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Abstract

Distinguishing edges caused by a change in depth from

other types of edges is an important problem in early vi-

sion. We investigate the performance of humans and com-

puter vision models on this task. We use spherical imagery

with ground-truth LiDAR range data to build an objective

ground-truth dataset for edge classification. We compare

various computational models for classifying depth from

non-depth edges in small images patches and achieve the

best performance (86%) with a convolutional neural net-

work. We investigate human performance on this task in a

behavioral experiment and find that human performance is

lower than the CNN. Although human and CNN depth re-

sponses are correlated, observers’ responses are better pre-

dicted by other observers than by the CNN. The responses

of CNNs and human observers also show a slightly differ-

ent pattern of correlation with low-level edge cues, which

suggests that CNNs and human observers may weight these

features differently for classifying edges.

1. Introduction

Edge detection is an important early step in both human

and computer vision. However, edges in images are pro-

duced by multiple causes. Some edges are produced by a

change in 3D surface normal or a change in depth, but edges

also occur on flat surfaces wherever there is a change in sur-

face reflectance or illumination. Distinguishing these dif-

ferent edge types is important for segmenting objects from

background and recovering 3D scene structure. Humans are

able to perform edge classification seemingly effortlessly,

but the mechanism is poorly understood.

Computer vision researchers are increasingly turning to

convolutional neural networks (CNNs) to solve complex vi-

sual tasks. The current generation of deep CNNs are able

to match or exceed human performance on a range of tasks

[8, 13, 12, 5, 18]. The hierarchical structure of these net-

works mirrors the architecture of the human visual sys-

tem, and the representations learned at different CNN lay-

ers is similar to those in visual regions such as V4 and IT

[20, 9, 19]. Despite similar task accuracy for CNNs and hu-

mans, there is some evidence the two systems perform tasks

in different ways. For example, humans and CNNs rely on

different image regions when doing the same classification

task [11] and CNNs are much more susceptible to image

noise [16, 21, 3].

In this paper, we investigate the performance of CNNs

and humans on the task of local edge classification in

monocular images. Although edge classification is not nec-

essarily only a local problem – feedback from other image

areas probably plays a role – we are primarily interested

in how local image information is used in the feed-forward

processing of edges. Unlike previous studies of this prob-

lem, which have generally relied on human-labeled edges,

we use spherical imagery and LiDAR range data to build an

objective ground-truth dataset for edge classification.

2. Prior work

Most previous work has focused on classifying human-

labeled occlusion edges, without considering the amount of

depth change at the edge. (Some occlusion edges, such as

the edge between the base of an object and a supporting

surface, may involve little or no change in depth.)

Balboa et al. [2] compared image statistics at regions

with and without occlusion edges and found that luminance

contrast tends to be higher at an occlusion edge. Ing et al.

[10] compared human and model performance in discrimi-

nating occlusion edge patches from non-occlusion patches

in images of outdoor foliage. They found that both humans

and models could perform the task with about 80% accu-

racy, although humans required some task-specific training

to reach the same performance as the models. The pri-

mary features used by both humans and models were lu-
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minance and color contrast. DiMattina et al. [4] investi-

gated the same task using a larger variety of outdoor scenes.

They found that human observers relied on both luminance

and texture cues to perform the task and that a neural net-

work classifier could match human performance, although

simpler linear classifiers could not. Sarkar et al. [14] pro-

posed a CNN to distinguish occlusion edge patches from

non-occlusion patches in indoor scenes. Unlike the previ-

ous studies, they defined occlusion edges as edges with a

change in depth and obtained ground-truth depth informa-

tion using a Microsoft Kinect sensor. However, their ap-

proach is limited to fairly small indoor environments due to

the lighting and range restrictions of the Kinect.

In this study, we model the detection of depth edges as

a two-part problem. First all visible edges in the image are

detected. Then, these edges are labelled as either depth or

non-depth. This may be a more efficient way to approach

the problem, since edges (of any kind) make up only a very

small percentage of an image. Previous work on this ap-

proach comes from Vilankar et al. [17], who investigated

depth versus non-depth edge classification by human ob-

servers. They found that luminance contrast was a partic-

ularly strong cue for this task and predicted human edge

classification with 83% accuracy. Like prior studies, they

used human annotators to label the ground truth depth and

non-depth edges.

3. Dataset

We use the publicly-available Southampton-York Nat-

ural Scenes (SYNS) dataset (https://syns.soton.ac.uk) [1].

This dataset includes spherical HDR imagery and LiDAR

range data from 60 different outdoor locations in the

Southampton area, randomly sampled from a set of 20 land

use categories. Figure 1 shows an example scene. 20 scenes

(one from each land use category) were reserved as a test set

and the remaining 40 scenes were used for training.

HDR images were captured using a Spheron SpheroCam

HDR with a 360° by 180° field of view and a resolution of

4 arcmin, which produces a 5,400 x 2,700 pixel image in

equirectangular projection. 26 exposure stops were used to

produce the HDR image. LiDAR range maps were captured

using a Leica ScanStation P20 with a 360° by 135° field of

view, a maximum range of 125 m, and a resolution of 2.2

arcmin, which gives 10,054 x 3771 samples in equirectan-

gular projection. In each scene, the LiDAR range data were

co-registered to the HDR image by finding a rigid transfor-

mation which would align the positions of three calibration

targets visible in both images, as described in [1].

4. Ground truth for depth edge classification

In each spherical image, we sampled 42 camera angles

roughly uniformly over the view sphere using an icosahe-

0 1 2 3 4 5
Range (log(m))

Figure 1: Spherical HDR image (top) and LiDAR range

data (bottom) for an example scene from the Southampton-

York Natural Scenes dataset [1].

dral grid. This sampling included views pointing directly

up (elevation = 90°) and directly down (elevation = -90°),

but the view pointing directly down was discarded because

there were no LiDAR samples in this view. Each point on

the view sphere was assigned to the closest camera angle,

tesselating the sphere into 42 polygonal regions each with

a radius of about 17°. At each camera angle, we projected

a 48° x 48° image from both the spherical HDR image and

LiDAR range map (Figure 2(a)); this field of view is slightly

larger than the polygonal region sampled by the camera to

avoid problems with edge detection algorithms at the image

boundaries. The HDR images in this dataset have a range

of 0.0-3696.0. We converted the projected HDR image to

an 8-bit image using an exponential compression algorithm

[7], with the exposure chosen so that the median value in

the HDR image would map to the central grayscale value

(127). This formula reduces to:

I ′ = 255
(

1− 0.5
I

m

)

(1)

where I ′ is the 8-bit pixel value, I is the HDR pixel

value, and m is the median HDR value in the projected im-

age.

In this study, we restricted our attention to luminance

edges, converting the 8-bit color images were to grayscale

luma (Y’) using the Rec. 601 standard. We detected edges

in the image and range map using a multiscale edge de-

tector [6] with noise parameter set to 3 gray levels for im-

age edge detection (Figure 2(c)) and 1 mm for range edge

detection (Figure 2(d)). We discarded edges in image re-

gions with missing LiDAR data, as well as edges gener-

ated by motion artifacts or the calibration targets used to

align the HDR and LiDAR images. Motion artifacts, which

appear as vertical streaks in the HDR image, were identi-

fied automatically by comparing vertical filter responses in

two HDR images taken a few minutes apart. Pixels above
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Figure 2: Overview of our method to compute ground-truth

depth contrast at image edges. We project views from (a)

the spherical HDR image and (b) range map. We use a

multiscale edge detector to detect (c) image edges and (d)

range edges. For each image edge, we look for a match-

ing depth edge. (e) Matched edges are labeled according

to their depth contrast; unmatched edges are labeled with a

depth contrast of zero. (f) We assign edges to two classes:

“non-depth” edges, which have no matching edge in the

range map, and “depth” edges with a depth contrast >0.1.

an empirically-determined threshold difference were iden-

tified, and regions above a threshold size were labeled as

motion artifacts. The calibration targets were labeled by

hand.

The rigid alignment of the spherical HDR and LiDAR

images in the database is quite good: 66% of points are

aligned to within 0.067° (the width of an HDR pixel at the

horizon). However, the remaining alignment errors can be

as high as 0.4° (about 6 pixels), which causes significant

problems when trying to measure the ground truth depth

change at image edges. To correct for these remaining

alignment errors, we associated each image edge with the

range edge most likely to be a match, by finding the range

edge i which maximized the posterior probability:

p(xi|match)p(θi|match)p(match)

p(xi|nonmatch)p(θi|nonmatch)p(nonmatch)
(2)

where xi is the angular distance between the image

and range edge, θi is their difference in orientation, and

p(match) and p(nonmatch) are the prior probabilities on

an image edge matching (or not matching) any randomly-

selected range edge. The priors and the distributions for

matched edges p(xi|match) and p(θi|match) were learned

from training data by matching a subset of edges by hand.

The distributions for nonmatching edges assume that both

edges are selected at random: the distribution of distances

for nonmatching edges p(xi|nonmatch) is the distance be-

tween any two random points in an image and the distribu-

tion of orientation difference p(θi|nonmatch) is uniform.

If no range edge with posterior probability above a

threshold was found, then the image edge was labeled as

a “non-depth” edge (25% of all edges). We chose a thresh-

old of 0.05 based on visual inspection of the results. For

Spheron edges with a match, we computed depth contrast:

the difference between the range values on either side of the

edge divided by their sum. We measured the range value on

each side of the edge by averaging the LiDAR range val-

ues at 3 sample locations in the direction of the gradient, at

a distance of 0.07, 0.11, and 0.14° from the edge. Edges

with depth contrast greater than 0.1 were labeled as “depth”

edges (13% of all edges). Estimated edge depth contrasts

and edges labelled as depth and non-depth for a sample im-

age are shown in Figure 2(e) and 2(f), respectively.

5. Computational methods: A CNN for local

edge depth classification

We built a small neural network for depth edge classi-

fication. The network consists of two convolutional layers

followed by two fully-connected layers. The first convolu-

tional layer uses 64 kernels of size 5 pixels x 5 pixels x 3

color channels with a stride of 1 pixel; the second convo-

lution layer uses 64 kernels of size 5 pixels x 5 pixels x 64

channels with a stride of 1 pixel. Each convolutional layer

is followed by a normalization and max pooling in a 2 x

2 pixel window, which reduces the image size by one half.

The third and fourth layers of the network are fully con-

nected, consisting of 384 and 128 nodes, respectively. Each

fully-connected layer is followed by 50% dropout during

training. The last fully-connected layer outputs to a soft-

max classifier.
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The input to the network is an image patch centered on a

depth or non-depth edge (patch size = 8, 16, 24, or 32 pix-

els). We doubled the size of the training set by including

left-right mirror-reversed patches; no other data augmenta-

tion methods were used. Patches were normalized to have a

mean intensity of 0 and standard deviation of 1. However,

the original mean value and standard deviation of the patch

were concatenated onto the output of the final convolutional

layer and provided as input to the first fully-connected layer.

We used 200,000 edges sampled from the 40 training

scenes for training, and tested on 100,000 edges sampled

from the 20 test scenes. Each set included 2,500 “non-

depth” edges per scene and an equal number of “depth”

edges drawn randomly from the pool of all edges with depth

contrast over 0.1. The network was trained using stochastic

gradient descent with a learning rate of 0.1 and rate decay

of 0.1. The network was trained for 20,000 epochs with a

batch size of 128.

In addition to the standard network, we also trained

and tested networks on manipulated images. We removed

color information from the patches by converting them to

grayscale luma (Y’) using the Rec. 601 standard. In another

condition, we removed edge orientation information by ro-

tating all patches so that the detected edge was vertical. In

a third condition, we removed color and edge orientation

information by combining these manipulations.

6. Computational results

The performance of the CNN classifier across a range

of patch sizes and image conditions is shown in Figure 3.

When classifying unmanipulated images, performance in-

creases with patch size, from 83% correct for the smallest

patch size (8 pixels) to 86% for the largest patch size (32

pixels). The fact that performance improves only slightly

with increasing patch size suggests that the local informa-

tion at the edge provides much of the information needed to

distinguish depth from non-depth edges.

Both orientation and color seem to be important cues

for edge classification. Performance drops about 5% when

patches are rotated to a standard orientation, which sug-

gests that the orientation of the edge, or of structures near

an edge, are important for depth classification. Removing

color results in a larger performance drop, particularly for

the smallest patches. The information provided by color and

orientation is somewhat independent, since removing both

cues results in a larger performance drop than removing ei-

ther cue alone.

6.1. Network parameters

Figure 4 shows the effect of varying training set size and

the depth contrast threshold for labeling edges as “depth.”

All networks were trained and tested on 32-pixel image

patches in their original color and orientation. Performance
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Figure 3: CNN classification performance.
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Figure 4: CNN performance over different training set sizes

and threshold levels for labeling edges as “depth.”

increases with the number of training examples, though the

increase slows down after about 40,000 examples. Per-

formance also increases as the threshold used to identify

“depth” edges increases. This may be because high-depth

edges are less varied or have more reliable image cues.

6.2. Comparison with other methods

Table 1 shows the performance of various methods in

classifying depth versus non-depth edges using a 32 pixel

patch centered on the edge. Patches were rotated so that

the edge was vertical, with the higher-luminance side of the

edge on the left, and the original edge orientation was pro-

vided to the classifier as a separate input. Classifiers were

trained in MATLAB using 40,000 edges for training (50%
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Classifier Accuracy

CNN 0.83

SVM (Gaussian kernel) 0.78

Logistic regression 0.71

K-NN (K = 10) 0.56

Table 1: Comparison of different edge classification meth-

ods, classifying 32-pixel image patches.

(a) (b)

Figure 5: Examples of patches presented in the behavioral

experiment: (a) 8 pixels (b) 32 pixels.

depth) with 5-fold cross-validation and 20,000 edges for

test. The CNN trained with 40,000 examples achieves an

accuracy of 83%, while the next best performance, 78%,

comes from an SVM using a Gaussian kernel.

7. Psychophysical methods: Human depth

edge classification

We ran a behavioral experiment in which eight partic-

ipants classified a subset of the test patches shown to the

models.

7.1. Apparatus

Images were displayed on a 26 x 35.5 cm (1024 x 768

pixel) CRT display with a refresh rate of 100 Hz. Partic-

ipants were seated 53 cm from the screen in a darkened

room. A headrest was used to maintain viewing distance.

7.2. Stimuli

The stimuli were 800 edge patches (50% “depth”) from

the test scenes. Each patch was shown at the angular size

it subtended in the original scene (for example, a 32 pixel

patch was shown at 2.4° = 66 pixels).

7.3. Observers

Eight participants (three female) took part in the experi-

ment.

7.4. Procedure

Patches were shown individually in the center of a black

screen, with cross-hairs and a red dot which flashed once

for 300 ms to indicate the location of the central edge pixel

(Figure 5). Participants labeled each patch as “depth” or

“non-depth” by pressing one of two keys. There was no

time limit on responses.

Each patch was shown four times at four different

patches sizes: 8, 16, 24, and 32 pixels. Patches were pre-

sented in blocks of increasing size, so participants classified

all 800 edges in 8 x 8 pixel patches in the first block, then

classified the same 800 edges in 16 x 16 pixel patches in the

second block, etc. By monotonically increasing patch size,

we ensure that participants cannot use remembered infor-

mation from the larger patches to classify the smaller ones.

Presentation order was random within each block.

Prior to the start of the first block, participants did a prac-

tice block in which they classified 80 edges from the train-

ing scenes. Edges appeared in one of the four patch sizes,

selected at random, and participants received feedback after

each response in the practice block. There was no feedback

during the experimental blocks.

8. Psychophysical results

Human classification performance across patch size is

shown in Figure 6, along with the performance of the CNN

classifier on the patches shown in the behavioral exper-

iment. On average, human performance increased with

patch size. A repeated measures ANOVA shows a signif-

icant effect of patch size (F(3,21) = 8.29, p <0.01). Posthoc

Tukey HSD tests indicate that performance on the smallest

patch size is significantly different (p <0.01) from perfor-

mance on the two largest patch sizes.

The agreement between observers in classifying patches

was fairly low. We measured inter-observer agreement us-

ing Krippendorf’s alpha, which ranges from 0 (no agree-

ment) to 1 (perfect agreement), with values above 0.8 gen-

erally considered to mean good agreement. Inter-observer

agreement on the depth classification task ranged from 0.32

and 0.28 for the 8- and 16-pixel patches, respectively, to

0.36 for the two largest patch sizes.

At all patch sizes, human observers were less accurate

than the CNN classifier. However, this does not necessarily

mean that computer models have surpassed humans at real-

world depth edge discrimination, since there were some dif-

ferences between the way patches appeared in the exper-

iment and the way they would have appeared in the real

world. The stimuli patches were presented on a flat surface

at a fixed distance from the observer, which could make

binocular cues misleading. The patches were also lower

contrast and lower resolution (about 13 pixels per degree)

than they would have been if foveated in natural viewing

conditions. These differences may have misled observers

who were relying on priors learned from their everyday ex-

perience with outdoor scenes. Human observers may be

able to match CNN performance if given more extensive
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Figure 6: Human depth edge classification performance.

Dotted lines show the performance of individual observers.

The performance of the CNN on the same patches is shown

in red.

training on the lab-based classification task. However, we

did not do this because we are interested in how people nat-

urally interpret edge depth from images.

9. Human-model comparison

Figure 7 shows the concordance between observers’ re-

sponses and the CNN compared to the concordance be-

tween all pairs of observers. Concordance is computed

as the percentage of trials on which both observers give

the same response. Concordance between humans and the

CNN is similar to concordance between pairs of human ob-

servers and increases with patch size. However, this un-

corrected measure of concordance is confounded with both

accuracy and response bias. In this experiment, accuracy in-

creased with patch size, and most observers (and the CNN)

showed a bias to label edges as “non-depth.” Both of these

factors work to inflate the apparent agreement between the

CNN and human observers.

Figure 8 shows the corrected concordance, calculated as

the difference between the proportion of trials on which

observers agree and the proportion of trials on which they

would have agreed by chance given their performance (pro-

portion correct) in each ground truth category. This gives

a measure of the agreement not explained by the accuracy

or bias of the observers. In general, corrected concordance

between pairs of human observers is higher than corrected

concordance between observers and the CNN, and the con-

cordance does not increase with patch size.

We also compared the human and model responses to in-
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Figure 7: Average concordance between human observers

and the CNN versus pairs of human observers. The shaded

region indicates standard error.
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Figure 8: Average corrected concordance between human

observers and the CNN versus pairs of human observers.

The shaded region indicates standard error.

dividual edges using the method described in [5]. For each

image patch shown in the experiment, we computed a hu-

man depth confidence score which was the percentage of

observers who labeled the patch as “depth.” We used the

“depth” logit values from the CNN classifier as a measure

of the model’s confidence. The correlation between human

and model confidence across patch sizes is shown in Figure

9. Human and model confidence is moderately correlated

with a correlation coefficient (Spearman’s rho) of 0.52 for

the smallest patch size and 0.60-0.63 for the larger patch

sizes. The increase in correlation with patch size is likely
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Figure 9: Correlation coefficient (Spearman’s rho) between

the human observer and CNN classifier confidence in clas-

sifying edges as “depth.” The shaded region indicates the

95% bootstrap confidence interval.

due to the increase in accuracy with patch size for both hu-

man observers and the CNN.

We can use the confidence scores to predict the responses

of individual observers in a logistic regression. The av-

erage variance in human observer responses explained by

the CNN and human “depth” confidence scores is shown in

Figure 10. For this analysis, the human confidence score

is computed using N-1 observers; the observer that will

be predicted by the regression is excluded. The variance

explained by each type of confidence score increases with

patch size, but this is likely due to the increase in accuracy

with patch size. Across all patch sizes, the regression based

on human confidence scores can better explain individual

observers than the regression based on the CNN confidence

scores. In other words, we can better predict the “depth” re-

sponses of a single human observer by averaging responses

from other observers than by using the “depth” responses of

the CNN.

Examples of patches on which human observers agree

or disagree with the CNN are shown in Figure 11. Human

observers tend to agree with the CNN on patches that show

foliage or objects against sky, which both label as “depth,”

and patches which show ground textures, which both label

as “non-depth.” There is more disagreement about dense fo-

liage, which tends to be labeled as “depth” by the CNN but

not human observers, and some patches with high-contrast

textures or man-made objects, which human observers are

more likely to label as “depth.”

9.1. Role of individual edge cues

There are a number of local cues which may be useful

for edge classification. Table 2 shows the performance of

a Bayesian classifier using kernel density estimation (Gaus-

sian kernel with bandwidth from [15]) and a single local
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sponses which is explained by the CNN or human confi-
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Figure 11: Examples of patches labeled as “depth” or “non-

depth” by human observers (columns) or the CNN (rows).

feature. Features are computed in a 3 x 3 pixel patch on

either side of the edge. To measure color at the edge, we

convert patches to CIE-LAB and use the A and B channels

as a measure of red-green and blue-yellow intensity, respec-

tively. We use two measures of contrast: Michelson and

root mean square (RMS). Michelson contrast is the differ-

ence in the mean intensity on either side of the edge over the

sum of the means. RMS contrast is the standard deviation

of intensity over the mean intensity of the entire patch.

Although luminance contrast is a useful feature for edge

classification, it is only able to predict edge depth in this

dataset with 66% accuracy; color contrast measures per-

form somewhat better. The best single predictor of edge

type in our dataset was angular elevation (i.e., the “vertical”

location of the edge in the spherical image), which is pre-

dictive because depth edges in outdoor scenes mostly occur

around or above the horizon.

Figure 12 shows the performance of a Bayesian classifier

trained to predict CNN or human “depth” responses from

individual features. The classifier uses a Gaussian kernel
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Edge cue Accuracy

Luminance (mean) 0.61

Luminance contrast (Michelson) 0.66

Luminance contrast (RMS) 0.50

Red-green (mean) 0.69

Blue-yellow (mean) 0.59

Red-green contrast (Michelson) 0.68

Red-green contrast (RMS) 0.71

Blue-yellow contrast (Michelson) 0.69

Blue-yellow contrast (RMS) 0.72

Edge orientation 0.50

Edge elevation 0.78

All cues except elevation 0.70

All cues 0.71

Table 2: Classification of depth versus non-depth edges us-

ing individual edge cues in a Naı̈ve Bayes classifier.

with bandwidth from [15]). The classifier was trained on

50% of the images and tested on the remaining 50%; the

reported accuracy is the average of 100 random train-test

partitions. For the human responses, the reported accuracy

is the average of 100 random train-test partitions for each of

the 8 observers.

CNN depth responses are best predicted by elevation and

blue-yellow contrast at the edge, which our previous anal-

ysis indicates are the cues most strongly related to depth

in this dataset. Note that while the CNN cannot directly use

elevation as a feature to classify patches, since this informa-

tion was not available, it may rely on other features that vary

with elevation such as foliage color or textures. Blue-yellow

contrast is the best predictor of human responses at larger

patch sizes, but luminance contrast is a better predictor for

the smallest patches. Compared to the CNN, human ob-

servers’ responses are less well predicted by most features,

which may simply reflect the fact that humans were less ac-

curate at this task. Compared to the CNN, human responses

are better predicted by the luminance contrast across the

edge and the orientation of the edge. These differences may

explain some of the disagreement between the CNN and hu-

mans (Figure 11). The CNN is more likely to label dense

tree foliage as “depth” because it relies on features corre-

lated with elevation, while human observers are more likely

to label high-contrast ground textures as “depth” because

they rely more on luminance contrast.

10. Conclusion

In this study, we used spherical imagery with LiDAR

range data to build an objective ground truth database for

local edge classification. We found that CNNs can distin-

guish depth versus non-depth edges quite accurately, and in

Luminance (mean)

Luminance contrast (Michelson)

Luminance contrast (RMS)

Red-green (mean)

Blue-yellow (mean)

Red-green contrast (Michelson)

Red-green contrast (RMS)

Blue-yellow contrast (Michelson)

Blue-yellow contrast (RMS)

Orientation

Elevation

Patch size

8 16 24 32 8 16 24 32

0.6 0.7 0.8 0.90.5
Concordance

CNN Human
Depth responses

Figure 12: Predictions of the of CNN (right) or human (left)

depth responses across patches sizes by a Bayes classifier

using various edge cues.

fact the best networks exceed the performance of untrained

humans at this task. Although the CNN captures some as-

pects of human performance, it may also be exploiting some

cues which humans do not use, which allows it to achieve

higher performance. As a result, a CNN is not a perfect

model for human depth edge discrimination.
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