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Abstract

Visual attention is a smart mechanism performed by the

brain to avoid unnecessary processing and to focus on the

most relevant part of the visual scene. It can result in a

remarkable reduction in the computational complexity of

scene understanding. Two major kinds of top-down visual

attention signals are spatial and feature-based attention.

The former deals with the places in scene which are worth

to attend, while the latter is more involved with the basic

features of objects e.g. color, intensity, edges. In principle,

there are two known sources of generating a spatial atten-

tion signal: Frontal Eye Field (FEF) in the prefrontal cortex

and Lateral Intraparietal Cortex (LIP) in the parietal cor-

tex. In this paper, first, a combined neuro-computational

model of ventral and dorsal stream is introduced and then,

it is shown in Virtual Reality (VR) that the spatial attention,

provided by LIP, acts as a transsaccadic memory pointer

which accelerates object localization.

1. Introduction

At any given time, a vast volume of input data enters our

visual system. The visual system has been evolved in such a

way that it relinquishes most of them and only considers the

important parts of the input data. Otherwise, the complex-

ity of data processing would be too high. The mechanism

of ignoring unrelated data and attending to only important

parts of the visual field for the sake of faster scene under-

standing is called visual attention. Visual attention can be

driven by two major classes of factors: bottom-up and top-

down [9]. Bottom-up factors are involved with basic and

complex features and are derived from the visual scene [17]

whereas top-down ones are cognitive and mostly based on

prior knowledge, expectations and goals [8].

The importance of the visual field parts could be re-

lated either to specific regions (spatial attention) or spe-

cific characteristics of the objects in it (feature-based at-

tention). Basically, these two kinds of attention appertain

to the top-down class and cognitively determine where and

what should be attended, respectively. The brain generates

corresponding attention signals from several regions, e.g.

Frontal Eye Field (FEF), Lateral Intraparietal Cortex (LIP),

Prefrontal Cortex (PFC).

In the literature of the neural processing of vision, it is

widely accepted that two streaming pathways exist: ventral

and dorsal stream [12]. The former is mostly involved in

object recognition and contains feature-based attention sig-

nals while the latter is responsible for the object’s spatial

location and generates a spatial attention signal.

Heretofore, many computational models of visual atten-

tion have been developed [5] to perform specific tasks e.g.

visual search [19], object recognition [4, 3], robot vision

[15]. A former but still interesting survey and taxonomy of

the visual attention models could be found in [11].

Although object recognition/localization tasks can be

performed using only bottom-up process, top-down signals

i.e. feature-based as well as spatial attention can facili-

tate the process and are more biologically plausible. In

this work, we focus on the effect of spatial attention gen-

erated by the LIP region of the brain. Inspired from biol-

ogy, it would be expected that the presence of spatial atten-

tion results in faster object localization. It has been pro-

posed that LIP or related areas may encode an attention

pointer to memorize the location of a task relevant object

to inform areas involved in object identity about the loca-

tion of the relevant object feature [7]. Importantly, such a

pointer has to be updated with every saccade. The compu-

tational analysis of this object localization after a primary

saccade is the core contribution of this paper. For this pur-

pose, two previously developed models (one for ventral [14]

and the other for dorsal stream [20]) have been combined

with each other to consider the effect of spatial attention sig-

nal. The combined model is capable of performing object
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recognition/localization, when attention requires spatial up-

dating due to saccades (rapid eye movements). The whole

model consists of several populations of rate-coded neurons

which are implemented using the neural simulator ANNar-

chy [18]. The performance of the model has been evaluated

in a Virtual Reality (VR) in which an agent can search for

certain objects.

2. Model

This section provides a condensed description of the

model. As mentioned before, the combined model consists

of two separately-developed models: one for ventral and

the other for dorsal stream. Each of them can be run solely

to perform its specific tasks. However, to demonstrate the

effect of spatial attention, generated by the dorsal stream

model, on the object localization task, we have connected

them to each other for the first time as illustrated in Fig-

ure 1.

Figure 1. Structure of combined model. Left: The dorsal stream

part of the model located in LIP with its four inputs eye posi-

tion (PC), eye displacement (CD) and retinal image (both received

from ventral stream) as well as spatial attention. Right: The ven-

tral stream part which receives a visual image from VR and rec-

ognizes the place of searched object based on an HVA-FEF cycle

with the aid of feature-based attention signal provided by PFC.

HVA refers to a higher visual area, such as V4 or TEO, and HVA4

to the layer 4 and HVA23 to layer 2/3 in this area. Bottom: Vir-

tual Reality (VR) with the agent providing the visual image for the

model. Furthermore, the agent performs the eye movement to the

location given by the frontal eye field.

The left part of the Figure 1, drawn by blue blocks,

shows the dorsal stream model while the right part depicts

the ventral model with yellow blocks. Although the FEF is

not considered part of the ventral stream, it is historically

strongly linked to attention in the ventral stream [13]. The

red block illustrates the VR.

2.1. Ventral Stream

The ventral stream part of the combined model (the right

block diagram in Figure 1) has been originally introduced in

[3] based on a cortical microcircuit model developed in [2].

Its accuracy of object recognition/localization in the COIL-

100 database [16] is 92% on black, 71% on noisy, and 42%

on real-world backgrounds [3]. In a more recent article, it

has been revised and tested in VR and the results corrob-

orated its 85% exactitude [14]. In that revision, the model

was robust against large object variations in visual search in

which a human-like neuro-cognitive agent could recognize

and localize 15 different objects regardless of scaling, point

of view and orientation.

The input of the model is an RGB image (visual field)

which is preprocessed to extract the basic features like ori-

ented edges, red-green and blue-yellow color contrasts. The

results of the preprocessing phase are assigned to the neu-

rons in the V1 map from where they are routed to higher

visual areas (HVA) like V4 or IT. The subsequent HVA4

neurons encode the object views via convolutions of recep-

tive fields of V1 by a pre-generated weight matrix. This

weight matrix can be obtained by an offline learning proce-

dure described in [14]. The role of HVA23 is max-pooling

as well as handling top-down feature-based attention signal

which comes from PFC. It also propagates the feature-based

signal back towards HVA4. In addition to the feature-based

attention from HVA23, the HVA4 map receives spatial at-

tention from the LIP maps of the dorsal stream.

The FEF region consists of three parts: FEF-

Visual (FEFv), FEF-Visiomovement (FEFvm) and FEF-

Movement (FEFm). FEFv can be considered as a saliency

map because it contains the places where the target is prob-

ably located. FEFvm is responsible for focusing neuronal

activity at the target location and the FEFm layer determines

the final saccade target location. When the activities of the

FEFm neurons reach a threshold, a saccade is triggered to

this location. More details can be found in [14]. It is worth

noting that FEF itself is an originate of spatial attention in

the brain. However, although the FEF can also show sus-

tained activation, the FEF may be more involved in the gen-

eration of spatial attention towards a potential saccade tar-

get. The maintenance of additional attention pointers may

more likely involve the dorsal stream.

2.2. Dorsal Stream

The dorsal stream part of our combined model is based

on the neuro-computational model of Ziesche and Hamker

[20]. This model was primarily developed to explain the

mislocalization of briefly flashed stimuli in total darkness,

nonetheless they showed that the model is able to explain

some further visual phenomena like saccadic suppression

of displacement or masking [21, 1]. The model resides in

the Lateral Intraparietal Cortex (LIP) and uses gain fields
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as well as radial basis functions to perform coordinate

transformation between eye- and head-centered reference

frames. With the help of two extraretinal, eye position re-

lated signals, namely the proprioceptive (PC) eye position

signal and the corollary discharge (CD) signal, as well as a

retinal signal representing the (eye-centered) stimulus posi-

tion, the model simulates the spatial position of a stimulus

during eye movements in a head-centered reference frame.

The structure of the model is shown in Figure 1, left side.

In the combined model, the retinal signal originates from

HVA4 of the ventral stream, as this map encodes the visual

input from the retina in eye-centered coordinates and repre-

sents extrastriate visual areas like V4. The retinal signal is

fed into two separated LIP maps where it is gain modulated

by either the PC signal or the CD signal to obtain a joint

representation of the stimulus position and the eye position

or eye displacement, respectively. In our combined model,

the CD signal is also received from ventral stream model,

more precisely from the FEFm map, which triggers the sac-

cade and can therefore be interpreted as corollary discharge

signal. The two LIP maps interact with each other via an

intermediate, head-centered map Xh using feedback projec-

tions. Those intermediate neurons combine the information

from both LIP maps and as a result encode the perceived

spatial position of a stimulus in a head-centered reference

frame.

We use this model from Ziesche and Hamker with two

small modifications: First, as the original model only cov-

ers a one-dimensional space, we adapt it to two dimensions

by adding a second dimension representing the height to

each input map. Second, we use the model in a top-down

way. Originally, the model is proposed to transform the eye-

centered retinotopic signal into a head-centered spatial po-

sition of the stimulus. But here, we use the model to trans-

form a head-centered attentional pointer introduced through

the intermediate neurons of Xh into an eye-centered one,

which then feeds into the ventral stream. The head-centered

attention pointer may encode spatial memory which is not

explicitly modeled here.

As mentioned above, the dorsal stream part is not nec-

essarily needed to generate a spatial attention signal for the

ventral stream part. But using the LIP instead of FEF has

several advantages. First of all, the spatial attention signal

generated in LIP represents a memory pointer which only

has to be updated to its new location and is thus available

quickly after each saccade whereas the FEF needs signifi-

cantly more steps to determine a spatial attention signal as

it first requires a feature search. Therefore, HVA4 can be

enhanced earlier which will lead to a faster object recogni-

tion. As the attention signal needed as input for the dorsal

stream is head-centered, it can be easily received and main-

tained by some higher areas like Medial Temporal Lobe,

where object memory takes place [6]. For instance, when

entering a known room, the (head-centered) position of an

object kept in memory can be used via the dorsal stream to

locate the precise (eye-centered) position with the eyes.

3. Results

The performance of the combined model has been eval-

uated within a VR based on the game engine Unity 1. The

VR consists of an agent called Felice as well as different ob-

jects and provides images representing Felice’s visual field.

Once an object is localized by the model, the corresponding

eye movement to this object is sent to the VR and executed

by Felice.

Figure 2. Layout of the simulated experiment in the VR. Top:

Top view of the scenario with Felice and the three objects (yel-

low crane, blue and green pencil). Bottom: The visual field of

Felice. The task is depicted in red: Fixating on the center of the

visual field (red star), Felice has to search for the yellow crane,

fixate on it and subsequently, she has to locate the blue pencil (red

arrows).

Figure 2 illustrates the scenario (top) as well as the task

(bottom) designed in the VR. The agent Felice is looking at

the table with three different objects: a yellow crane, a blue

pencil, and a green pencil. At the beginning, she fixates at

the center of the visual field. Her task is to first locate the

yellow crane and execute a saccade to its location. After the

1https://unity3d.com/
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eyes landed, she has to search for a second object, namely

the blue pencil, and fixate on it. In order to show the ef-

fect of spatial attention, we introduce a top-down attention

signal to the blue pencil. The idea is that with spatial atten-

tion, the model will locate the second saccade object, i.e.

the blue pencil, faster than without.

The simulation has been split into two phases: First, Fe-

lice has to find the blue pencil so that we can deploy top-

down spatial attention to it. For this, we use the (stand-

alone) ventral stream model performing an object localiza-

tion task for the blue pencil. The position of the highest

excitation of map HVA4 gives us the spatial position of the

blue pencil in the visual field, which can be used as top-

down spatial attention position for the dorsal stream model.

The results of phase 1 are shown in Figure 3.

This spatial attention pointer is now deployed to the sec-

ond phase of the simulation. Here, the combined model is

used to perform a double-step object localization task. First,

the yellow crane should be located and after fixating on it,

the blue pencil should be found. To examine the effect of

spatial attention we simulate the task once with the addi-

tional spatial attention signal and once without. We com-

pare the activity of map HVA4, where the attentional signal

operates, as well as FEFm, which is responsible for execut-

ing saccades. The simulation results are shown in Figure 4.

The firing rates of HVA4 (blue) and FEFm (green) over time

are plotted with spatial attention from LIP (solid lines) and

without (dashed lines). The left plot shows the activity for

the first localization until the saccade is execute. As can

be seen, there are no differences in the activities of both

maps, thus, the spatial attention has no effect on localizing

the yellow crane. Table 1 contains the relevant time steps of

the localization task for both simulations. For the first ob-

ject, start and end of the localization process are the same.

This is consistent as the spatial attention is deployed to a

different object and should not enhance the localization of a

non-attended object. However, for the second localization,

there is a difference in the firing rates (Figure 4, right plot).

Since the attended object and the searched object are the

same now, the spatial attention signal increases the activity

in HVA4 for this object. Consequently, the firing rates in

FEFm at the position of the blue pencil increase faster and

therefore, they reach the threshold for executing a saccade

earlier which leads to an earlier saccade onset. As summa-

rized in Table 1, the starting time of the second localization

is equal for both simulations, but the blue pencil was found

19 ms earlier in the presence of spatial attention than its ab-

sence.

4. Conclusion

In this paper, a combination of two biologically plausible

models of ventral and dorsal stream has been introduced and

evaluated in VR. The ventral stream part is responsible for

event
no spatial

attention

with spatial

attention

start search for

yellow crane
0 ms 0 ms

localization of

yellow crane
165 ms 165 ms

start search for

blue pencil
262 ms 262 ms

localization of

blue pencil
493 ms 474 ms

Table 1. Summary of timings for the second phase in absence and

presence of spatial attention. The values indicate the time steps of

the corresponding events. Spatial attention reduces the localiza-

tion time for the blue pencil (attended object) by 19 ms while the

localization time of the yellow crane (unattended object) remains

the same.

object localization whereas the dorsal part performs the up-

dating of spatial attention. In the combined model, the LIP

part of the dorsal stream is connected to map HVA4 of the

ventral stream model to deliver a spatial attention pointer

which has a modulatory effect on activities of the HVA4

neurons. Therefore, the HVA4 neurons were excited more

which resulted in faster object localization. The simulation

results showed that the object can be localized 19 millisec-

onds faster in presence of the spatial attention signal than

without it.

To further investigate the benefit of spatial attention gen-

erated by the dorsal stream model on the ventral stream

model, one can conduct more experiments dealing with dif-

ferent questions:

• What happens, if there are more than one distractors or

if the distractor is very similar to the target?

The ventral stream model alone performs the object

localization tasks, however, if the setup is too compli-

cated due to too many or too similar objects, it might

fail to find a given target object and may require a long

serial search. In this case, the spatial attention from

the dorsal stream model can help to locate the tar-

get. Anyway, this additional attention pointer should

always improve the time needed for the object local-

ization independent of number or type of objects.

• What happens for object localization tasks with more

than two objects in a row, performing successively

more than two saccades?

Independent of the order of the target sequence, that
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Figure 3. Simulation results of phase 1: For the given visual field (left), the ventral stream model performs an object localization task for

the blue pencil. The position of highest excitation of HVA4 (middle) gives us the spatial position of the attention pointer in the visual field

(red circle in the right image).

Figure 4. Simulation results of phase 2. Firing rates of HVA4 (blue) and FEFm (green) for first (left) and second (right) object localization.

Firing rates modulated by spatial attention are plotted in solid lines, firing rates from simulation without spatial attention are plotted with

dashed lines. Additionally, we illustrate the threshold for FEFm for executing a saccade with a red line.

means when exactly the attended object will be lo-

cated, the dorsal stream model should update the atten-

tion position of this attended object until it is the target

for the search task and facilitate a faster object local-

ization. Meanwhile, the localization time for other ob-

jects should not be affected.

• What happens if more than one object should be at-

tended? [10]

The dorsal stream model should be able to update more

than one attention position either simultaneously or se-

rially. Thus, the object localization should be faster

for all attended objects independent of the number of

attended objects, if the number of attended object is

limited to plausible values.
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