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Abstract

Predicting the target of visual search from human gaze

data is a challenging problem. In contrast to previous work

that focused on predicting specific instances of search targets,

we propose the first approach to predict a target’s category

and attributes. However, state-of-the-art models for cate-

gorical recognition require large amounts of training data,

which is prohibitive for gaze data. We thus propose a novel

Gaze Pooling Layer that integrates gaze information and

CNN-based features by an attention mechanism – incorpo-

rating both spatial and temporal aspects of gaze behaviour.

We show that our approach can leverage pre-trained CNN

architectures, thus eliminating the need for expensive joint

data collection of image and gaze data. We demonstrate the

effectiveness of our method on a new 14 participant dataset,

and indicate directions for future research in the gaze-based

prediction of mental states.

1. Introduction

As eye tracking technology is beginning to mature, there

is an increasing interest in exploring the type of information

that can be extracted from human gaze data. Within the

wider scope of eye-based activity recognition [4, 25], search

target prediction [2, 23, 33] has recently received particu-

lar attention as it aims to recognise users’ search intends

without the need for them to verbally communicate these

intends. Previous work on search target prediction from gaze

data (e.g. [2, 23]) is limited to specific target instances that

users searched for, e.g. a particular object. This excludes

searches for broader classes of objects that share the same

semantic category or certain object attributes. Such searches

commonly occur if the user does not have a concrete target

instance in mind but is only looking for an object from a

certain category or with certain characteristic attributes.

To address these limitations, we broaden the scope of

search target prediction to categorical classes, such as object
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Figure 1. We propose a method to predict the target of visual search

in terms of categories and attributes from users’ gaze. We propose

a Gaze Pooling Layer that leverages gaze data as an attention

mechanism in a trained CNN architecture.

categories or attributes. One key difficulty towards achieving

this goal is acquiring sufficient training data. We have to

recall that object categorization only in the past decade has

seen a breakthrough in performance by combining deep

learning techniques with large training corpora. Collecting

such large corpora is prohibitive for human gaze data, which

poses a severe challenge to achieve our goal.

Therefore, we propose an approach for predicting cate-

gories and attributes of search targets that utilizes readily

trained CNN architectures and combines them with gaze

data in a novel Gaze Pooling Layer (see Figure 1). The gaze

information is used as an attention mechanism that acts se-

lectively on the visual features to predict users’ search target.

These design choices make our approach compatible and

practical with current deep learning architectures.

Through extensive experiments we show that our method

achieves accurate search target prediction for 10 category

and 10 attribute tasks on a new gaze data set that is based on

the DeepFashion data set [17]. Furthermore, we evaluate dif-

ferent parameter settings and design choices of our approach,

visualize internal representations and perform a robustness

study w.r.t. noise in the eye tracking data. All code and data
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will be made publicly available upon acceptance .

2. Related Work

Predicting the target of visual search is a task studied

both in computer vision [1, 2, 8, 23, 32, 33] and human

perception [7, 5, 15, 21]. Existing approaches vary in the

granularity of the predictions, either focusing on predicting

specific object instances [2, 23] or operating at the coarser

level and predicting target categories [8, 33]. The type of user

feedback varies as well. While [2, 23, 33] solely use implicit

information obtained from human gaze, [1, 8, 32] require the

user to provide explicit relevance feedback. In the following

we summarize previous works on gaze-supported computer

vision, user feedback for image search and retrieval, as well

as methods for search target prediction.

Gaze-Supported Computer Vision. Visual fixations have

been used in [16, 30] to indicate object locations in the

context of saliency predictions, and in [11, 22, 24] as a

form of weak supervision for training of object detectors.

Gaze information has been used to analyze pose estimation

tasks in [18, 26] as well as for action detection [19]. Gaze

data has also been employed for active segmentation [20],

localizing important objects in egocentric videos [6, 28],

image captioning and scene understanding [27], as well as

zero-shot image classification [10]. While our work also

combines visual representations (CNN) with gaze data, our

task is user centric as we aim to predict search targets of the

user and not aim for a computer vision task that is inherent

in the image itself.

User Feedback for Image Search and Retrieval. To close

the semantic gap between user’s envisioned search target

and the images retrieved by search engines, Ferecatu and

Geman [8] proposed a framework to discover the semantic

category of user’s mental image in unstructured data via

explicit user input. Kovashka et al. [1] introduced a novel

explicit feedback method to assess the mental models of

users. Most recently Yu et al. [32] proposed to use free-hand

human sketches as queries to perform instance-level retrieval

of images. They considered these sketches to be manifes-

tations of users’ mental model of the target. The common

theme in these approaches is that they require explicit user

input as part of their search refinement loop. Mouse clicks

were used as input in [8]. [1] used a set of attributes and

required users to operate on a large attribute vocabulary to

describe their mental images. In [32] the feedback was pro-

vided by sketching the target to convey concepts such as

texture, color, material, and style, which is a non-trivial step

for most users. In contrast, in our work, we do not rely on a

feedback loop as in [1] or explicit user input or some form of

initial description of a target as in [1, 8, 32]. We instead use

fixation information that can be acquired implicitly during

the search task itself, and demonstrate that such information

allows us to predict categories as well as attributes of search

targets in a single search session.

Visual Search Target Prediction. Human gaze behavior

reflects cognitive processes of the mind, such as intentions [3,

12, 14], and is influenced by the user’s task [31]. In the

context of visual search, previous work typically focused on

predicting targets corresponding to specific object instances

[2, 23, 33]. For example, users were required to search

for specific book covers [23] or specific binary patterns [2]

among other distracting objects. In contrast, in this work

we aim to infer the general properties of a search target

represented by the object’s category and attributes. In this

scenario, the search task is guided by the mental model that

the user has of the object class rather than a specific instance

of an object [8, 29]. This presents additional challenges as

mental models might differ substantially among subjects.

Furthermore, [2, 23, 33] required gaze data for training,

whereas our approach can be pre-trained on visual data alone,

and then combined with gaze data at test time.

3. Data Collection

No existing data set provides image and gaze data that is

suitable for our search target prediction task. We therefore

collected our own gaze data set based on the DeepFashion

data set [17]. DeepFashion is a clothes data set consisting of

289,222 images annotated with 46 different categories and

1,000 attributes. We used the top 10 categories and attributes

in our data collection. The training set of DeepFashion was

used to train our CNN image model for clothes category and

attribute prediction; the validation set was used to train par-

ticipants for each category and attribute (see below). Finally,

the test set was used to build up image collages for which we

recorded human gaze data of participants while searching

for specific categories and attributes. In the following, we

describe our data collection in more detail.

3.1. Participants and Apparatus

We collected data from 14 participants (six females), aged

between 18 and 30 years and with different nationalities. All

of them had normal or corrected-to-normal vision. For gaze

data collection we used a stationary Tobii TX300 eye tracker

that provides binocular gaze data at a sampling frequency

of 300Hz. We calibrated the eye tracker using a standard

9-point calibration, followed by a validation of eye tracker

accuracy. For gaze data processing we used the Tobii soft-

ware with the parameters for fixation detection left at their

defaults (fixation duration: 60ms, maximum time between

fixations: 75ms). Image collages were shown on a 30-inch

screen with a resolution of 2560x1600 pixels.
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Figure 2. Sample image collages used for data collection: Attributes

(top), Categories (bottom). Participants were asked to find different

clothing attributes and categories within these collages.

3.2. Procedure

We first trained participants by showing them exemplar

images of all categories and attributes in a game like session

to familiarize themselves with the categories and attributes.

We did not collect any gaze data at this stage. For each

category and attribute we then generated 10 image collages,

each containing 20 images. Each target category or attribute

appeared twice in each collage at a random location (see

Figure 2 for an example). Participants were then asked to

search for ten different categories and attributes on these

image collages (see Figure 2) while their gaze was being

tracked. We stress again that we did not show participants

a specific target instance of a category or attribute that they

should search for. Instead, we only instructed them to find

a matching image from a certain category, i.e “dress”, or

with a certain attribute, i.e “floral”. Consequently, search

session guided by the mental image of participants from the

specific category or attributes. Participants had a maximum

of 10 seconds to find the asked target category or attribute

in the collage that was shown full-screen. As soon as partic-

ipants found a matching target, they were asked to press a

key. Afterward they were asked whether they had found a

matching target and how difficult the search had been. This

procedure was repeated ten times for ten different categories

or attributes, resulting in a total of 100 search tasks.

4. Prediction of Search Targets Using Gaze

In this work, we are interested in predicting the category

and attributes of search targets from gaze data. We address

this task by introducing the Gaze Pooling Layer (GPL) that

combines CNN architectures with gaze data in a weighting

mechanism. Figure 3 gives an overview of our approach. In

the following, we describe the four major components of our

method in detail: The image encoder, human gaze encoding,

the Gaze Pooling Layer, and search target prediction. Finally,

we also discuss different integration schemes across multiple

images that allow us to utilize gaze information obtained

from collages. As a mean of inspecting the internal repre-

sentation of our Gaze Pooling Layer, we propose Attended

Class Activation Maps (ACAM).

4.1. Image Encoder

We build on the recent success of deep learning and use

a convolutional neural network (CNN) to encode image in-

formation [9, 13]. Given a raw image I , a CNN is used to

extract image feature map F (I).

F (I) = CNN(I) (1)

The end-to-end training properties of these networks allows

us to obtain domain-specific features. In our case, the net-

work will be trained with data and labels relevant to the

fashion domain. As we are interested in combining spatial

gaze features with the image features, we use features F (I)
of the last convolutional layer that still has a spatial resolu-

tion. This results in a task-dependent representation with

spatial resolution. In addition, to gain a higher spatial reso-

lution we used same architecture as describe in [35]. We use

their VGGnet-based model where layers after conv5-3 are

removed to gain a resolution of 14× 14.

4.2. Human Gaze Encoding

Given a target category or attributes, participant P ∈
P look at image I and performs fixations G(I,P) =
(xi, yi), i = 1, ..., N in screen coordinates. We aggregate

these fixations into fixation density maps FDM(G) that

capture the spatial density of fixations over the full image.

Therefore, we represent the fixation density map FDM(g)
for a single fixation g ∈ G(I, P ) by a Gaussian:

FDM(g) = N (g, σfix), (2)

centered at the coordinates of the fixation, with a fixed stan-

dard deviation σfix – the only parameter of our representation.

The fixation density map for all fixations FDM(G) is ob-
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Figure 3. Overview of our approach. Given a search task (e.g. “Find a blouse”), participants fixate on multiple images in an image collage.

Each fixated image is encoded into multiple spatial features using a pre-trained CNN. The proposed Gaze Pooling Layer combines visual

features and fixation density maps in a feature-weighting scheme. The output is a prediction of the category or attributes of the search target.

To obtain one final prediction over image collages, we integrate the class posteriors across all fixated images using average pooling.
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Figure 4. The proposed Gaze Pooling Layer combines fixation density maps with CNN feature maps via a spatial re-weighting (top row).

Attended class activation maps are shown in the bottom row, which the predicted class scores are mapped back to the previous convolutional

layer. The attended class activation maps highlight the class-specific discriminative image regions.

tained by coordinate-wise summation:

FDM(G) =
∑

g∈G

FDM(g) (3)

This corresponds to an average pooling integration. We also

propose a max pooling version as follows:

FDM(G) = max
g∈G

FDM(g) (4)

4.3. Gaze Pooling Layer

We combine the visual features F (I) with fixation density

map FDM(G) in a Gaze Pooling Layer. The integration is

performed by element-wise multiplication between both to

obtain a gaze-weighted feature map (GWFM)

GWFM(I,G) = F (I)⊗ FDM(G). (5)

In spirit of [35], we then perform Global Average Pooling

(GAP) on each feature channel separately in order to yield a

vector-valued feature representation.

GAPGWFM(I,G) =
∑

x,y

GWFM(I,G) (6)

We finish our pipeline by classification with a fully connected

layer and a soft-max layer.

p(C|I,G) = softmax(W GAPGWFM(I,G) + b), (7)

where W are the learned weights and b is the bias and C

are the considered classes. The classes represent either cat-

egories or attributes depending on the experiment and we

decide for the class with the highest class posterior (see

Figure 3).

4.4. Integration Across Images

In our study, a stimulus is a collage with a set of images

Ii ∈ I. During the search task, participants fixate on multiple

images in the collage, which generates fixations Gi ∈ G for

each image Ii. Hence, we need a mechanism to aggregate in-

formation across images. To do this, we propose a weighted

average scheme of the computed posteriors per image:

p(C|I,G) =
∑

i

dj∑
j dj

p(C|Ii, Gi). (8)

We consider for the weights di the total fixations duration

on image Ii as well as fixed di (see Figure 3). The latter
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corresponds to plain averaging.

4.5. Attended Class Activation Mapping

In order to inspect the internal representation of our Gaze

Pooling Layer, we propose the attended class activation map

visualization. It highlights discriminative image regions

for a hypothesized search target based on CNN features

combined with the weights from the gaze data. In this vein,

it shares similarities to the CAM of [35] but incorporates

the gaze information as attention scheme. The key idea

is to delay the average pooling, which allows us to show

spatial maps as also illustrated in Figure 3. In more detail,

our network consists of several convolutional layers which

the features of last convolutional layer is weighted by our

fixation density map (GWFM). We do global average pooling

over the GWFM and use those features for a fully connected

layer to get the user attended categories or attributes. Given

that our features maps are weighted by gaze data of users,

it represents their attended classes. We can identify the

importance of the image region for attended categories by

projecting back the weights of the output layer onto a gaze-

weighted convolutional feature map, which we call Attended

Class Activation Map (ACAM):

ACAMc(x, y) =
∑

k

wc
k GWFMk(I,G) (9)

where wc
k indicates the importance GWFMk(I,G) of unit k

for class c. The procedure for generating the class activation

map are shown in Figure 4.

4.6. Implementations Details

In order to obtain the CNN features maps, we follow

[35] and build on the recent VGGnet-GAP model. For our

categorization experiments, we fine-tune on a 10 class clas-

sification problem on the DeepFashion data set [17]. For

attribute prediction, we fine-tune a model with 10 times 2-

way classification in the final layer. We perform a validation

of the VGGnet image classification performance model in

the same setting as [17] and obtained comparable results

(±5%) for category and attribute classification. To ensure

that the images and collages are not informative of the cat-

egory or attribute search tasks, we have performed a sanity

check by using only the CNN prediction on the images of

our collages. The resulting performance is at chance level,

which validates our setup as search task information cannot

be derived from the images or collages and therefore can

only come from the gaze data.

5. Experiments

To evaluate our method for search target prediction of cat-

egories and attributes, we performed a series of experiments.

Global vs. ———– Category ——– Attribute

Local ➍ Top1 Top2 Top3 Accuracy

Global 31%±5 48% ±8 62% ±8 20%±1

Local 49%±7 68%±6 78%±6 26 %±1

Global X 52%±6 68%±6 78%±6 25%±1

Local X 57%±8 74%±7 84%±4 34%±1

Table 1. Evaluation of global vs. local gaze pooling with and

without weighting based on the fixation duration ➍.

We first evaluated the effectiveness of our Gaze Pooling

Layer, the effect of using a local vs global representation,

and of using a weighting by fixation duration. We then evalu-

ated the gaze encoding that encompasses the pooling scheme

of the individual fixation as well as the σfix parameter to

represent a single fixation. Finally, we evaluated the robust-

ness of our method to noise in the eye tracking data, which

sheds light on different possible deployment scenarios and

hardware that our approach is amendable to. Additionally,

we provide visualization of the internal representations in the

Gaze Pooling Layer. Across the results, we present Top-N

accuracies denoting correct predictions if the correct answer

is among the top N predictions.

5.1. Evaluation of the Gaze Pooling Layer

Fixation information enters our method in two places:

The fixation density maps in the Gaze Pooling Layer( sub-

section 4.3) as well as the weighted average across images

in the form of fixation duration (see subsection 4.4 and Fig-

ure 3). In order to evaluate the effectiveness of our Gaze

Pooling Layer, we evaluate two conditions: “local” makes

full use of the gaze data and generates fixation density maps

using the fixation location as described in our method sec-

tion. “global” also generates a fixation density map, but does

not use the fixation location information and therefore gen-

erates for each fixation a uniform weight across the whole

fixated image. In addition, we evaluate two more conditions,

where we either used the fixation duration (➍) as a weight

to the average class posterior of each fixated image (see

subsection 4.4) or ignore the duration.

Table 1 shows the result of all 4 combinations of these

conditions, with the first column denoting if local or global

information was used and the second column ➍ whether

fixation duration was used. Absolute performance of our

best model using local information and fixation duration

were 57%, 74%, and 84% on top1-3 accuracy respectively

for the categorization task and 34% accuracy for attributes.

The results show a consistent improvement (16 to 18 pp for

categories, 6 pp for attributes) across all measures and tasks
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σfix → 1 1.2 1.4 1.6 1.8 2

Top1 55% 54% 56% 56% 57% 57%

Top2 74% 74% 74% 74% 74% 75%

Top3 83% 84% 84% 85% 85% 84%

Table 2. Evaluation of different gaze encoding schemes using dif-

ferent per-fixation σfix.

going from a global to a local representation (first to sec-

ond row). Adding the weighting by fixation duration yields

another consistent improvement for both local and global

approach (another 6 to 5 pp for categories). Our best method,

improves overall by 22 to 26 pp on the categorization task

and 14 pp on the attributes. The global method without fixa-

tion duration (first row) is in spirit similar to [23] – although

the specific application differs. All further experiments will

consider our best model (last row) as the reference and jus-

tify the parameter choices (average pooling, sigmafix) by

varying each parameters one by one.

5.2. Evaluation of the Gaze Encoding

We then evaluated the gaze encoding that takes individual

fixations as input and produces a fixation density map. We

first evaluated the representation of a single fixation that de-

pends on the parameterσfix, followed by the pooling scheme

that combines multiple fixations into fixation density maps.

Effects of Fixation Representation Parameter fσ . The

parameter σfix controls the spatial extend of a single fixation

in the fixation density maps as described in subsection 4.2.

We determined an appropriate setting of this parameter to be

σfix = 1.6 in a pilot study to roughly match the eye tracker

accuracy and analyzed here the influence on the overall

performance by varying this parameter in a sensible range

(given eye tracker accuracy and coarseness of feature map)

from 1 to 2 as shown in Table 2. As can be seen from the

Table, our method is largely insensitive to the investigated

range of reasonable choices of this parameter and our choice

of 1.6 is on average a valid choice within that range.

Fixation Pooling Strategies. We evaluated two options

for how to integrate single fixations into an fixation density

map: Either using average or max pooling. The results are

shown in Table 3. As the Table shows, while both options

perform well, average pooling consistently improves over

the max pooling option.

5.3. Noise Robustness Analysis

While our gaze data is recorded with a highly-accurate

stationary eye tracker, there are different modalities and

types of eye trackers available. One key characteristic in

Fixation ———– Category ——– Attribute

Pooling Top1 Top2 Top3 Accuracy

Max 54%±8 73%±9 83%±6 32%±1

Average 57%±8 74%±7 84%±4 34%±1

Table 3. Evaluation of different fixation pooling strategies using

average or max pooling.

Figure 5. Accuracy for different amounts of noise added to the eye

tracking data. Our method is robust to this error which suggests

that it can also be used with head-mounted eye trackers or learning-

based methods that leverage RGB cameras integrated into phones,

laptops, or public displays.

which they differ is the error at which they can record gaze

data – typically measured in degrees of visual angle. While

our controlled setup provides us with an accuracy of about

0.7 degrees of error, state-of-the-art eye trackers based on

web-cams, tablets or integrated into glasses can have up to

4 degrees depending also on the deployment scenario [34].

Therefore, we finally investigated the robustness of our ap-

proach w.r.t. different levels of (simulated) noise in the eye

tracker. To this end, we sampled noise from a normal distri-

bution with σ = 1, 3, 5. This corresponds roughly to 60, 120
and 200 pixels and to 1.2, 2.5 and 4.2 degrees of visual an-

gles and hence covers a realistic range of errors. The results

of this evaluation are shown in Figure 5. As can be seen, our

method is quite robust to noise with only a drop of 5 to 10pp

for Top3 to Top1 accuracy, respectively – even at the high-

est noise level. In particular, all the results are consistently

above the performance of the corresponding global methods

shown as dashed lines in the plot.

5.4. Visualization and Analysis of Gaze Pooling
Layer on Single Images

We provide further insights into the working of our Gaze

Pooling Layer by showing visual examples of the attended

class activation maps, associated fixation density map and
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Task: Blouse Top1: Blouse 0.223 Top2: Dress 0.196 Top3: Tee 0.151
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Task: Blouse Top1: Skirt 0.2755 Top2: Dress 0.2750 Top3: Tee 0.160

Attended Class Activation Map for Top 3 Predictions 

Figure 6. Attended class activation maps of top 3 predictions in local

and global method for a given image. Participants were searching

for target category “Blouse”. The maps shows the discriminative

image regions used for for this search task.

search target prediction results. While the quantitative evalu-

ation was conducted on full collages, this is impracticable

for inspection. Therefore, we show in the following visual-

izations and analysis on single images.

Predictions. Figure 7 shows results for the categorization

task and Figure 8 for the attribute task. Each of these figures

shows the output of the “global” method that use uniform

fixation density map as well as the “local” method that makes

full use of the gaze data. We observe that for the “local”

method a relevant part of the images is fixated on which in

turn leads to correct prediction of the intended search task.

Attended Class Activation Map (ACAM) Visualization.

Figure 6 shows the attended class activation map (ACAM)

of top 3 predictions, for “local” as well as “global” approach.

The “global” method exploits that this image was fixed on

- but does not exploit the location information of the fixa-

tions. Therefore it reduces in the case of a single image to

a standard CAM. E.g the lower part of image is activated

for “skirt” and the upper part is activated for “Tee”. One can

see that highlighted regions vary across predicted class. The

first row shows the ACAM for the “local” method. It can be

seen how the local weighting due to the fixation is selective

to the relevant features of the search target, e.g. eliminating

the “skirt” responses and retaining the “blouse” responses.

6. Discussion

In this work we studied the problem of predicting cate-

gories and attributes of search targets from gaze data. Table 1

shows strong performance for both tasks. Our Gaze Pooling

Layer represents a modular and effective integration of vi-

sual and gaze features that is compatible with modern deep

learning architectures. Therefore, we would like to highlight

three features that are of particular practical importance.

Parameter Free Integration Scheme. First, our pro-

posed integration scheme is basically parameter-free. We

introduce a single parameter σfix but the gaze encoding is

only input to the integration scheme and, in addition, the

method turns out to be not sensitive to the choice (see exper-

iments in subsection 4.2).

Training from Visual Data. Second, fixing the fixation

density maps to uniform maps yields a deep architecture

similar to a GAP network that is well-suited for various

classification tasks. While this no longer addresses the task

of predicting categories and attributes intended by the human

in the loop, it allows us to train the remaining architecture

for the task at hand and on visual data, which is typically

easier to obtain in larger quantities than gaze data. This type

of training results in a domain-specific image encoding as

well as task-specific classifier.

Training Free Gaze Deployment. Gaze data is time con-

suming to acquire – which makes it rather incompatible with

today’s data hungry deep learning models. In our model,

however, the fixations density maps computed from the gaze

data can be understood as spatially localized feature impor-

tance that are used to weight feature importance in the spatial

image feature maps Figure 6. Ours results demonstrate that

strong performance can be obtained with this re-weighting

scheme without the need to re-train with gaze data. As

a result, our approach can be deployed without any gaze-

specific training. This result is surprising, in particular as the

visual model on its own is completely uninformative with-

out gaze data on the task of search target prediction (as we

have validated in subsection 5.1. We believe this simplicity

of deployment is a key feature that makes the use of gaze

information in deep learning practical.

Biases in Mental Model of Attributes and Categories

Among Users. In order to illustrate the challenges our

Gaze Pooling Layer has to deal with in terms of the varia-

tions in the observed gaze data, we show example fixation

data in Figure 9. In each image, fixation data of two par-

ticipants (red and green dots) is overlaid over a presented

collage. Although both participants had the same search

target (top: attribute ‘Floral’; bottom: category ‘Cardigan’),

we observe a drastically different fixation behaviour. One

possible explanation is that the mental models of the same

target category or attribute can vary widely depending on

personal biases [8]. Despite these strong variations in the

gaze information, our Gaze Pooling Layer allows to predict

the correct answer in all 4 cases. The key to this success is

aggregating relevant local visual feature across all images

in the collage, that in turn represent one consistent search

target in terms of categories and attributes.
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Image      Image With FDM     Results

True Search target:
Jean
Local Prediction:
Jean
Global Prediction:
Jacket

True Search target:
 Short
Local Prediction:
Short
Global Prediction:
Dress            

True Search target:
Jean
Local Prediction:
Jean
Global Prediction:
Tee

True Search target:  
Blouse
Local Prediction: 
Blouse
Global Prediction:
Skirt            

    Image           Image With FDM         Results

Figure 7. Example category responses of local and global method. Green means correct and red means wrong target prediction.

True Search Targe:
Lace
Local Prediction:
Lace
Global Prediction:
Sleeve

True Search Target:
Floral
Local Prediction:
Floral
Global Prediction:
Chiffon

True Search Target: 
knit
Local Prediction:
Knit
Global Prediction:
Sleeve

True Search Target: 
Maxi
Local Prediction:
Maxi
Global Prediction:
Shirt

            Image          Image With FDM       Results             Image          Image With FDM       Results

Figure 8. Example attribute responses of local and global method. Green means correct and red means wrong target prediction.

Figure 9. Example fixation data of 2 participants (red and

green dots) with search target attribute=‘Floral’ on top and cat-

egory=‘Cardigan’ below.

7. Conclusion

In this work we proposed the first method to predict the

category and attributes of visual search targets from human

gaze data. To this end, we proposed a novel Gaze Pool-

ing Layer that allows us to seamlessly integrate semantic

and localized fixation information into deep image repre-

sentations. Our model does not require gaze information at

training time, which makes it practical and easy to deploy.

We believe that the ease of preparation and compatibility of

our Gaze Pooling Layer with existing models will stimulate

further research on predicting mental states from gaze data.
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