±3.36 vs. 

55.79%±2.87). These results suggest that the performance 

of the 51 feature sets can be improved when they are 

enabled to utilise the phase data encoded in the phase-only 

images, on average. Although the joint utilisation of the 

 

Figure 8: The agreement rates computed between the judgements

of the humans used in the pair-of-pairs experiment [4] and those

derived using three versions of each of the 51 feature sets. 
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Figure 7: The agreement rates computed between the pair-of-pairs

judgements of humans and those derived using the 51 feature sets

when phase-only and magnitude-only images are used. 
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magnitude-only images can also boost the average 

performance of these feature sets, the margin is lower than 

that improved by using the phase-only images. This 

observation further emphasises the importance of the phase 

spectrum to texture similarity.  

5.2.2 Using CNN features 

We further applied the multi-channel feature fusion 

method to CNN [21-22], [33] features. Since we only have 

a relatively small texture dataset with the higher resolution 

human perceptual similarity data, it is not practical to train 

a CNN from scratch using this dataset. However, the 

features extracted from the penultimate fully-connected 

(FC) layer of a pre-trained CNN are normally considered as 

generic. Therefore, we extracted the FC features using a 

pre-trained CNN: VGG-VD16 [33]. In addition, we 

fine-tuned this CNN as this operation usually improves the 

performance. The FC feature sets were extracted using the 

pre-trained and fine-tuned VGG-VD16 [33] models. Given 

a CNN model, three feature sets: ܥܨை௥௜௚, ܥܨ௉ை and ܥܨெை 

were extracted from the original Pertex [5], [13] dataset and 

its phase-only and magnitude-only variants, respectively.  

The multi-channel feature fusion method was applied to 

the three feature sets. The two types of fused feature sets: ܥܨை௥௜௚ା௉ை  and ܥܨை௥௜௚ାெை  were used to estimate texture 

similarity. The estimated similarity data was compared 

against humans’ data [4]. The performances obtained using 

the three single channel CNN feature sets and the two fused 

CNN feature sets are shown in Table 5. As can be observed, 

the fusion of the CNN features extracted from the original 

Pertex [5], [13] and phase-only images: ܥܨை௥௜௚ା௉ை 

outperformed the fusion of the CNN features extracted 

from the original and magnitude-only images: ܥܨை௥௜௚ାெை 

with a large margin. The fused features obtained from the 

fine-tuned CNN model generated better results than those 

derived using the fused features obtained from the 

pre-trained model. Especially, the best performance: 73.40% 

obtained using ܥܨை௥௜௚ା௉ை features that were extracted from 

the fine-tuned CNN model is very close to the agreement 

rate of 73.9% calculated between the judgements of two 

different groups of human observers [6-7]. 

 Conclusions and future work 

It has been highlighted that the Fourier phase spectrum is 

important to perception of the appearance of natural images 

[14], [18], [27], [28], [38]. Particularly, the phase spectrum 

is more important to perception of imagery than the 

magnitude spectrum [28]. However, it is unknown whether 

or not this is the case for texture similarity. In the previous 

studies, Dong et al. [6], [7], [9] found that none of 51 

existing texture feature sets compute higher order statistics 

(HOS) over spatial regions larger than 19×19 pixels. In 

contrast, the Fourier phase spectrum encodes long-range 

HOS [27]. 

Therefore, we were inspired to investigate the effect of 

the phase spectrum on texture similarity. We first 

performed a psychophysical experiment in order to 

examine which of the phase and magnitude spectra plays a 

more important role in this task. The phase-only and 

magnitude-only images obtained from original Pertex [5], 

[13] images were used as stimuli. The experimental results 

showed that the phase data is more important to humans for 

estimating texture similarity than the magnitude data. 

Furthermore, we tested the 51 feature sets using the 

perceptual texture similarity estimation task. It was found 

that, however, the magnitude data is more important to 

these feature sets than the phase spectrum. 

Considering the inconsistency between the performance 

of human observers and those obtained using the 51 feature 

sets [6], [7], [9], our conjecture was that the inconsistency 

was resulted from the difference in the ability of humans 

and these feature sets to utilise the phase spectrum. In this 

context, it is likely that the performances of the 51 feature 

sets can be boosted if we enable these to better exploit the 

phase spectrum than they have performed. To this end, the 

fusion of the features computed from the original and 

phase-only images was conducted for each feature set. The 

51 fused feature sets were applied to perceptual texture 

similarity estimation. Our results showed that the average 

performance of the 51 feature sets was improved by using 

the fusion scheme. Besides, the similar observation can be 

obtained when the fusion scheme was applied to CNN 

features [33]. We attribute these encouraging results to the 

importance of the phase data to texture similarity. 

It is noteworthy that Järemo Lawin et al. [16] proposed 

an efficient phase unwrapping approach recently. In our 

future work, we intend to explore the possibility of 

extracting features from the phase data generated from the 

noisy Fourier phase spectrum using this approach. 

However, the key point of the current work is that we have 

shown the importance of the Fourier phase spectrum to 

texture similarity. This finding may encourage more studies 

in this direction. 
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Model ࢍ࢏࢘ࡻ࡯ࡲ ࡻࡹ࡯ࡲ ࡻࡼ࡯ࡲ ࢍ࢏࢘ࡻ࡯ࡲାࢍ࢏࢘ࡻ࡯ࡲ ࡻࡼାࡻࡹ 

Pre-trained 69.10 66.30 62.80 70.70 64.30 

Fine-Tuned 72.80 69.20 67.50 73.40 65.10 

Table 5: The agreement rates (%) computed between the human 

perceptual pair-of-pairs judgements [4] and those obtained using 

the features that are extracted from original Pertex images [5], [13], 

phase-only images, magnitude-only images, and two types of fused 

CNN features: ܥܨை௥௜௚ା௉ை  and  ܥܨை௥௜௚ାெை. Here, two VGG-VD16 

[33] CNN models: pre-trained and fine-tuned are used. 
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