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Abstract 

 

Facial expressions play a significant role in the 

expression of emotional states, such as fear, surprise, and 

happiness in humans and other animals. The current 

systems for recognizing animal facial expression model in 

Non-human primates (NHPs) are currently limited to 

manual decoding of the facial muscles and observations, 

which is biased, time-consuming and requires a long 

training process and certification.  The main objective of 

this work is to establish a computational framework for 

facial recognition systems for automatic recognition NHP 

facial expressions from standard video recordings with 

minimal assumptions. The suggested technology consists 

of: 1)a tailored facial image registration for NHPs; 2)a 

two-layers unsupervised clustering algorithm that forms 

an ordered dictionary of facial images for different facial 

segments; 3)extract dynamical temporal-spectral features; 

,and recognize dynamic facial expressions. The feasibility 

of the methods was verified using video recordings of an 

NHP under various behavioral conditions, recognizing 

typical NHP facial expressions in the wild. The results 

were compared to three human experts, and show an 

agreement of more than 82%. This work is the first 

attempt for efficient automatic recognition of facial 

expressions in NHPs using minimal assumptions about the 

physiology of facial expressions. 

 

1. Introduction 

Facial expressions play an important role in the 

expression of internal emotional states in humans and 

other primates. Continuous recognition of primate facial 

expressions can, therefore, improve monitoring behavior 

and mental health condition [1]. For humans, facial 

expressions are considered universal and share many 

common properties across cultures [2]. Technologies for 

human facial emotion recognition are increasingly more 

automated and accurate due to enhanced computational 

capabilities, and the increased availability of storage [3]. 

Despite these advances, automatic tools to detect facial 

expressions and assess emotional states do not yet exist for 

non-human primates, hampering the development of 

animal models for mental health research. 

Automatic Facial Expression Recognition (AFER) for 

humans decode set of pre-determined emotions, like 

happiness, sadness, anger, disgust, surprise, or fear [4]. 

AFER systems suffers from variability between subjects 

[4], and the objective difficulty in finding accurate ground 

truth for some emotional states such as pain [5], or 

depression [6]. Algorithms for AFER in humans are 

mostly muscle activation models based, or model-free 

statistical based, or on both [7]. Model-based methods, 

usually assume a predetermined prototypic number of 

expressions and are directly related to the decoding blocks 

of facial expressions muscle activity, as the one estimated 

by Action Units (AU) [8]. Each AU has its own set of 

muscle movements and set of facial appearance 

characteristics. The AUs can be used for any higher order 

decision making process including recognition of basic 

emotions. Facial Action Coding System (FACS) was built 

to objectively and comprehensively decode human facial 

expression [9], [10]. Model-free methods are based on 

applying statistical machine learning tools with massive 

training data sets with pre-labeled facial expressions, like 

deep learning based on convolutional neural-network [11]. 

For both model-based and model-free techniques, the 

algorithms consist of the following four stages: 1) face 

detection such as the Viola-Jones algorithm; 2) 

registration, to compensate over variations in pose, 

viewpoints (frontal vs. profile views), and across a wide 

range of illuminations, including cast shadows and 

specular reflections [12]; feature extraction like AUs’ 

activation level, Gabor features [13], Histogram of 

Oriented Gradients (HOG) [14]; 4) and classification of 

instantaneous facial expression, or dynamic facial 

expression [15]. 

In animals, in particular in NHPs, facial expressions are 

key-source for communication, and related to facial 

dynamical gestures. In rhesus monkeys, facial expressions 

are sometimes linked to body postures [16], and calls [17]. 

In Chimpanzees, facial expressions can indicate internal 

emotional states, and thus play an important role in 

communication [18]. The pioneering work in [16], defined 

the main six principal facial expressions used by the 

rhesus monkey: 1) threat, which typically includes 

exposed teeth, a wide open mouth and narrowing of the 
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eyes; 2) fear grin, expressed through exposed teeth, closed 

mouth and eventual teeth grinding; 3) lip smacking, a pro-

social gesture expressed by producing a smacking sound 

through repetitive lip movements; 4) chewing; 5) gnashing 

of teeth ; and 6) yawning. The latter three, are considered 

miscellaneous facial expressions, and have a weak link to 

emotional states.  

Common practice for facial recognition in NHPs is 

analyzing video streams or snapshots by an expert, mostly 

by using published guidelines and clustering to different 

facial expression groups [19]. In the past few years, after 

the development of FACS in humans, methods used for 

recognizing facial expressions in NHPs have been based 

primarily on the model based approach, where the AUs are 

decoded and used as features in a classification algorithm 

[20]. However, applying the FACS designed for humans 

to NHPs is not feasible due to the differences in the 

muscle structure between humans and NHPs, which 

results in differences in the facial expressions [21]. As an 

example, human AU 17 (the movement of the chin boss 

and lower lip), is largely a forward rather than an upward 

action in nonhuman anthropoids. A model-based approach 

for NHPs yielded the coding system of ChimpFACS [20], 

and macFACS [22], for chimpanzee, and macaque, 

respectively. Coding of the AUs is performed manually on 

still images or video snapshots by at least one expert 

rating. Nevertheless, independent movement of several 

muscles sometimes cannot be identified in FACS, 

although it could be determined that they were active in 

collaboration with other movements. For example, lip 

smacking is an action that involves rapid and repeated 

movements of the lips. However, due to the absence of lip 

eversion in the Rhesus macaque, it is unclear whether this 

movement involves AU23-Lip Tightening or AU24-Lip 

Pressor, or some combination of both. Thus, a single 

Action Descriptor, AU18i, most exclusively associated 

with the action is given in the macFACS [22]. At second 

stage, the histogram of the AUs intensity values is used for 

classification based on known facial expression categories 

labels [20].  

While many AFER for humans, few efforts have been 

made to in NHPs. Existing model-based methods are 

limited to manual decoding of the AUs, which is time-

consuming and requires a long training process and 

certification. Manual decoding is also not fully objective, 

as it is affected by inter-coder variability [17]. Another 

limitation of model-based approaches is the difficulty in 

detecting all appearance characteristics of the AUs related 

to the facial expression, in particular where facial areas are 

covered by hair and can hide some of the muscle activities 

[20]. Another main challenge is interpreting and 

categorizing the different NHP facial expression to 

meaningful emotions and time-dependent gestures [23]. 

Consequently, the creation of a labeled data base of 

different NHP facial expression that can be used for 

validation of different classification algorithm is a 

cumbersome stage needed to enable AFER in NHPs [20]. 

FACs’ representation requires estimating the dynamics of 

each muscle’s activation separately over different 

activation times, which requires supervision learning of 

the appearances values with labeled FACs data. This 

labeled FACs do not currently exist for NHPs as in 

humans, and restrict the use of FAC based AFER in 

NHPs. 

The main objective of this study is to establish a 

mechanism and tailor baseline computational tools to 

enable an objective automatic decoding of NHPs’ facial 

expressions from a standard video recording. The methods 

suggested in this work, were applied to data from a set of 

experiments that recorded the facial expressions of a non-

human primate (Macaca Mulatta) in a nearly frontal-face-

view condition. The subject participated in different 

behavioral conditions that aimed at provoking a range of 

facial expressions to build a subject-specific library of the 

repertoire of facial expressions. The system was verified 

against FACs decoded test data for ground-truth by three 

different independent experts for fundamental lower and 

upper facial expression. 

This paper’s contributions are three-fold: 1) 

establishment of analysis pipeline for NHP’s AFER with 

minimal prior-assumptions regarding the NHP muscle 

structure, that can be a baseline for technologies that will 

replace the tedious state of the art manual AU’s decoding, 

and eliminate decoding errors of facial expression related 

to spontaneous multiple AUs’ activation; 2) establishment 

of NHP’s facial expression data base; 3) forming 

computational tools that include intuitive representation, 

can support artifact removal, include extraction of 

dynamic model and features that capture the nature of the 

NHP’s facial expression gestures in the wild, different 

from humans’ facial expression that mostly are 

characterized by their instantaneous face appearance. 

2. Methods 

The methods presented in this work, are designed to 

learning the statistical features of each NHP’s facial 

expressions with minimal prior assumptions. First, the 

facial images of NHPs from a video stream are registered 

(detected, aligned and rescaled). Then, a two layers 

unsupervised clustering algorithm with artifact removal is 

used to form ordered Eigen Facial-Expression Image (EFI) 

dictionary for the individual NHP. The streams of facial 

areas in the registered facial images are matched to the 

dictionary EFIs and form a dynamic pattern of facial 

expression over time. Spectral-temporal features are 

derived from the patterns that are fed to classifier to match 

the facial expression based on training set or on prior 

knowledge. Figure 1 describes the main blocks of the 

algorithm. 
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2.1. Face Detection and Registration. 

For NHP’s facial detection, we used the Viola-Jones 

algorithm [24], trained on the NHP’s static areas that 

include the eyes, and nose. Face tracking the KLT 

algorithm applied on randomly-chosen point features from 

the NHP face [25]. The point features minimize the 

eigenvalues of the tracker’s matrix covariance [26] by 

applying a forward-background algorithm [27], followed 

by an affine transportation of the points [28]. Since the 

facial images from the KLT tracker, might suffer from 

accumulative drift over time [29], to reduce the alignment 

drift, and to improve the facial registration quality, we 

aligned the images offline to a baseline image, with a 

neutral expression.  

2.2. Images pre-processing and dimensionality reduction 

A pre-processing stage of background removal was 

applied to improve the robustness to variations in 

background due to changes in head poses, or in the 

background, using a CIE tri-stimulus [30] and k-means 

clustering to background and facial images similar to [31]. 

The images were transferred to monochromatic intensity 

images (black and white, with 8 bits representation for 

each image’s pixel) and were resized to a constant size of ௥ܰ × ௖ܰ . The ݉′th intensity image of the video stream 

after registration, background removal, and resizing, is 

denoted by ܫ௖௠, ݉ = ͳ…ܯ.  
2.3. Establishing the Eigen Facial-Expressions Image 

(EFI) Dictionary 

For the clustering algorithm, a Principle Components 

Analysis (PCA) was applied on the raw data images, 

representing the images with ܯ vectors of size ଴ܰ. The 

PCs are fed to the two-layer clustering and forms an Eigen 

Facial-expressions Images (EFIs) set that represent typical 

facial expressions that are close to the ones used in the 

training video.  

The first clustering layer transforms from the M image 

dimension to a lower observable EFIs features space of 

size Nଵ, where M ≫ Nଵ.  For this, we use the k-mean 

clustering that is performed on the PCA domain to save 

computational resources and find the mapping function Lଵ 

that minimizes the cluster square error. These clusters can 

be represented by their mean image value and form a set 

of Nଵ EFIs of size N୰ × Nୡ each, where the i′th EFI is the 

mean value of the cluster’s images: E୬୍౟ = E൫L෠ଵ୧ ሺIୡ୫ሻ൯,                            (1) 

where E is the expectation operator, and L෠ଵ୧ , is the i′th 

cluster indices vector, L෠ଵ. 

The EFIs encode a set of different facial appearances 

that represent a combination of one or more facial 

appearances related to the activation of multiple AUs in 

different facial expressions [32] [20], [22]. The EFI 

representation, with sufficient number, represents a set of 

facial appearances that span of facial expressions with 

error decreasing with the dictionary size [33]. This enables 

a compact interruptible  representation in compare to AU 

representation [34] and to other non-model based 

representation [35].  

Artifacts in facial expression videos can be caused by 

alignment errors, inaccurate background removal, or 

instantaneous blocking of the face, for example by hand 

movement or by other subjects in the scene. For this, 

statistical tools like blind source separation can be applied 

similar to the one used for example in neural signals [36]. 

 
Fig. 1.  The suggested non-human facial expression estimation based on video stream scheme. It composes of two phases: data collection, and real-time 
analysis. The first stage of data collection uses the stream of video of images to form a facial-expression image dictionary, using a blind clustering algorithm. 

The facial expression dictionary includes Eigen Facial-expression Images (EFI), which are sorted according to their similarity. The second stage, which can 

work in real time, and on multiple facial areas, finds the most likelihood facial image from the dictionary that matches the instantaneous video image frame.

The facial expression are taken from the work in [23].  
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Automatic artifact removal methods can be also used 

based on deviation from “normal” distributions, based on 

cluster variance, or the silhouette error matrix [37]. The 

EFI’s representation of facial appearances enables also a 

human expert visual inspection process for artifact 

removal. The number of valid EFIs after the artifact 

removal is equal to Nଵ minus the number of artefactual 

EFIs’. 

The EFIs from the first-layer clustering were then 

ordered to induce similarity between proximate EFIs, to 

enables sub-clustering, and to reduce  estimation error in 

EFI estimation [34]. The ordering is performed on the 

clustered EFIs after performing the Gabor transform, to 

increase sensitivity to local directionality of the different 

facial parts [13]:  ܮଶ =  ூሻሻ,                     (2)ܧሺܩሺݐݎ݋ݏ

 s. t.		ܦ 

where ܧூ  is set of EFIs {ܧூ௡ሽ௡ୀଵ௡ୀேమ  ,is Gabor transform ܩ 	,

and ݐݎ݋ݏ, is hierarchical clustering operation subject to 

similarity measure D, such as minimal Euclidean distance 

[38].  

This result of the clustering is the ordered set of EFIs: E ,୍ = ൛E୬୍ᇲൟ୬ᇲୀଵ୬ᇲୀ୒మ ,                             (3) 

where the indices are given by nᇱ = Lଶሺn୧ሻ, nᇱ = ͳ…Nଶ. 
2.4. Extension to sub-facial areas analysis  

The muscle activations can be independent across facial 

areas when muscle activity is not coordinated or acts in 

different phases. An example for non-coordinated muscle 

activity is the “Brow Raiser” and “Lips towards each 

other” (AU8). This implies that facial expression 

clustering can be improved by working independently on 

different facial areas. The fundamental separation between 

the lower and upper part of the face was shown to be 

informative in facial expression recognition [39]. Some 

other facial regions such as ears or eyes (measured by 

tracking the pupil location) can be also decoded separately 

[20]. Similar to human facial expression recognition, a 

commonly used boundary between the lower and upper 

facial areas, based on AUs’ correlation and distribution, is 

the Infra orbital furrow (an area near the nostrils) 

[32],[39]. The lower part includes facial morphological 

features (landmarks) of the chin, mouth corners, philtral 

region, sub nasal furrow, and the nasal groove. The upper 

facial part include the brow, eyelid furrow, glabella, and 

the cheeks [22]. For the lower part, there are 14 identified 

AUs (related to lips, jaw, mouth, cheeks), while for the 

upper part 4 main identified AUs (“Brow raiser”, 

“Glabella lowerer”, “lid raiser”, “Lid tightener”) [22]. For 

the ears there are three active AUs (Ears forward, elevator, 

and flattener).  

Without loss of generality, we look on lower and upper 

facial areas after artifact removal and the two-level 

clustering, which performed separately on each area:  E୍ై, = ቄE୍୬ైᇲై ቅ୬ᇲై ୀଵ୬ᇲై ୀ୒ై
, and E୍౑, = ቄE୍౑୬౑ᇲ ቅ୬౑ᇲ ୀଵ୬౑ᇲ ୀ୒౑

.         (4) 

where N୐, and N୙, are the number of lower and upper 

EFIs’ set number. 

Another facial area is the eyes’ pupils, which is 

considered in many facial expression technologies like 

FACS (Facial Action Coding System) [9], as part of the 

facial expression. The low intensity color of the pupils or 

an Eigen-eye pattern, can be used for eye tracking [40]. In 

this work, we use the eye movements’ locations relative to 

the eye center as a feature to facial expressions 

recognition. Since the eye movements from both sides are 

usually coordinated and correlated [41], we can look only 

on the mean or standard deviation of the two eyes’ 

displacements. Quantizing the displacement can further 

reduce this feature space dimension. Let’s denote d෠୦, d෠୴, 

as the horizontal and vertical planes estimations of the eye 

tracker like the one in [40].  

For the representation of diverse facial appearances in 

each facial region, the number of EFIs in each facial area 

(size of dictionary) should be higher than the total AUs’ 

appearances combinations in this area. In case the 

muscles’ activation (AUs) are independent, the number of 

facial appearances in each area would have been 

multiplication of all possible AUs’ appearances. This 

number can be very high. Since the AUs in each facial 

area are usually coordinated, this number decreases with 

the level of correlation between the AUs in the region.  

2.5. Spatial-temporal Features Extraction 

The sorted EFIs in (4), and (5) were matched to the 

stream of images Iୡ୫ and formed model stream of images 

with the highest similarity to the instantaneous facial 

image according to: ො݊ிோ = ௡ಷೃ݊݅݉݃ݎܽ ቀܫிோ௠ −   ிோ௡ಷೃቁଶ,              (5)ܧ

where ܫிோ௠ , is the m’th facial region image, and ො݊ிோ, is the 

estimated dictionary index for the facial region FR. 

The estimated EFIs’ indices can be concatenated and 

form a temporal waveform that contains spatial-temporal 

information that can be used for recognition of dynamic 

changes in facial expression:   ݀ிோሺ݇ሻ = { ො݊ிோሺ݉ሻሽ௠ୀሺ௞ିଵሻௐାଵ௠ୀ௞ௐ ,            (6) 

where the window length ܹ, should be tuned to capture 

the dynamic across facial variations, possibly throughout 

the all expression cycle [42]. 

The features can be the indices histogram, spectral 

features, like the frequencies with maximal response, 

mean and standard deviation.  

2.6. Dynamic Facial Expressions Recognition 

While humans facial expressions, are related mostly to 
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emotional states [16], the primitives of NHPs facial 

expressions in NHPs, are characterized more by their 

dynamic characteristics. A Maximum Likelihood (ML) 

estimator can match to each facial area separately, to 

recognize facial expression primitives: ܨ෠௘௣ூ = ி೐೛಺ݔܽ݉݃ݎܽ ܲ൫ܦூ|ܨ௘௣ூ ൯,             (7) 

where ܫ, is indicator for the facial area, ܫ =∈ ,ܮ} ܷ, ௘௣௅ܨ ,{ܧ , ௘௣௎ܨ , and ܨ௘௣ா , and ܦ௅ , ௎ܦ 	and ܦா , are the facial areas 

primitives, and feature set, for the lower, higher facial 

areas, and eyes, respectively. 

Lower Facial expression primitives can be exposing 

teeth, or chewing (which is related to many muscles 

activations around the mouth), lip smacking (which is 

more related to periodical facial expression changes) and 

neutral. Upper facial expression primitives can be opening 

and narrowing the eyes, frowning, or eyebrow rise. Eye 

related primitives can be gaze, staring, or moving the eye 

rapidly (rapid eye movement).  

Together, the recognized primitives can be input to 

second layer classifier to form more abstract facial 

expression, that can be more correlated to internal 

emotional state like feat or threat [16].  

3. Experimental Setup 

The main goal of this study was to demonstrate the new 

methodology and show its capability to recognize NHPs 

facial expressions. The experimental setup included a 

NHP subject, and a standard video recording camera.  

The NHP subject was a male rhesus macaque (monkey 

M, 6 kg) that trained to be seated in a chair and be head-

fixed such that head rotations were limited. The fixation 

however enabled the NHP to freely eat, and to produce 

facial expressions typical for situations of social 

interactions. All animal care procedures were approved by 

the New York University Animal Care and Use 

Committee and were performed in accordance with the 

National Institute of Health guidelines for care and use of 

laboratory animals. 

Two sessions of around 12 minutes were recorded with 

a video camera (LifeCam Microsoft Inc.) at a frame rate of 

15 Hz, resulting in two data streams of length 11986, and 

11395. The camera was placed at a location that did not 

interfere with the subject’s line of sight and yet could 

obtain a sufficiently high resolution of the face. Each 

session was composed of 4 sub-sessions of around 3 

minutes long, and each under different social conditions 

designed to obtain a large range of facial expressions. The 

conditions and their durations for the two sets were: 1) the 

subject alone (0-3:50, 0-3:20); 2), in front of a mirror 

(3:51-7:20, 3:21-6:24); 3) being fed (7:21-10:20, 6:25-

9:20); and 4) in visual range of another conspecific, to 

enable possible communication (10:21-14:05, 9:21-12:30), 

respectively. For the last condition another NHP, likewise 

chaired, was brought into the same room at a distance of 

about six feet and the pair was free to engage in visual and 

communicative interaction. 

A dedicated SW written in Matlab(R) (2016a, Matlab 

Inc,) that implemented the algorithm described in section 

2 was used. To evaluate the classification performance 76 

short lower facial expression video recording clips with 

duration of 2-7 seconds were derived from the video 

recordings. The facial expression classes were: neutral 

(20), lip smacking (10), chewing (24), and random mouth 

opening (22). Three independent unbiased experts in NHP 

behavior (MR, BF, and NB) rated the clips following [16], 

and [22]. More details related the expert facial decoding 

are provided in the Appendix. The image areas of the ears, 

that capture ear movement, were not included in this 

analysis. For eye blinking, a visual inspection (with 

running the video in playback in quarter of its original 

speed) was used as “ground truth” to evaluate eye blink 

detection.  

4. Results and Discussion 

For the initial face detection, the Viola-Jones algorithm 

[24] was used as described in 2.1. The eyes and nose were 

detected and were used as a base for forming a rectangular 

facial area tolerant to minor deformation of the face, like 

mouth opening. An inner part of the face was used for 

KLT tracking (maximal bidirectional Error of 2, three 

Pyramid Levels, and block size of ͵ͳ × ͵ͳ. Figure 2a. 

shows the subject as captured by the video lens without 

processing. The black rectangular is the detected facial 

area from the Viola-Jones algorithm, and the internal 

yellow one, is the area for KLT tracker, where the green 

crosses are the point features capturing facial edges. An 

alignment procedure relative to a reference neutral facial 

expression image (mouth closed, eye opened) was 

performed using an arbitrary set of 1300 points. Each 

image was resized to ͳͺͲ × ͳͶͷ pixels, then the 

background was removed as shown in Figure 2.b. Figure 

2.c, shows the lower, upper facial areas (ͳ͵Ͳ × ͳͶͷ, and ͷͲ × ͳͶͷ pixels), and the green shows the eye pupils 

facial areas. 

A PCA was performed on the registered images 

concatenation of the two sets. K-mean clustering was 

applied with 50 clusters. This number was chosen to be 

greater than the number of AUs in the facial region, 

reflecting average correlation of the AUs of around 0.3 

(6), and compromises minimal dimensionality that 

captures most of the facial expressions in the training set, 

and a sufficient number to capture diversity. The set of 50 

mean values of the clusters form the EFIs according to (2). 

Clustering quality was estimated by the silhouette diagram 

[37], and was 0.25, with 95% of the 50 clusters having 

average positive value, which indicates on relatively 

separated clusters and supported the chosen number of 

clusters. Then artefactual clusters, for example, due to 

blockage of the facial image by hand, were excluded from 
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dictionary based on deviation of their statistics from the 

main facial clusters, similar to [36].  

Then, the EFIs the lower, and upper facial areas’ EFIs, 

with N୐ = ͵Ͳ, and N୙ = ʹͲ, were derived. The EFIs of 

the different areas were sorted using hierarchical 

clustering on the images after applying Gabor transform 

(filter size of ͵ͻ × ͵ͻ, number of scales of 5, and number 

of orientations of 8). Figure 3.a, and Fig. 3.b, describes the 

EFIs E୍ై, , and E୍౑, , after sorting, where the number in 

brackets indicate on the EFIs before sorting. For the lower 

EFIs (E୍ై, ), the first six EFIs, can be associated to different 

levels of mouth opening. The following 22 EFIs seems to 

be more around the neutral image, which indicate that they 

decode more settles AUs’ activities. For the upper EFIs, it 

seems that EFIs 1-3, have different levels of narrowing the 

eyes, while the others decode settle muscle activity of the 

upper part.  

The EFIs indices streams for the facial areas were 

estimated using the criterion in (5). The EFIs’ sorting, 

induces a relation of proximity between consecutive 

indices, and enable reducing estimation noise by 

smoothing of the indices scores. Figure 4 shows three 

typical results of choosing EFIs’ indices from the second 

experiment set. Figure 4.a, shows a neutral facial 

expression at time 0:01 seconds, where the EFIs, are 

typically chosen from near the center of the dictionary 

histogram. Figure 4.b shows a selection of EFI that is 

related to partial mouth opening (EFI 25). The upper EFI 

remains neutral (upper EFI 13). Figure 4.c shows a 

selection of an EFI that is related to narrowing the eyes 

(upper EFI 1). 

The NHPs facial expression, are characterized more 

than humans, by their facial muscles’ dynamics. Figure 5, 

shows the lower area facial expression dynamics from 

observation of 0.6 sec (9 frames) for lip smacking, and 

chewing. The lower facial areas are relatively close to the 

neutral facial expression. Figure 5.a2, shows the standard 

deviation of the sequence. Slight displacement facial areas 

of the lower nose and mainly the areas around the lips, 

mainly between the upper lip and the nose can be seen as 

the brighter areas in the facial image. These changes are 

characterized by small displacement, and deformation 

(wrinkle), and correspond to lips related AUs (AU18 Lip 

pucker, AU10 Upper lip raiser, and AU8 Lips toward each 

other), which are associated with lip smacking, and of 

AU9 Nose wrinkle. For Chewing, Fig 5.b2, the nose 

wrinkle, and lips related muscles still exists, but lower lip 

(AU16 Lower lip depressor), and mainly jaw related 

muscle (AU26, Jaw drop, and AU27, Mouth stretch) are 

active.  

Figure 6 shows the EFIs indices’ estimation (EFI 

streams) for the two experiment-sets’ repetitions. In this 

study, we choose 66 states to decode all facial expressions, 

50 for the facial areas, and 16 for the horizontal and 

vertical eye pupils’ locations. The lower EFIs in Fig. 6.a, 

Fig. 4. Example results of choosing the EFI’s index from the second

experiment set. (a): a neutral facial expression; (b) partial mouth

opening; (c) narrowing the eyes. The line values represent the

likelihood of the image to be modeled by the EFI, and the dashed 

line is filtered version, that can be applied due to the hierarchical

order of the EFIs. The marker is the maximal value of the curve,

which represent the approximated EFI number.  

 
Fig. 5. Dynamics of Lip smacking (panel a), and chewing (panel b). 

Panels a1, and b1, describe the video frames of the facial expression, 

and panel a2, and b2, the standard deviation of the sequences. 

Fig. 6. EFIs’ stream for the two recording sessions. Panels (a) and (c)

are related to the first one, and (b) and (d), to the second. Panel (e),

shows the different experiment conditions. The blue, red, and green

colors represent the upper, lower, and eyes region.  

Fig. 3. (a), and (b), describes the EFIs E୍ై, , and E୍౑, , after sorting, 

where the number in brackets indicate on the EFIs before sorting.  
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and 6.b, in the time where the NHP was left alone as 

shown in panel 6.e, seems to be flat with relatively low 

variability, and having EFI represent close mouth. At the 

second stimulation (mirror), there are high amplitude 

fluctuations that include the full and partial mouth opening 

(EFIs 23 to 30) for both repetitions. The third phase of 

eating seems to be determined by fluctuations of the EFIs 

in almost all the EFIs’ range. The fourth phase seems to be 

similar to the first phase. The similarities between the 

repetitions are correlated to similar behavioral response 

that is captured by the suggested method. From the upper 

EFIs blinking patterns can be extracted by examining 

when the upper indices moves between neutral and close 

eyes EFIs (EFIs 1-3). From the pupils’ movement shown 

in Fig. 6c, and 6.d, the low horizontal eyes position 

variability can indicate on a state of gaze. 

  The feasibility of the analysis scheme is demonstrated 

on recognizing lower facial expression primitives. For 

this, a data base of 76 short video clips was created for 

four fundamental lower facial expression primitives of 

neutral, chewing, lip smacking, or other mouth opening 

like one related to yawning, or teeth exposure. The EFI’s 

indices pattern in a window length of the video clip 

duration of around 2 seconds, were used to extract the 

features. Figure 7.a, and Fig. 7.b, shows the histogram of 

the lower EFIs, and their distribution. Neutral facial 

expression is characterized by lower EFIs indices. 

Chewing is characterized by concentration of the EFIs in 

the upper region related to mouth opening and of jaw 

muscle activation. The lower EFIs in the chewing are 

possibly related to times of short break in chewing, or at 

start or end of the action, and can be seen as artifact; Lip 

smacking has neutral and mid-range EFIs’ indices, which 

can be explained by moving periodically from neutral state 

to state were muscles like the lips are contracted (related 

to AU18i in macFACS [22]). The other lower facial 

expression primitive of open mouth or teeth exposure, are 

distributed around wide EFI’s range, and reflect the 

activation of multiple lower AUs 

(AU9+10+AU12+AU16). The recording sessions shown 

in Fig. 7.b, have similar distribution up to a small shift in 

the distribution of the second experiment. From the 

distribution, Neutral and Chewing are more 

distinguishable, while Lip smacking and Random-mouth 

opening distributions have higher overlap.  

The EFIs’ indices’ mean, and standard deviation, were 

used as features. The Neutral features are separated from 

other facial expressions with low mean value due to their 

related low EFI indices. Lip smacking has a small mean 

value but higher standard deviation, due to the periodic 

nature of muscle contractions. The Chewing and Random 

mouth opening features are less separated in this plane, as 

both involved many muscle activations, which result in 

similar variance distribution. To capture the dynamic 

nature of the facial expression, and exploit the periodical 

nature of facial expressions like lip smacking, spectral 

features of lower EFI’s median frequency and its related 

median amplitude were derived and shown in Fig. 7.d. The 

amplitude of the chewing is the highest, and well 

separated from the other facial expression features. The 

frequency of the lip smacking is concentrated around 4 

Hz. But the Neutral higher frequency values than 

expected, which can be explained by imperfect alignment. 

The random mouth opening has frequencies values higher 

than 4 Hz, which can be explained by non-periodic muscle 

movements with high frequency content.  

A SVM classifier with 5-fold cross-validation was 

applied using the EFI’s mean, standard deviation and the 

spectral median and peak amplitude features above. The 

confusion matrix presented in Fig. 8.a shows that the 

neutral and chewing are very separated from each other 

(100% classification success). Lip smacking was 

recognized erroneously as neutral for 20% of the times, 

and as random mouth opening for another 20% of the 

time. Misclassification can be explained by low amplitude 

lip smacking amplitude, or by one that varies in time. 

Higher frame rate, with richer spectral information, can 

contribute to separate these two facial expressions better. 

The average true positive rate was 81.9% (for 94 

segments). Figure 8.b, shows the significancy of the 

features. The spectral amplitude feature is more significant 

then the median frequency and the statistical features have 

around similar significancy.  

5. Conclusion and future work 

In this paper we have established a mechanism and 

coarse computational tools to enable the objective 

decoding of NHP facial expressions from a standard video 

recording using minimal prior assumptions. The suggested 

methods have minimal assumptions about anatomical 

muscle structure, unlike FACs-based methods that are 

 
Fig. 7. (a): The 76 labeled video clips of the Lower EFI states for the two recording sessions. 
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currently the state of the art methods in NHP’s facial 

recognition and typically require an expert for decoding 

NHP’s facial expression. The proposed representation 

enables detection and rejection of artifact, which makes 

them well-suited to being used to tracking animals’ 

behavior in the wild. The sorting of the dictionary words, 

induce proximity between the EFIs, and enable extraction 

of informative spectral features, which are essential in 

recognition NHP’s facial expressions like lip smacking. 

The set of primitive facial expression from different facial 

areas can be later combined to classify internal state of the 

NHP. We validated the recognition performance against 

unbiased and independent expert tagging. Facial 

expression recognition of Lip smacking, Teeth exposure, 

Neutral, and Eye movements has reached an accuracy of 

around 82%, with only 4 fundamental features derived 

from the matching EFI indices in each video clip.  

In future, as the data based will increase, more features, 

direct estimation of the NHP’s AUs, and deep learning 

based methods can be deployed. The similarity in facial 

expression between different population from the same 

species, and between humans, should be investigated. This 

is a long effort that requires massive collection and 

labeling to form an adequate training set. Aggregation of 

the facial expression estimations with other behavioral 

measures like NHP’s body movements or voice, can also 

be topic for future research.  
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7. Appendix 

Data is available upon request. The facial expressions 

video clips were tagged by three independent unbiased 

experts in NHP behavior following [16], and [22], with a 

majority of voting protocol.   

 
Fig. 7. Panels (a), and (b), show the EFIs’ features; Panel (c), shows the histogram of the lower EFIs. Panel (d), shows the EFI’s distribution. The 

two symbols represent the two recording sessions, which show consistency in the feature representation. 

 
Fig. 8. (a), and (b), shows the EFIs’ features; (c) shows classification results based on the four features; (d) shows the

Feature significancy using F-test. 
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