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Abstract

Convolutional Neural Networks have become state of the

art methods for image classification over the last couple of

years. By now they perform better than human subjects on

many of the image classification datasets. Most of these

datasets are based on the notion of concrete classes (i.e.

images are classified by the type of object in the image). In

this paper we present a novel image classification dataset,

using abstract classes, which should be easy to solve for

humans, but variations of it are challenging for CNNs. The

classification performance of popular CNN architectures is

evaluated on this dataset and variations of the dataset that

might be interesting for further research are identified.

1. Introduction

Convolutional Neural Networks have become the

method of choice for image classification since the system

by Krizhevsky et al. [10] won the ImageNet competition in

2012 by a large margin. In 2015 Russakovsky et al. [13] re-

ported the classification accuracy of human subjects, on the

same dataset, to be around 94.9% correctly classified im-

ages. In the same year, He et al. [7] were the first to present

a network that outperformed human subjects on ImageNet.

Since then, image classification is often perceived as either

solved, or in the process of being solved.

Popular datasets used for image classification

like MNIST[11], ImageNet[13], PASCAL[5], and

CIFAR10/100[9] all classify the images by the type

of a prominent object or feature in the image. We will

call such classes concrete classes. Concrete classes have

in common that they can be identified by analyzing local

features, or the distribution of multiple local features. In

this paper, we present a dataset that consists of abstract

classes. Abstract classes imply that images can not be

classified by simply considering local features. In our

case, the two types of classes are identity/non–identity and

symmetry/non–symmetry.

(a) Identity task (b) Symmetry task

Figure 1: Example images of the two classification tasks in

the dataset. In both cases two of the pawns are out of place.

2. Related Work

Fleuret et al. [6] have already presented a dataset with

abstract classes, using very simple black and white line

drawings. This dataset is somewhat reminiscent of the

“Bongard problems”, presented by Bongard in 1970 [3] as

a set of problems that, according to Bongard, neural net-

works would never be able to solve (though he did not have

simple classification in mind, but a textual description of

what separates the two classes). In previous work [17] [16],

we have tested different convolutional neural network ar-

chitectures on the dataset by Fleuret et al. and came to the

conclusion that current CNN architectures have shortcom-

ings when shape comparison is needed to distinguish two

classes. As Dodge et al. [4] argue, the Fleuret dataset is

too simplistic and too far from natural images to draw any

practical conclusions from it. Our goal is to present a more

realistic dataset, with abstract classes, that is equally hard

to classify for CNNs.

3. Dataset

The presented dataset consists of two separate tasks:

1. The symmetry–task: The system has to decide whether
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(a) Fixed camera position.

(b) Random camera translation.

(c) Random board position.

(d) Random camera position on sphere.

Figure 2: Different, tested variations of the identity–task. The left group of images are samples from the identity class. The

right group are from the non-identity class with ten pawns that are out of place.

an arrangement of red pawns on a checkerboard is

symmetric along one of the mid lines of the checker

board, or not.

2. The identity–task: The system has to decide whether

the arrangement of red pawns on two checkerboards is

identical, or not.

There are multiple reasons for selecting these specific tasks:

1. The use of checkerboards, with randomly positioned

pawns, allows us to very easily generate random sam-

ples, without inadvertently introducing additional, un-

wanted clues to the dataset. As we could show [16] for

the dataset by Fleuret et al. [6], these unintended clues

can be used by CNNs to classify images, and might

lead to wrong conclusions about what CNNs are able

to learn.

2. Although the images have a random component (the

position of the pawns on the board), the images are still

semi-realistic and show a simplified representation of

what might be observable in reality.

3. According to the gestalt principles [19], symmetry is

an important property for humans to understand and

order the world. It therefore seemed like a good choice

for one of the tasks. The identity–task was chosen

since the tests on the dataset by Fleuret et al. [6]

showed that CNNs have specific weakness when it

comes to detecting identity.

Example images for both of these tasks can be seen in

Figure 1. The difficulty of both tasks can be controlled in

multiple different ways:

1. The number of pawns, breaking the symmetry/identity,

can be adjusted. It should be evident that detecting a

single, out of place pawn is more difficult than detect-

ing ten pawns that are out of place.

2. The task can be made more challenging by increasing

the visual variability of the presented images. We are

using three different levels of variability:

(a) For the lowest amount of variability, the camera

position as well as the board positions are fixed.

See Figure 2a and Figure 3a for example images.

(b) For more variability, the camera is randomly

moved on a plane, resulting in different board

positions for each of the images. Still, in the

identity–task, the relative position of the two

boards stays the same. See Figure 2b and Fig-

ure 3b for example images.
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(a) Fixed camera position.

(b) Random camera translation.

(c) Random camera position on sphere.

Figure 3: Different, tested variations of the symmetry–task. The left group of images are symmetric. The right group are not

symmetric and have ten pawns that are out of place.

(c) The highest variability is achieved by randomly

positioning the camera on a sphere, with a ran-

dom radius, around the checkerboard. This re-

sults in different view points, as well as different

sizes of the boards. See Figure 2d and Figure 3c

for example images.

3. For the symmetry–task, the two checkerboards can be

arranged randomly. See Figure 2c for example images.

For each of these variability–schemes, we test versions of

the dataset with one, five, and ten pawns that are out of

place.

The images for the dataset were generated by an auto-

mated procedure, using the 3D modeling software Blender

[2]. Thus, an arbitrary amount of training– and testing–

images can be produced very quickly in arbitrary resolu-

tions. This also opens the door to varying lighting condi-

tions, added clutter, additional chess pieces, . . . , to make

the dataset more challenging. The scripts to generate the

dataset can be found online1.

4. Experiments

To evaluate the dataset, we generated 20000 training im-

ages as well as 1000 testing images for each of the tasks and

difficulty levels. A resolution of 224×224 pixels was used.

We tested the dataset on the popular network architectures

Alexnet [10], VGG16 [15], and GoogLeNet [18].

For AlexNet and GoogLeNet, the standard implementa-

tions provided with the nVidia DIGITS [12] deep learning

1https://github.com/Paethon/chess_image_dataset

framework version 5.0.0 using Caffe [8] version 0.15.13 as

a back end were used. Since we were not able to train

VGG16 on the presented dataset from scratch, we used

the predefined network, pre–trained on ImageNet, from

the DIGITS model store. All networks were trained us-

ing ADAM, with a base learning rate of 1 × 10
−5 for 120

epochs. The training was manually stopped in cases where

further improvement was not to be expected (e.g. perfect

accuracy was already achieved).

For each task, the networks were trained in order of in-

creasing difficulty, and the learned weights were used as

initialization for the next, more difficult, task. A network

was, for example, trained on the symmetry–task with a fixed

camera position and ten out of place pawns. After success-

ful training of this network, the weights were used to initial-

ize the network to be trained on the same task with five out

of place pawns. A variation of this approach was presented

by Bengio et al. [1] under the name of curriculum learning.

This approach was absolutely critical for training some of

the more difficult variations of the dataset. We were, for ex-

ample, not able to achieve a classification accuracy above

chance with GoogLeNet on the identity–task with random

board positions (Figure 2c) without this curriculum learn-

ing approach, despite the fact that we could reach a good

classification accuracy of 0.86 using curriculum learning.

During training, each network was evaluated on the test-

ing set after each epoch, and an accuracy measure was

recorded. Accuracy is defined as
|sc|
|s| where |s| is the num-

ber of tested samples (i.e. the number of images to be classi-

fied) and |sc| is the number of correctly classified samples.

Since we have two possible classes for all our experiments,
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Table 1: Highest achieved accuracies on the proposed dataset by the tested CNN architectures.

Task AlexNet VGG16 GoogLeNet

identity

fixed position, 10 diff (Fig.2a) 1.00 1.00 0.99

fixed position, 5 diff 1.00 0.99 0.97

fixed position, 1 diff 0.99 1.00 1.00

camera translation, 10 diff (Fig.2b) 0.99 0.99 0.99

camera translation, 5 diff 0.98 0.99 0.98

camera translation, 1 diff 0.90 0.98 0.96

random board placement, 10 diff (Fig.2c) 0.80 0.89 0.95

random board placement, 5 diff 0.73 0.88 0.94

random board placement, 1 diff 0.54 0.69 0.86

camera rotation, 10 diff (Fig.2d) 0.54 0.64 0.55

camera rotation, 5 diff 0.52 0.63 0.53

camera rotation, 1 diff 0.51 0.54 0.50

symmetry

fixed position, 10 diff (Fig.3a) 1.00 1.00 1.00

fixed position, 5 diff 1.00 1.00 1.00

fixed position, 1 diff 0.99 1.00 1.00

camera translation, 10 diff (Fig.3b) 0.99 1.00 1.00

camera translation, 5 diff 0.98 0.99 0.98

camera translation, 1 diff 0.85 0.99 0.92

camera rotation, 10 diff (Fig.3c) 0.75 0.85 0.79

camera rotation, 5 diff 0.59 0.80 0.78

camera rotation, 1 diff 0.52 0.59 0.63

a purely random classifier would achieve an accuracy of

≈ 0.5. For each network and task, we report the highest

achieved accuracy for all of the evaluations, after each of the

120 training epochs. We thus expect even a random classi-

fier to get a maximum accuracy above 0.5. If we assume an

equal probability for both classes, 1000 samples classified

per test, and 120 tests, we expect a purely random classifier

to achieve a mean maximum accuracy over all 120 evalua-

tions of ≈ 0.54, with a standard deviation of ≈ 6.6× 10
−3.

These values were determined using simulation.

4.1. Discussion

Table 1 shows the highest achieved accuracy during

training. The identity–task with fixed camera position and

camera translation (Figure 2a) was solved almost perfectly

by all tested network architectures. This is not very surpris-

ing, since the same checker board positions will always be

at the same pixel positions. Thus, the networks can learn a

very direct mapping, to check for identity and symmetry.

Somewhat more surprising is the almost perfect perfor-

mance of all three networks on the dataset variation with

random camera translation (Figure 2b). Especially, since

the translation of the camera also imparts perspective effects

on the images (i.e. if the checkerboard is rendered at the top

of the image, it is smaller in comparison to being rendered

at the bottom). Still, the relative position of all the checker-

board positions is constant in all the images, up to some

scaling factor. This might explain the overall good perfor-

mance of the networks. AlexNet does perform somewhat

worse with only one pawn out of place, but it still reaches a

good accuracy of 0.90.

Random board placement and fixed camera angle (Fig-

ure 2c) is interesting, since the tested architectures perform

very differently on this task. GoogLeNet performs very

well, even solving one pawn out of place well above chance.

AlexNet performs much worse, and does not solve the one

pawn out of place variant at all. VGG16 lies somewhere

in the middle. The less than perfect performance is inter-

esting, since human subjects would very likely not consider

this task more difficult than the variations with fixed cam-

era position, or camera translation. It could be the case, that

features have to be integrated on a more global scope than

in the other tasks, which leads to diminished performance.

The variant with camera rotation (Figure 2d) was not
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solved convincingly by any of the architectures. VGG16

performs slightly better than chance, with an accuracy of

0.64 and 0.63 for ten and five out of place pawns respec-

tively, but it also completely fails with only one out of

place pawn. The images that VGG16 can correctly classify

predominantly show the checkerboard in a very favorably

position (i.e. top-down with little rotation). AlexNet and

GoogLeNet seem to be confused enough by the rest of the

training set so that they are not even able to classify these

easier images.

The symmetry–task seems to be easier for the networks

in general. This likely has two reasons. On one hand, only

64 board positions have to be compared in comparison with

128 positions for the identity–task. On the other hand, the

positions to be compared are also spatially closer, especially

for the more difficult variations of the dataset.

The variation with fixed camera and board position (Fig-

ure 3a) is solved perfectly by all the networks. Added cam-

era translation (Figure 3b) shows a similar pattern to what

we have seen for the identity–task. All networks solve this

problem more or less perfectly, except for AlexNet, which is

only able to achieve an accuracy of 0.85 for one out of place

pawn. This suggests that there seems to be a general flaw in

the AlexNet architecture for these kinds of problems.

Adding camera rotation (Figure 3c) leads to more vari-

able results. None of the networks perform perfectly, but all

of them perform significantly above chance for the variation

with ten out of place pawns. VGG16 and GoogLenet even

perform slightly above chance for one out of place pawn.

The experiments reveal a few variations of the dataset

that seem to be interesting for further research:

1. Symmetry–task with camera rotation: This variant

seems to be at the border of being solvable by cur-

rent architectures and the difficulty scales well with the

number of out of place pawns.

2. Identity–task with random board placement: The net-

work architecture seems to be especially relevant for

this task.

3. Identity–task with camera rotation: None of the net-

works were able to solve any of the variants of this

task convincingly, but the fact that VGG16 does per-

form slightly above chance indicates that it might be

possible to create a network architecture that performs

much better.

It would be interesting to evaluate these variations of the

dataset on additional network architectures, and to analyze

how human subjects solve problems of this kind. Our hy-

pothesis is that such problems are generally not solved in

a pure feed forward manner by humans, and some atten-

tional mechanisms and iterative processing of the images

are required. Attention is defined by the Encyclopedia Bri-

tannica as “the concentration of awareness on some phe-

nomenon to the exclusion of other stimuli”. Since brains

do have capacity limitations, it is impossible to process all

visual information at any given time, as shown by Tsotsos

[20]. Therefore, an attentional mechanism has to assign the

available resources to task relevant stimuli. We hypothesize

that pawn positions are compared not as a whole, but by an

iterative switching of attention between smaller areas of the

board or boards. To substantiate this hypothesis, we propose

to test the classification accuracy and classification speed of

human subjects on the same dataset, while also collecting

eye tracking data, to get a rough estimate of shifting atten-

tion. Processing of the images in this way would hint at the

possibility that attention and iterative processes might be

more efficient at, or even necessary, for solving the problem

classes presented in our dataset.

It would also be interesting to see whether the time hu-

mans need to correctly classify an image correlates with the

classification performance of a CNN. A human might for

example need less time to classify a pawn arrangement if a

pawn is misplaced in one of the corners.

It would also be interesting to see whether current CNN

architectures that already incorporate some form of atten-

tion, as well as a form of iterative processing of images,

would perform better on the dataset than the already tested

standard architectures. Sermanet et al. [14] have shown that

incorporating attention and iterative refinement of class pre-

dictions can improve the performance of CNNs.

5. Conclusion

We presented a novel image classification dataset that

should be trivial to classify for humans. Nonetheless, cer-

tain variations of it are poorly classified by the tested CNN

architectures AlexNet, VGG16, and GoogLeNet. We iden-

tified three variations of the dataset that might be interesting

for further research. Detecting symmetry of pawn positions

of a checkerboard, together with camera rotation, is inter-

esting, since it seems to be on the border of what current

CNN architectures can solve. Depending on the number of

pawns that break the symmetry, it can, or can not be solved.

Detecting identity of pawn positions on two randomly po-

sitioned checkerboards, with fixed camera position, is the

second interesting variation of the dataset. From our per-

spective, it seems like it should be an easy task for human

subjects, but the tested architectures showed highly variable

performance. Third, the identity–task, with camera rotation,

was not convincingly solved by any of the architectures. We

therefore proposed to do additional tests on these specific

variations of the dataset. In addition, experiments involv-

ing human subjects might be interesting to determine under

which circumstances and by which processes humans are

able to classify this dataset. Our hypothesis is that humans
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use some form of attentional mechanism and iterative pro-

cessing to solve problems of this kind. We further hypothe-

size that such an approach is therefore more efficient for the

given task at hand, and incorporating these principles might

benefit machine learning methods.

We want to thank the reviewers for the helpful comments

and proposing further research.
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