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Abstract

We are to join deep input-output processing and Gestalt

Laws driven cognition under deterministic world assump-

tion. We consider every feedforward input-output system as

a sensor: including units performing holistic recognition. A

mathematical theorem is also a sensor: it senses the con-

sequences upon receiving its conditions. Systems seeking

consistencies between the outputs of sensor are cognitive

units. Such units are involved in cognition. Sensor and cog-

nitive units complement each other. We argue that the goal

of learning is to turn components of the cognitive system

into feedforward holistic units for gaining speed in cogni-

tion. We put forth a model for self-training of the holistic

units. We connect our concepts to certain electrophysiolog-

ical signals and cognitive phenomena, including evoked re-

sponse potentials, working memory, and consciousness. We

demonstrate the working of the two complementary systems

on low level situation analysis in videos.

1. Introduction

The thought that consciousness and cognition are the re-

sults of unconscious computations has been long proposed

as well as debated [10], although this thought is a must if

we are trying to build a model for consciousness with com-

puter programs. We put forth the idea that cognition, or

‘making sense’ of the world of ‘blooming buzzing confu-

sion’ [35] exploits Gestalt Laws by seeking consistency in

both space and time. In order to simplify the formulation of

our arguments, we treat sensory neurons, e.g., retinal neu-

rons and tactile neurons on equal footing with feedforward

holistic recognition units and we call them ‘sensors’. This

way, the word sensor becomes a synonym for feedforward

input-output system and disregards the complexity of the

‘sensor’.

Feedback is inherently limited by the processing time of

the feedback loop and corresponding temporal integration

process. Feedback enables adaptivity, but it may become

unstable. By contrast, both the time and the stability of

feedforward processing are guaranteed, there is no loop de-

lay. Correction needs external inputs and that can be de-

layed. Fast response requires the construction of more and

more sophisticated and precise feedforward input-output

systems or ‘sensors’ that can respond to complex spatio-

temporal structures being external to the processing sensors

themselves.

We propose that ‘making sense’ (i) is a relatively slow

process, (ii) it exploits Gestalt Laws, (iii) develops a grow-

ing hierarchy of deeper and deeper feedforward sensors (iv)

trained by the outcomes of the ‘making sense’ process itself.

We note that representations can’t make sense. Instead, the

input makes sense, if it can be matched by means of the rep-

resentation (see, e.g. [25] and the references therein). We

shall come back to this point later.

We assume that making sense is a consistency seeking

process that exploits feedforward computations and elimi-

nates inconsistent outputs. This thought is somewhat sim-

ilar to the idea of recognition by components put forth by

Biederman [4] except that we also consider discrepancies.

Component based reasoning corresponds to cognition in

our model. Cognition driven training of holistic recogni-

tion modules produces deeper input-output systems, short-

ens processing time and raises cognition to higher levels.

There are evidences that neocortical computation fol-

lows Bayes Law already at very low levels [33]. It is expe-

rience based consistence seeking, so should that be consid-

ered cognition? Also, experiments show that human think-

ing doesn’t closely follow Bayes Law [42]. We think that

the resolution may come from assuming (i) a noisy sen-

sor sensory system, (ii) a deterministic environment, like

Laplace did [21], and (iii) the optimization of collecting

training samples for the holistic sensors. This triplet de-

termines our inference system.

The paper is constructed as follows. We provide back-

ground information about cognition related electrophysio-

logical signals in Sect. 2. Section 3 lists those Gestalt Laws

that we are to consider (Sect. 3.1). It is followed by the deep

network tools and the methodology that we use (Sect. 3.3)
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for the analysis of videos when combining the complement-

ing computations (Sect. 3.4). Demonstrative results are pre-

sented and discussed in Sects. 4 and 5, respectively. Con-

clusions are drawn in the last section (Sect. 6).

2. Background information about the brain

We are restricted in space that we try to compensate by

mentioning experimental findings and an extensive, but by

no means comprehensive list of the references. We start

by considering cognition in the context of consciousness in

order to exclude unconscious, but Bayesian inferences ap-

parently present in early visual processing [33]. Awareness

is a more dubious phenomenon and the different ways one

can influence it can shed light on this separation.

Consider the seminal paper on binocular rivalry [24].

It is about (i) responses in the early visual cortex and (ii)

the perceptual reporting in monkeys for images that resist

binocular fusion and give rise to alternating percepts be-

tween two images. The information is available to the brain,

neurons are responding to both potential percepts, some of

them are modulated by the actual conscious percept, but we

are aware only one part of the visual information at a time.

The case of ambiguous figures, like the Necker cube 1, is

different. We are aware of the full visual information at any

given time instant, but the percept alternates. We say that

in both cases, conscious observation ‘makes sense of the in-

put’ as much as it can and the best it can do is to alternate

between the potential interpretations.

Ouhnana et al. [34] studied the contextual effects for

both cases. They showed that contextual influence is similar

in the two cases suggesting that similar context-integration

mechanisms operate under these two different conditions.

Concerning our model, it means that awareness and consis-

tence seeking, to some extent, are independent from each

other.

In case of binocular rivalry the unobserved part of the in-

put can enter the making sense procedure by reentrant pro-

cesses that bring information from higher levels to lower

levels. They are short, on the order of 100 ms, they can be

influenced by fast object substitution masking [11], but the

fast magnocellular channels can escape this masking [48],

the different feedforward processing and reentrant chan-

nels can be dissociated by transcranial magnetic stimula-

tion (TMS) [39], fast and low resolution channels constrain

conscious observation [5, 7], similarly to optic flow regu-

larization, the ‘regularization’ via fast channels affects ob-

servation probability, but not observation precision (slower

channels) [19], there is a critical time window for binding

information from different channels [20], and that the reen-

trant channels seem critical for visual awareness [18].

These particular features show that timing is critical and

1https://en.wikipedia.org/wiki/Necker_cube

conscious observation requires feedback (reentrant) loops.

We know from EEG studies that neuronal recruitment for

initiating a motion may start about 2 seconds earlier than

we think that decision for voluntary movement is made.

It is known that delays are also present when movements

are triggered and the observation of signals in the supple-

mentary motor area precede the motion by about 200 ms

or so, but conscious observation doesn’t experience any de-

lay in the motion. In turn, conscious observation compen-

sates for the delays of the observation process as well as

for the delays between control instructions launched by the

brain and the starting time of the motion. Furthermore, con-

scious representation is synchronous with sensed but not

yet processed inputs having processing time on the order of

hundred milliseconds. Thus consciousness must integrate

over time windows as claimed in [15] and must also exploit

model-based prediction.

Taken together, compensation of time delays and the

need of reentrant loops cut the infinite regress of homuncu-

lus fallacy short. The fallacy says that representation can’t

make sense and somebody should make sense of it. Then it

asks about the agent that makes sense of the representation,

what it is using and if it is a representation as well. Reen-

trant loops cut short the infinite regress to a reconstruction

process: the input ‘makes sense’ if the representation can

reproduce it via the reentrant channels [25]. This thought

is of helps in understanding rivalry, too: conscious observa-

tion can reproduce only part of the rivalrous input and the

non-reproduced part remains the subject of subconscious

processing, overcomes the actual interpretation, and is ren-

dered conscious after some time.

A prominent example of fusing multi-modal observa-

tions is the McGurk effect [27] in audio-visual integration.

Such integration takes considerable time due to the different

delays of the different processing (here audio and visual)

channels. How is information fused and how would con-

scious observation emerge under such conditions? A recent

paper considers the time course of consciousness, including

the transitions between conscious states [2]. According to

the authors conscious perception matures by systematically

acquiring more and more qualities to the preceding inter-

pretation (version) of the percept. They also mention the

view of Herzog et al. [15], who propose that features of ob-

jects, for example, are unconsciously analyzed and all fea-

tures become conscious simultaneously when unconscious

processing is ‘completed’.

2.1. Event related potentials

Time locked event-related potential (ERP) experiments

with human participants may provide information about

the different components. The earliest ERP studies al-

ready showed such dependencies, and early studies already

showed task-related preparation signals prior to the antici-

2790

https://en.wikipedia.org/wiki/Necker_cube


pated trigger, i.e., the zero of the time-locked experiments,

too [9]. ERP phenomena are complex and the interested

reader is referred to the literature for gaining insights about

the nomenclature. We limit ourselves to a few observations.

Vakli et al. [44] have shown that even simple Gestalt

information about one component of the body, namely one

point of the elbow, increases the P2 component when only

face and hands are presented in veridical situation. Compo-

nent P2 seems to be sensitive to the interplay between holis-

tic and component based processing [44] as well as to devi-

ations from typical configurations and appearances. For ex-

ample, component P2 becomes smaller for caricatures and

for other race faces [47]. In accordance with the view that

both holistic and component based information influences

the P2 component, face thatcherization2 in upright headpose

delays P2 over the occipito-temporal regions [6].

According to Salti et al. [37], the P3 component of

the ERP reflects conscious perception and it is not influ-

enced by the level of confidence. Findings of Metzger et al.

[29] provide (i) support to this interpretation and (ii) further

specification of the P3 component by means of binocular

rivalry. They found that the timing of the P3b component

is closely related to the timing of the reporting time of the

individual about the perceptual change. In turn, the P3b

component seems to correspond to changes of conscious

perception.

We note that the consistence seeking algorithm doesn’t

have to be conscious; it may occur at every level. Further-

more, it can be feedback type in case of competition. Con-

scious consistence seeking involves the working memory

and manifests itself in the corresponding ERP signals [12].

The relation between awareness and working memory, i.e.,

cognition is very complex. Considering that (i) conscious-

ness has only partial access to sensory inputs, (ii) there are

time delays between processing channels, (iii) there are crit-

ical windows for binding observations, and (iv) awareness

requires that reentrant loops ‘confirm’ the representation,

one can understand the question whether ”conscious aware-

ness is needed for all working memory processes” [41].

Concerning this question also raised by Aru and Bachmann

[2] on the temporal dependencies of conscious processing

we can say that it depends on a number of things, e.g., if

part of the input is not available for conscious perception

and if the inputs are ambiguous. This latter may depend

on experience-dependent specialization of the input-output

‘sensors’ that we shortly mention below.

2.1.1 Developmental learning of face processing

It has been well demonstrated that children gradually de-

velop an expertise in face processing and that this learn-

ing process goes in the direction of holistic processing [22].

2https://en.wikipedia.org/wiki/Thatcher_effect

Studies of Meaux et al. [28] show age related changes.

Results point to an increased interest in the eye region to-

gether with attentional shift from the mouth to the eyes.

They suggest that the developmental dynamics is driven by

experience-dependent optimization of face processing for

improving social and communication skills. One may con-

clude that experience related changes foster holistic pro-

cessing of structures, thus shorten processing time and, in

turn, more attention can be paid to subtle differences, such

as the eye movements in this case.

3. Methods

In our work we exploit Gestalt Laws in order to resolve

potential discrepancies between the outputs of deep neural

network ‘sensors’. First, we list the Laws that we apply.

Then we turn to the description of our deep tools devel-

oped ourselves or by other groups. They serve our demon-

strations on how to combine the complementing algorith-

mic components, i.e., the ‘sensors’ and the Gestalt Law

based consistence seeking procedures. We also describe the

videos that serve our demonstrations.

3.1. Gestalt Laws considered.

The number of Gestalt Laws (or Gestalt Principles) is

numerous. For a compact review, the interested reader is

referred to the literature [43]. The five main laws are: (1)

Figure-Ground, (2) Similarity, (3): Proximity, (4): Com-

mon Fate, and (5): Closure.

Figure-Ground and Similarity Laws are implicit in the

supervisory information used for training the networks. For

example, the hand detector was trained on a large number

of hands, embedded into some portion of the background,

since the detector works by means of bounding boxes.

3.1.1 The Proximity Law.

This Law states that elements may be aggregated into a con-

nected (coupled) unit if they are close to each other. We

shall use this principle backwards: we know that certain

body components such as hand and wrist are joined and will

use this knowledge to infer which hand belongs to which

wrist, for example.

3.1.2 Common Fate Law.

This Law can be phrased as follows: ‘What moves together,

belongs together’ [17]. We will compute the optical flow

between frames and will be looking for parts moving to-

gether. Optical flow is seen as the motion detector sys-

tem. We will work on videos that give rise to the 2 di-

mensional projection of 3 dimensional movements. In such

cases, translations, being central features of convolutional

network architectures, give rise to simple flows.
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3.2. Architectures served by deep networks

Figure 1 show three architectures. Figure 1(a) represents

a number of concurrent feedforward deep networks giving

inputs to the cognitive system that corrects the outputs to

make them consistent. Hand classifier (left/right) will be

the example. On Fig. 1(b) the cognitive system modifies the

input in order to make the representation consistent. The

driver in the car will demonstrate this case. One can col-

lect training examples in both cases. Training, eventually,

the reentrant network of Fig. 1(b) to become a feedforward

holistic recognition system comprised of the initial and a

correcting network as shown in Fig.1(c). Residual networks

[14] and the Pose Machine [46], in particular, are the exam-

ples.

(a)

(b)

(c)

Figure 1. Deep architectures. For details, see text.

3.3. Deep architectures exploited

We are to list the deep architectures used in our demon-

strations.

Pixels are the outputs of light sensors. Higher order

detectors can be trained on pixel regions for signaling for

hands, see e.g., [40] and the references therein, and can also

work as a class-generic ‘object sensor’ [1] approximating

the probability that an image window contains an object

plus a possibly minimal portion of background pixels. Ob-

ject detectors and object sensors implicitly exploit a number

of Gestalt Laws that can be illustrated by investigating dif-

ferent levels of the representations of the deep networks.

The list of relevant properties follows:

1. Figure-Ground and Proximity Laws are implicit in the

data. We illustrate in Fig. 2 that the ground – in the

absence of segmentation – influences the best esti-

mated category of the object embedded in the bound-

ing box (the red rectangle in the figure) showing the

great strength of the Proximity Law. Results depicted

on Fig. 2 were computed by the Faster R-CNN network

trained on the Pascal VOC database [36].

2. These networks are convolutional networks and thus

exploit translation invariance justifying the pooling op-

eration and, in turn, combining the Common Fate Law

and the Proximity Law.

3. Edges emerge as important feature and they invoke the

Good Continuation Law being supported by features

of the neuronal substrate, too [3].

4. Closure as well as Past Experience Laws are invoked

implicitly by the applied bounding boxes that allevi-

ate closure operation and by the training procedures,

respectively.

3.3.1 Deep hand detector and handedness classifier

We used Mittal’s Hand Dataset3 [30] for hand detection and

augmented it with the VIVA Hand Detection Dataset4 for

left and right hand classification. We employed the Region-

based Fully Convolutional Network (RFCN) [8] for the lo-

calization of the hands and a vanilla Convolutional Network

for classifying if a hand is left or right. The procedure is as

follows: (i) find the hand, (ii) classify them.

3.3.2 Deep convolutional pose machine

The pose machine is a great example for Gestalt Laws based

training procedures. We note that the pose machine is opti-

mized for outputting the best representation, but the design

of the architecture is not made for self-training from the data

3http://goo.gl/s2vKoE
4http://goo.gl/Lf6mRD
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(a) (b) (c)

(d) (e)

Figure 2. Objects and contexts. (a): PascalVOC training sample,

(b)-(d): segmented horse placed into different environments. Best

guesses are ‘horse’ when it is placed along a road (b), ‘cow’ when

it is placed across a road (c), and ‘dog’ when it is in the office at the

leg of the table (d), respectively. (e) is the same as (d), but zoomed

out. Red: bounding box, white characters in blue background:

best network proposals with the corresponding scores. Note that

recognition of components such as the mane and the hoof could

easily disambiguate classification.

it is collecting. This distinction in the context of neural net-

works concerns short term memory (the result of the algo-

rithm that produces the representation) and long term mem-

ory (the weight tuning procedure). We shortly describe the

architecture below. For more details and the software it-

self5, please consult the original work [46].

The architecture is a straightforward input-output sys-

tem. Using our terms, in spite of information fusion about

the different components of the body and in spite of resolu-

tion seeking the architecture is not a cognitive component,

but works as a sensor.

3.3.3 Deep optical flow

Optical flow is a great tool for detecting Common Fate. It

estimates the movement vector of each pixel in the full im-

age or in the bounding box. The interested reader is referred

to the paper [16] that describes the method of the FlowNet

2.0 software6, a dense optical flow estimator adopted in our

studies.

We are to exploit optical flow to uncover spatio-temporal

context that has been shown to play a role in both ambigu-

ous and rivalrous figures [34] to be considered in Sect. 5.

5https://goo.gl/gMkoU3
6https://github.com/lmb-freiburg/flownet2

3.3.4 The video set

We used a set of 300 videos ‘in the wild’7 to help to demon-

strate our thoughts. We integrated information from body

pose and from hands. We also used one frame from the

State Farm Distracted Driver Scenario8

3.4. Algorithmic procedures

In the algorithmic approach, we start by checking for

complete consistency in space and time. We run the con-

volutional pose machine, the hand detector, the left or right

hand classifier. The number of hands may differ from frame

to frame. Slight changes in the images may change the out-

put of the left or right hand classifier from left to right or

from right to left.

We say that a pose is fully consistent in one frame if

1. the pose machine detects the left and the right elbows,

the left and right shoulders, the middle shoulder point

and the left and right wrists,

2. the hand detectors detect two bounding boxes and the

scores of the boxes are above threshold,

3. the bounding boxes have proper sizes according to the

elbow wrist distance,

4. the hand detector centers are within proper range to the

wrists,

5. the wrists and the nearby hands match in their handed-

ness, and

6. the same conditions hold for the frames before and af-

ter the actual frame and this consistency is also sup-

ported by the optical flow within the bounding boxes

of the hands and the neighborhoods of the points of the

poses.

We use optical flow to fix the errors of the left and right

hand classifier and to eliminate erroneously detected hands

and poses. We manually checked the improvements of this

consistence seeking procedure. Note that all elements of

the pose, the hand, including handedness that were fixed

by consistence seeking can serve further self-training and

improve the outputs of the individual units. In turn, consis-

tence seeking improves the representation, i.e., short term

memory, whereas such improvements can be used for net-

work training, i.e., for the tuning of the weights of the deep

network, i.e., the long-term memory.

4. Demonstrative results

Figure 3 illustrates the first step of the procedure. There

are four suspected hands in Fig. 3(a). Two of them are far

from the wrists and are removed in Fig. 3(b). Classification

7https://ibug.doc.ic.ac.uk/resources
8https://goo.gl/Tf6m8A
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says that both of them are left hands. One of them is consis-

tent with the left wrist. This one is kept and consistency is

shown by the thick magenta line between the wrist and the

center of the bounding box of the hand, whereas the other

bounding box is removed in Fig. 3(c). Given the Proximity

Law, it could be relabeled as right hand.

The Common Fate Law is applied in Fig. 4. Figure 4(a)

shows a frame where both hands are properly classified.

Dots withing the bounding boxes will be followed by the

optical flow. In the next frame shown in Fig. 4(b), both

hands are classified as left hands. However, optical flow

shows that all dots moved only slightly, i.e., they have Com-

mon Fate and the classification of the right hand can be fixed

(Fig. 4(c)).

(a) (b) (c)

Figure 3. In the preprocessing step, consistency is checked. (a)

Some of the hand bounding boxes are close to, others are far from

the wrists. (b) Bounding boxes of hand detectors are kept if they

are close to the wrist. (c) Handedness for hands and wrists are

checked. If they match, then wrist points and the center of the

bounding boxes are connected – see inset – otherwise they are

dropped. The left hand is ‘consistent in space’.

(a) (b) (c)

Figure 4. Optical flow based extension. A frame is ‘fully consis-

tent in space and time’, if the previous frame and the next frame

are both consistent in space and if the optical flow between the

frames supports the results. (a) Frame is not fully consistent, since

hand classification on next frame – i.e., on (b) – shows two left

hands. (c) Optical flow starting from the left (red) and from the

right (blue) rectangles moves the blue and red points of frame (a)

to the similarly colored points of frame (c) respectively. Optical

flow is highly trusted and the category (the color of the points) are

changed to blue.

The statistics of corrected classifications are shown in

number of videos is shown in Table 1. We chose videos

of the database having larger number of visible hands. All

corrected hands can be used for training the classifier.

ID Frames Totally consistent

Frames Ratio

before after before after

001 1574 524 1237 0.332 0.785

004 899 233 571 0.259 0.635

009 1822 98 759 0.053 0.416

011 1400 358 914 0.255 0.652

017 1770 76 262 0.042 0.148

019 1800 805 1288 0.447 0.715

031 2050 902 1818 0.440 0.886

041 1800 85 536 0.047 0.297

410 1315 196 701 0.149 0.533

411 1454 246 773 0.169 0.531

511 2324 33 58 0.014 0.024

516 1290 116 665 0.089 0.515

518 2218 157 498 0.070 0.224

538 2163 927 1355 0.428 0.626

553 1624 506 1202 0.311 0.740

Mean 1700.2 351 842 0.207 0.515
Table 1. Number of totally consistent frames before and after cor-

rections and the corresponding ratios to the total number of frames.

We note that not all frames have individuals and not all poses can

be made fully consistent.

In the previous cases, we used the pose machine to fix the

result of the classification. The case9 is different for Fig. 5.

Now, one of the hand classifiers must be wrong, similarly

to the previous example. However, in this scenario, we trust

one of our classifiers, since the hand on the steering wheel

of a car has a high score and this high score is supported

by a large number of samples in the database, due to the

high abundances of such situations in driving scenarios. If

we take the classification of the right hand as our starting

point, then we have to modify the class of the other hand to

left. Better consistency can’t be reached at the level of the

representation. However, the input of the pose machine can

be modified. We constrained the left and right wrists to the

proximity of the left and right hands, respectively and rerun

the feedforward pose machine under such constraints. This

is a feedback action from the point of view of the ongoing

evaluation. Result is shown in Fig. 5(b). Note that we col-

lected two new samples for training, one for the left hand,

and one for the pose machine.

5. Discussion

We started this paper by mentioning consciousness and

cognition and suggested to separate inherited or trained

feedforward ‘sensors’ from consistence seeking. Consider

Fig. 6. The picture shows some chairs surrounding a table.

However, components of texture of the chairs suggest that

9A former version of the pose machine was used for demonstration

purposes. goo.gl/dQ4Vi6
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(a)

(b)

Figure 5. Red (blue) color denotes left (right) components. (a):

Pose Machine breaks down for both arms. Both hands are classi-

fied as right hands. (b): One hand is on the wheel, its classification

is trained and thus trusted in the scenario, the label of other hand

is modified to left and these pieces of information are injected into

the pose machine giving rise to an improved pose estimation. This

way, training examples are also generated for the hand detectors

and the pose estimator.

those are soccer balls. Consistence is achieved if we ignore

the details of the textures of the chairs and make sense by

means of the configuration of the components.

(a) (b)

Figure 6. (a): segmented object, (b): same object in its actual en-

vironment

Similar influence may appear for deep neural networks,

too as we demonstrated in Fig. 2, where the best scores did

depend on small pieces of the environment covered by the

bounding boxes.

In turn, we have the following distinct processing steps:

Feedforward processing is the computation accomplished

by the ‘sensors’ (Fig. 1(c))

Label correction in classification is part of the making

sense procedure. It is driven by higher order rules

experienced or prewired, e.g., that people have two

hands and they can’t be both left or both right hands

(Fig. 1(a)).

Input modulation is the result of unresolvable conflicts in

the representation that can be fixed by deciding which

part taken for granted and to modify input-output pro-

cessing by means of this decision. The example is the

constraint or modulation on the feedforward process-

ing of the pose machine (Figs. 1(b) and 5).

Feedforward processing is fast, especially if no label cor-

rection is needed. Label correction can be both feedback

and feedforward. It is feedback if units can overwrite each

others’ output, like in competitive neural networks. For an

early work, see [13] on this subject. Label correction is

feedforward if different information fragments are fused at

a next (feedforward) stage. Fig. 5 is an example.

Having this in mind, we shortly explain the essence of

our computer studies. Then, we turn to experimental find-

ings related to consciousness and cognition.

5.1. Computer studies

In our computer studies, we focused on the certainty and

the consistency of the observations and propagated the in-

formation forward and backward in time. This is an over-

simplified model of the integration time of conscious in-

terpretation that can (should) cover both the past and the

observation based prediction in the future.

We did not include alternating rivalrous interpretations.

In our framework such alternations call for approximate in-

put generation from the representation that autoencoding

deep networks are capable of [45] that we didn’t model

here, but refer to the literature [25].

We illustrated how to resolve the discrepancy at the level

of the representation by relying on one part of the output and

constraining the input of feedforward units accordingly.

As a result, input and representation make sense together

and the infinite regress of the homunculus fallacy is turned

to a self-correcting feedback based loop structure made of

feedforward processing units.

The deterministic world assumption motivates one to use

the most reliable information for both input and output mod-

ification. Determinism is also exploited via optical flow.

5.1.1 Deep networks

We used a number of trained deep networks. Such networks

are feedforward algorithms and they perform holistic recog-

nition of those objects or episodes that they were trained for.
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For example, components of the hand are evaluated implic-

itly by the hierarchy of filters of the convolutional layers of

the hand detector. The case of the left and right hand classi-

fier is similar. However, the pose machine is somewhat dif-

ferent, since different components of the body are processed

differently and this additional information is available dur-

ing the training process. Processing is still feedforward and

thus – from our point of view – the full network is a (so-

phisticated) sensor.

Consistence seeking procedure could generate a number

of new training samples for the 300 VW database by rela-

beling the outputs of the classifiers. Relabeling is a compet-

itive mechanism at the level of the representation, similar

to some extent to the genuine interactive activation model

[26]. Such collaboration between deep network compo-

nents has additional advantages, since ‘deep neural net-

works are easily fooled’ [31]. For example, face recognition

can be fooled by adding special glasses designed for change

the class label [38]. However, if the presence of glasses is

detected then they can be removed and inpainting can fill in

the missing pixels [32].

In the car example, training samples were generated, too:

the representation modified the label of one of the hands

and then it constrained the input of one of the pose machine

‘sensor’. This computational procedure acts top-down and

resembles to goal-driven orienting of attention10. However,

the algorithmic method does not require conscious observa-

tion.

We distinguish the following processes:

1. ‘Sensory’ feedforward processing

2. Checking for spatio-temporal consistency

3. Correcting the outputs in case of inconsistencies

4. ‘Making sense’ of the representation by constraining

the inputs.

5.2. Making sense and controlling

We targeted prediction in a limited way, we used optical

flow alone. Prediction can be learned and it means spatio-

temporal model construction. One may say the following:

the input and the representation make sense if the model

(i.e., the representation) can predict the input.

We propose a four step consistency seeking procedure

for sensing, processing, modulating both outputs and in-

puts, and thus making sense of information arriving from

the environment. Processing delays should be compensated

in order to launch appropriate control instructions to mus-

cles that will be observed and perceived later. Furthermore,

conscious observation in a deterministic world prescribes a

single interpretation.

We suggest that component(s) with highest confidence(s)

might influence the conscious making sense process more

10http://goo.gl/NJ2Gts

than it is justified by the unconscious Bayesian optimization

of the internal model of the environment [33]. Considering

the driving case, the hand class estimation followed by top-

down constraints on pose estimation combines rules with

uncertain observations and unfolds the interpretational puz-

zle. This procedure generates training samples in a straight-

forward manner in a deterministic world provided that con-

sistency can be achieved. The global-to-local constraints

on awareness seem to optimize the context based consis-

tence seeking procedure [7] and thus self training, whereas

Bayesian procedure can be at work at early processing lev-

els having high noise content [33].

The requirement of a single interpretation is a challenge

since there are delays both in sensory information process-

ing, motor command launching, but they should be matched

in time. The full delay in this loop launching and sensing

the motor command can be about 500 ms or more. Improper

matching may give rise to subtle experiences, an intriguing

example being that schizophrenic patients can tickle them-

selves [23], i.e., the tactile input is unexpected, or as one

may say, ‘it doesn’t make sense’. Also, the requirement of

single interpretation together with the approximately 500

ms processing delays seem to be in agreement with the

switching time of perception for the case of rivalrous fig-

ures.

6. Conclusions

We proposed an algorithmic procedure that (i) com-

bines deep learning methods by means of Gestalt principles,

(ii) emphasizes the deterministic nature of the world, (iii)

searches for consistent interpretation at all times (iv) using

both spatial and temporal contexts.

The algorithmic procedure is a model for perception and

cognition, it offers a resolution for the homunculus fallacy,

emphasizes model based prediction to compensate for de-

lays of the processing of sensory information, the delays

between the launching of motor commands and the start of

the movements.

The combination of component based and holistic recog-

nition may alleviate the problem of deep neural networks

known to be vulnerable to specially designed spurious in-

puts.

The procedure may fail in each proposed component giv-

ing rise to problems similar to those found in human behav-

ior, including the selection of a single and consistent repre-

sentation, the putative problem in schizophrenia [23].
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