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Abstract

The paper propose a cognitive inspired change detection

method for the detection and localization of shape vari-

ations on point clouds. A well defined pipeline is intro-

duced by proposing a coarse to fine approach: i) shape

segmentation, ii) fine segment registration using attention

blocks. Shape segmentation is obtained using covariance

based method and fine segment registration is carried out

using gravitational registration algorithm. In particular the

introduction of this partition-based approach using visual

attention mechanism improves the speed of deformation de-

tection and localization. Some results are shown on syn-

thetic data of house and aircraft models. Experimental re-

sults shows that this simple yet effective approach designed

with an eye to scalability can detect and localize the defor-

mation in a faster manner. A real world car use case is also

presented with some preliminary promising results useful

for auditing and insurance claim tasks.

1. Introduction and Review

In the modern scientific era, change detection demands

real or at least near real time and good precision for many

real world applications including quality inspections main-

tenance, repair and overhaul (MRO), view planning for

shooting scene footage for smart robotics or drone appli-

cation, urban planning for smart cities, surgical operations

in medical domains etc. The paper tries to solve a funda-

mental problem in 3D scanning: shape matching and defor-

mation localization using cognitive aspects. From a generic

perspective, a plethora of survey of 2D and 3D change de-

tection is provided in [9] and the need of innovative ba-

sic research in change detection mechanism is emphasized.

There are methods [12] [14] [11] which uses point clouds

from 3D laser range sensors for detecting change in position

of existing objects, or detecting a new object in the scene.

Existing 3D change detection algorithm [14] [8] [5] in gen-

eral comprises the common steps - registration between two

point clouds and thresholding the distance between the ver-

tices of the point clouds to detect significant changes. The

challenges are mainly due to registration errors, irregular-

ities in the point cloud, density difference between source

and target point clouds, sensor noise, sensitivity of the de-

tection method to small changes etc. Point clouds represent-

ing large data typically contain very high number of points

and hence an algorithmic trade-off is required between sen-

sitivity to small changes and computational complexity. For

example, change detection on building sites or inside facil-

ities, using a ground-based laser scanning device[5] , there

is a lower emphasis on precision of measured displacement

compared to speed of the data analysis. To handle compu-

tational complexity trade-off, in [2], a new OBB oriented

bounding box regional area descriptor is proposed which is

quite useful for 3D point cloud registration when no coor-

dinate reference exist. The precision of change detection

depends on precision and distribution of common points of

source and target point cloud using which conversion coef-

ficients can be obtained [7]. Recently, a method for robust

change detection using implicit surface defined by growing

least square reconstruction is proposed in [4] compared to

standard proximity measure approach. In [12], point clouds

are modeled by a mixture of Gaussian which require high

computation due to the energy minimization algorithms and

require the number of Gaussians in advance. Another ap-

proach [14] applies a 3D bounding box to registered point

clouds and models the global density function by summing

local density functions fitted to each point. Changes in the

point clouds are expressed as a boolean operation over the

global density functions after thresholding. However, in this

method the efficiency decreases when the surfaces are not

closed.

The need for cognitive principles and increased interest in

biologically inspired systems is well appreciated in research

community. Bridewell has proposed a change detection ar-
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chitecture ARCADIA using color blindness phenomenon

[1]. Generic pipeline of cognitive change detection (ARCA-

DIA) include a) bottom up feature computation, b) Iconic

Memory, c) Fixation generators, d) Early binding, e) Iden-

tity, f) Visual short term memory (vSTM), g) change detec-

tion. ARCADIAs fixation generators include both bottom

up and top down factors, identity component tracks equality

between old and new object representations. This compo-

nent compares focused objects to those reported by vSTM

and posts an interlingua element that specifies an identity

relationship between the new object and the object from

vSTM. The comparison is based on size and location of the

new object against the last known size and location avail-

able in vSTM. In domain specific problems, the size, loca-

tion information of the components are available in CATIA

or XML formats [13]. Precisely, the dimensions and pose

information including rotation and translation are available

aprior. The sample XML representation is provided in Fig.

1. The model knowledge includes various parameters such

as dimensions, length, height, width, rotation, translation

can be embedded in a tree like structure which is parsed us-

ing XML reader [13]. Recently, a study on attention driven

cognitive vision architecture is also made on a remote sens-

ing case study [3]. First time to the best of our knowledge,

we propose a framework based on combination of OBB-AB

and gravitational based fitting for 3D shape analysis which

can be used for production audit in assisting qualitative as-

sessment for manufacturing and insurance process in auto-

motive domain. It will reduce the processing time of some

of the manual process used in insurance claim process. This

technology is useful for examining the healthiness of sub

parts using checklist and domain model knowledge. The

key contributions of our paper are:

• we propose a novel bi-level framework where we

use covariance based shape segmentation followed by

gravitational fitting and MLS matching.

• The method works only on saliency segment reduc-

ing the computational complexity from o(n) to 0(n/k)
where k = 2, 4, 8,

• the method works even when there is density variation

between source and target point clouds and capable of

capturing even miniature changes.

2. Proposed solution methodology

The proposed solution consists of A) Covariance based

shape segmentation, B) Finer registration using gravita-

tional based fitting and attention. The framework can be

used for examining the subparts of any installation using

model knowledge which are described below.

Figure 1. XML format of the components [13]

2.1. Covariance based Shape segmentation into sub-
blocks

The orientations of OBB is calculated for the given point

cloud under scanning based on covariance-based method

[2].

Given p and p
′

the number of vertices in a point cloud in

the form X = (a b c), the method project the points in point

cloud to eigen vectors to determine the three directions of

OBB by calculating the distance between the farthest and

nearest projected points in each eigen vector.

The OBB is represented by c = (ac, bc, cc) and

cc1, cc2, cc3 which can be calculated using following equa-

tions.

ac = µa + ν11a
′

min + ν21b
′

min + ν31c
′

min (1)

bc = µb + ν12a
′

min + ν22b
′

min + ν32c
′

min (2)

cc = µc + ν13a
′

min + ν23b
′

min + ν33c
′

min (3)

cc1 = (a
′

max − a
′

min)v1 (4)

cc2 = (b
′

max − b
′

min)v2 (5)

cc3 = (c
′

max − c
′

min)v3 (6)

where a
′

min = min{a
′

j , ∀j = 1, 2...p}; b
′

min =

min{b
′

j , ∀j = 1, 2...p}; c
′

min = min{c
′

j , ∀j = 1, 2...p};

a
′

max = max{a
′

j , ∀j = 1, 2...p} b
′

max = max{b
′

j , ∀j =
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Figure 2. top: a) obb corners, b) coordinate system below: c)

aircraft model d) horizontal bi−block1 partitioned cloud HB1 e)

horizontal bi−block 2 partitioned cloud HB2 f) vertical bi− block

1 partitioned cloud VB1 g) vertical bi−block 2 partitioned cloud

VB2(better viewed in color).

1, 2...p}; c
′

max = max{c
′

j , ∀j = 1, 2...p} a
′

j , b
′

j , c
′

j is cal-

culated as

a
′

j = ν11(aj − µa) + ν12(bj − µb) + ν13(cj − µc) (7)

b
′

j = ν21(aj − µa) + ν22(bj − µb) + ν23(cj − µc) (8)

c
′

j = ν31(aj − µa) + ν32(bj − µb) + ν33(cj − µc) (9)

ν1, ν2, ν3 are eigen vectors calculated from covariance

matrix from M , M
′

as covX = 1

p
X(X)T

By using the co-ordinate system knowledge, we chunk

the OBB into level like horizontal bi block, vertical bi block,

quad block and oct block. Fig. 2 shows the OBB corners

extracted for aircraft dataset, associated partitioned blocks

based on the values from table.2.

2.2. Fine registration using visual attention

For alignment of the segments in each salient pair, we

follow the gravitational approach based registration (GR)

proposed in [6]. According to this approach, each particle

of an abject attracts each other particle of the other object.

This force of attraction is proportional to the multiplication

of the mass of the two particles involved and the distance

between the two particles involved. This force of attraction

helps in the alignment of the two objects. In our case, given

the pair of salient 3D segments SA and SB , the gravitational

force applied on each point of SB by all the points of SA is

estimated as

FBi = −GmBi

N∑

j=1

mAi

||rBi − rAj ||
nij (10)

Block xmin xmax ymin ymax zmin zmax

HB1 0 2000 0 1000 0 200

HB2 0 2000 0 1000 -200 0

VB1 0 1000 0 1000 -200 200

VB2 1000 2000 0 100 -200 200

QB1 0 1000 0 1000 0 200

QB2 1000 2000 0 1000 0 200

QB3 0 1000 0 1000 -200 0

QB4 1000 2000 0 1000 -200 0

OB1 0 1000 0 500 0 200

OB2 0 1000 655 1000 0 200

OB3 1000 2000 0 655 0 200

OB4 1000 2000 655 1200 0 200

OB5 0 1000 0 655 -200 0

OB6 0 1000 655 1200 -200 0

OB7 1000 2000 0 655 -200 0

OB8 1000 2000 655 1200 -200 0

Table 1. Partition block table sample H-Horizontal, V-Vertical, Q-

Quad, O-Octo B-Block.

Objectparts HB1 HB2 VB1 VB2

AC Elevator ν
AC Fuselage ν
AC Left wing ν
AC Right wing ν
AC Rudder ν
AC Stabilizer ν ν
Car Logo ν
Car Licenseplate ν
Car Bumper ν
Car fender ν
Car hoods ν
Car tailgatestrunk ν
Car doorleft ν
Car doorright ν
Car mirrorleft ν
Car mirrorright ν
Car tyreleft ν
Car tyreright ν

Table 2. Attention block. AC-Aircraft

where, mH and rH represent the mass and the absolute

coordinate of the point cloud vertex H (H ∈ {SAi, SBj}).

G is the gravitational constant and the unit vector in the di-

rection of force is represented by nij .

The total gravitational force applied on SA is the sum-

mation of the force applied on individual vertex of SB . The

segment SB , as a rigid body, aligns towards SA under the

force FB in a number of iterations using the following equa-

tion.
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SA(t+ 1) = sSA(t)R+ T, (11)

where s, R and T represent scale, rotation and translation

respectively of SA as obtained due to the gravitational force.

The index t is used to represent the iteration number.

The source and the target point clouds A and B after sub-

sampling are divided into voxels of size K × K × K. 3D

points in each voxel are processed to generate an approxi-

mate surface using moving least square [10] which recon-

structs a surface from a set of vertices using weighted least

square.

In each voxel, let there be P vertices where P = {pi} and

pi ∈ ℜ3. Let the function f be a set of distances from the

P vertices to a local reference plane such that, f(pi) = fi,
where fi ∈ ℜ. Then, using a polynomial function g(pi), the

surface can be estimated at a position q ∈ ℜ3 by minimizing

the weighted least square equation as follows

P∑

i=1

(g(pi)− fi)
2θ(||q − pi||) (12)

Where θ represents the smooth monotonically decreas-

ing weight in the system and can be defined as θ(s) = e−
s
2

σ
2

σ is a constant term which represents the spacing between

neighboring voxels. In our experiment, we compute a sixth

order polynomial fitting for generating surface. The coeffi-

cients of the polynomial g(pi) provides surface information

of a local region in point cloud and therefore can be used

to detect change. cA and cB are the polynomial coefficients

fitted in a voxel of point cloud A and B respectively and are

used as feature vectors to describe the change in the point

cloud. For every vertex of the voxel in A, a boolean attribute

distort is defined as in following equation which indicates

if the vertex has undergone change in B. For every feature

vector of A, the nearest neighbor feature vector of B is se-

lected from the kd-tree and if the distance between the input

feature vector and searched feature vector d(cA, cB) is neg-

ligible, then the vertex of the input feature vector is said to

be undistorted. Otherwise, it has undergone change in B.

distort = 0 if d(cA, cB) < δ; 1 otherwise (13)

Where, δ is a threshold.

3. Results and discussion

The proposed change detection system is tested on HP

Envy 6 Notebook AMD A6-4455M APU with Radeon HD

Graphics 6 GB RAM. In order to demonstrate the utility

of the proposed methodology, we created synthesized data

sets of house and aircraft model. For instance, if a reference

3D model of an aircraft is given and in another scan of the

aircraft is deformed in one of its wing, then detecting and

Figure 3. House a) normal vs. b) deformed: Ground truth(better

viewed in color).

Figure 4. Aircraft a) normal vs. b) deformed: Ground truth(better

viewed in color).

estimating that change can lead to fast inspection and qual-

ity control. In another scenario, a model of a building is

given and a damaged roof segment is presented for change

estimation (refer Fig.3 and 4).

For the former model, deformation is done using the el-

liptic deformation technique i.e, using parametric function

g(x, y, z) such as elliptic paraboloid and the later model

by the deletion of selected vertices. The total number of

source and target vertices of house and aircraft dataset are

(9577,9525) and (1335,1291) respectively. The source and

the target point cloud are processed using the proposed

pipeline to detect the change. The percentage of deforma-

tion level (PDL) is quantified by the ratio between estimated

number of deformed vertices to the number of deformed

vertices in ground truth. The proposed system is capable of

correctly identifying the deformation in rigid objects with

geometrical structures such as house and aircraft dataset (re-

fer Fig.8 and 9). The deformation in chimney like structure

in house and deformation in aircraft wing is detected and

localized. We also run the experiment for the whole point

cloud without using OBB-AB and purely based on GR and

MLS approach (refer Fig.6 and 7). PDL is 82.8% for house

and 100% for aircraft same as with OBB-AB based GR and

MLS approach. By effectively identifying the salient pairs,

the processing of whole point cloud is alleviated at the cost

of OBB-AB approach while achieving the same result. The
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Figure 5. OBB segment house HB1(top) HB2 (bottom) a,c-normal,

b,d-deformed (better viewed in color)

computational complexity is reduced by k times where

k =
number of segmented vertices

total number of vertices in point cloud
(14)

. In the house and aircraft data set shown, k is 2. Though

the detected changes due to deformation based on elliptic

paraboloid are visible, the results can be still improved. Fur-

ther, we manually introduced some errors that is distributed

across the segments to check the reliability of the algorithm.

As shown in Fig. 10, the system is able to capture even the

miniature intrinsic details, handling the perturbations and

correctly detect the changes along cockpit and rudder. Fi-

nally, we showcase the 3D model of car in which the miss-

ing logo is detected (refer Fig. 11). The corresponding

camera views of the 3D model is shown in Fig. 12. By

mapping the semantic to attention block, view planning can

be accomplished. For example, in this case, only rear part

of the scene is processed which could be useful for the au-

tomation of insurance claim processes/auditing using smart

camera vision with robotics or drones.

4. Conclusion

In this paper, we proposed a cognitive inspired change

detection for detecting and localizing deformations in

texture-less point clouds. At first level, we have shown

how obb is used to partition point clouds and demonstrated

how to estimate the deformation. The utility is tested on

synthetic aircraft and house data sets. Experimental results

shows that this simple yet effective approach detect and lo-

calize the deformation. A real world car use case is also

presented with some preliminary promising results useful

for auditing and insurance claim tasks.

Figure 6. Actual detected result: Localization of deformation us-

ing method GR [6] +MLS (house)(better viewed in color).

Figure 7. Actual detected result: Localization of deformation us-

ing method GR [6] +MLS (aircraft)(better viewed in color).

Figure 8. Actual detected result: Localization of deformation us-

ing method OBB-AB+GR [6] +MLS (house)(better viewed in

color).
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Figure 11. 3D change detection of car.

Figure 12. Corresponding camera views of the car.

Figure 9. Actual detected result: Localization of deformation us-

ing method OBB-AB+GR [6] +MLS (aircraft)(better viewed in

color).
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