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Abstract

Vision based wildlife monitoring is an important task in
the field of environmental monitoring. Wildlife monitoring
activities often create large collections of data needing com-
putational approaches to (semi-) automated detection and
annotation of objects in the images/video. In this work,
we consider the special case of marine wildlife monitoring
using camera equipped fixed observatories. In such cases
where a-priori knowledge about which species to find is lim-
ited, a standard computer vision approach, employing su-
pervised learning, will not be applicable for detecting and
classifying species (or events) in the images.

In a recently proposed unsupervised learning method,
image patches are extracted from a time series of underwa-
ter images that feature moving species (like starfish, etc).
The patches are automatically grouped into clusters with
similar morphology and a so called relevance score is as-
signed to each of the clusters describing the likeliness that it
contains patches showing unusual changes. However, due
to the unsupervised fashion (i) the categories don’t have la-
bels and (ii) do not reflect the species distribution satisfac-
tory.

In this paper, we propose an active learning method that
builds upon these results and can be used to assign taxo-
nomic categories to single patches based on a set of human
expert annotations making use of the cluster structure and
relevance scores. The evaluation shows that compared to
traditional sampling strategies our approach uses signifi-
cantly less manual labels to train a classifier. We are confi-
dent that the results are relevant for non-marine contexts as
well.

1. Introduction

In recent years, a growing number of so called Fixed
long-term Underwater Observatories (FUO) [5} 12, [19] 9]
equipped with fixed digital HD cameras have been de-
ployed. These FUOs allow to monitor marine habitats over
time, including long term changes in a reef [[12] or the mon-
itoring of particular species. Some effort has been spent
on the (semi-) automatic classification of species for both
terrestrial and marine applications. In these cases, often, a
supervised classifier is trained. Examples are e. g. [3| [14]
for terrestrial wildlife monitoring and [6, [15] for underwa-
ter wildlife monitoring. However, in environments with
limited a-priori knowledge about the ecosystem it is of-
ten not practicable to train a classifier in a standard su-
pervised fashion, as this approaches are based on a-priori
knowledge about the species present. An unsupervised ma-
chine learning method for detection of short term changes
in the visual field (e. g. occurrence of a specimen) in un-
derwater images has been proposed in [[11] for the Lofoten-
Vesterdlen (LoVe) FUO (Figure[I). Given a set of images,
the method extracts a set of image patches, showing small
regions where change occurred. The method, furthermore,
groups all patches into clusters of similar change patterns
and assigns a relevance score to every cluster describing
how likely a patch shows an interesting change. In order to
obtain a complete analysis of all species appearances for the
entire observation period, the patches need to be assigned to
taxonomic labels. The computationally detected and clus-
tered patches must therefore be inspected and labeled by
human experts (i. e. marine biologists). To speed up the
manual labeling significantly, we propose an active learn-
ing approach in this paper.

Active learning is applied to facilitate the training of
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Figure 1. One sample image taken by the LoVe Ocean Observa-
tory.

a supervised classifier to classify unsupervised clustered
patches. The point of active learning is that training
samples are chosen in a way that makes the classifier learn
faster, i. e. the classifier needs less trainings samples to
achieve a specific classification performance. Most active
learning methods chose the training samples depending
on the uncertainty of the classifier(s), the expected model
change or the expected improvement of the classification
performance. See for an overview of the methods.
In an active learning method was proposed based on
choosing training samples from clusters obtained using
the k-medoids [8] algorithm. k-medoids is a clustering
algorithm similar to k-means. The main difference is that
the prototype of a cluster is not the mean but the medoid of
the cluster, i. e. the element with the minimal distance to all
elements in the cluster. When choosing training samples,
the classifier considers not only the uncertainty of a sample
but also gives priority to samples that are representatives of
dense clusters.

The contribution of this paper is to propose a new ac-
tive learning method for classification of underwater image
patches (Section[2). Similar to the method in [13], the pro-
posed method makes use of a prior clustering of the sam-
ples. In contrast to other methods, a relevance score (com-
puted as described in [11]]) assigned to the clusters is used to
further improve the selection of the training samples. The
success of the strategy of selecting the training samples is
illustrated in Section] Section[5]discusses the method and
its evaluation.

2. Methods

In active learning (like in other supervised machine
learning), a classifier is trained with a labeled set of train-
ings samples. In contrast to other supervised machine learn-

repeat until
enough samples
. are labeled

Select a label
> according to the
sampling strategy

repeat until
enough samples
are labeled

Let the expert
label the sample |«

Y

Train the classifier

Y

Classify all samples

Figure 2. In a typical active learning scenario, the steps ‘select a
sample’, ‘label the sample’, ‘train the classifier’ are repeated in
cycles. If the sampling strategy does not involve the state of the
classifier, it is possible to first select all training samples and then
label the samples (dashed arrows).

ing scenarios, in an active learning scenario, the learner ac-
tively decides which samples have to be labeled and added
to the training set. An active learning scenario for classifi-
cation (see Figure[2) is described by (i) a sampling strategy
for choosing unlabeled data (ii) an oracle (often a human
expert) for labeling the chosen samples and (iii) a classi-
fier (e. g. Bayes classifier, SVM) for automatic classifica-
tion of the unlabeled data. Given these three components,
the active learner works as follows: First, from a pool of
unlabeled samples, one sample is selected according to the
sampling strategy. Next, the chosen sample is labeled by the
oracle and added to the training set. The training set is used
to fit the classifier to the data and the process is repeated. In
the end, the trained classifier is used to classify the complete
dataset.

In contrast to the majority of existing strategies, we do
not involve the classifier in the sample selection process.
The complete trainings set is chosen according to the pro-
posed strategy (see below) before the labels are determined
(see Figuredashed arrows). In the present case, the labels
are determined by a human expert. Thus, it remains to de-
scribe the sampling strategy and the classification in the rest
of this section.
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Table 1. The most frequently used symbols

Notation Meaning

F;  the feature vector of the j-th sample
L the number of labels
¢ an integer representing a label
the cluster index of the sample j
the relevance score of cluster ¢
the indicator function of the labeled samples
The true label of sample j
The cluster label
The label predicted for sample j

SSES IO

2.1. Notation and setup

Let NV be the number of samples (i. e. image patches)

S$1,...,8N to be classified. We assume that a feature
representation of the samples is given as feature vectors
Fy, ..., Fn. Moreover, we assume that a set of integers [

(called labels) is given representing semantic classes (e. g. :
‘starfish’). The number of semantic classes is denoted by
L. Without loss of generality let 1 <[ < L for each label /.

The proposed method expects that the features are al-
ready clustered into M clusters and that a relevance score is
assigned to each cluster. The clustering can be done by any
clustering method, including the method proposed in [[11].
The index of the cluster containing the sample 7 will be de-
noted by ¢; € {1,...,M}. The relevance scores should
describe how likely patches in a cluster show foreground
(i. e. moving species). Clusters can be determined as de-
scribed in [[L1]. The relevance score of the cluster with in-
dex ¢ will be denoted by r;. For a quick reference of the
most frequently used notations see Table[I]

2.2. Sampling

The automated sampling strategy has to balance the fol-
lowing two almost conflicting demands:

1. Samples from a cluster with a high relevance score, are
more likely to be selected than samples from a cluster
with a low relevance score.

2. Each sample (whichever cluster it belongs to) has a
chance to be selected.

To implement these demands, the strategy is to first select
a cluster deterministically and then draw a sample from the
cluster randomly. At any iteration, let f; denote the number
of times, a patch from cluster ¢ has been drawn. To any
cluster 7 we assign a score balancing the relevance and the
accumulative activity of cluster .

o oo iffi =0
hi = {m/fi else W

The cluster ¢’ to draw the next sample from is then given by

i’ = argmax (h;). )
1<i<M

For a sample s; (1 < j < N) let

3)

5 — 1 the sample j has been annotated
710 else

denote the indicator function of the set of labeled samples.

The next sample is then drawn from the set

{sjlc; =i Nd; =0}. )

As we assume the expert to always label correctly, the label
assigned to the sample j by the human expert is considered
the ground-truth label ¢;.

2.3. Classification

For classification, a Support Vector Machine (SVM) [4]
with a radial basis kernel [17]] is used. Multi-class classi-
fication is realized with the one-vs-one method [10]. The
SVM is trained with all samples. To do so, we propagate
the labels from the human expert as follows: First, the ex-
pert labels are propagated to the clusters. For each cluster ¢,
we define the cluster label by majority voting:

gi:argmax|{1§j§N|5j =1A¢;=iNl;=1}].
1<I<L
)

Next, the labels of the clusters are propagated to the sam-
ples. The label of a sample j for the SVM training is defined
by

i, (©)

i. e. the label of the cluster containing j.
The training set used to fit the the SVM is then given by
the (sample, label)-pairs

{(Fl<j<N}. ™

The classifier finally is used to classify all samples. The
label predicted for the sample j by the SVM classifier is
denoted by f(F}). As we assume the expert to always label
the samples correctly, the final label of a sample s; is given
by

! f(F;) else
The effect on the evaluation caused by using the labels 2

instead of the classifier outputs f(F}) will be discussed in
Section

®)
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background (2992 samples)
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Figure 3. The figure shows the class frequencies and one exam-
ple of each class. Note that the bar depicting the frequency of
background patches is not true to scale for means of better visual-
ization.

3. Material

The proposed method is evaluated on underwater images

provided by the Lofoten Vesterélen (LoVe) Ocean Observa-
tory [3]]. LoVe is a fixed long-term underwater observatory
monitoring a coral reef at (N 68° 54.474’, E 15° 23.145") in
the Norwegian Sea. The reef is located 22 km off the coast
in a water depth of approximatively 260 m.
The observatory was deployed in October 2013 and takes
one image every 60 minutes. All images are publicly avail-
able online at http://love.statoil.com/, A sam-
ple image of the LoVe images is shown in Figure[T]

The change detection method proposed in [11] has been
applied to a subset of 24 images taken by the LoVe ocean
observatory. The change detection method extracted 3031
image patches divided into 6 categories: Background, Crab,
Starfish type 1, Starfish type 2, See-urchin and Starfish
type 3. As can be seen in the histogram in Figure 3] the
dataset is imbalanced as most of the patches show back-
ground.

4. Evaluation

For evaluation, we applied the proposed method to
the image patches described in the previous section (see
Figure [3). The cluster indices c; from the previous
clustering and the relevance scores r; for the classes are
given by the method in [[11]. The features F'j are extracted
using dominant color. To do so, the colors in a patch are
quantized using the modified median cut algorithm [1],
i. e. a color palette C of 5 colors is generated. The
color of each pixel p; in the patch is assigned to the
nearest color 7y in the palette. The dominant color is
then arg max, ¢ [{px [yx = v }|, where the p. denote the
pixels in the patch.

The evaluation of the method is twofold: First, the
method is compared to other methods by testing how quick
the learner learns from the drawn samples. Second, the
overall method is evaluated by testing its performance after
a reasonable number of samples has been labeled manually.

4.1. Comparison to other methods

To evaluate the sampling rule, we follow a common strat-
egy: For each number n (1 < n < N) a training set of
size n is selected according to the proposed sampling strat-
egy and the classifier is trained with the selected samples.
Each time, a performance measure is computed for the clas-
sifier. The progression of the performance measure with in-
creasing number of training samples reflects the quality of
the sampling strategy. A performance measure often used
for this type of evaluation is the accuracy, defined as the
percentage of correct predictions. However, the accuracy
is a poor measure if the dataset is imbalanced as it is of-
ten the case in real-world scenarios (including the dataset
used here, see Figure [3) especially in wildlife monitoring.
A naive classifier that maps everything to the most abun-
dant class, would always have a good accuracy although it
misclassifies all samples from the other (potentially more
important) classes (compare [16]). For an appropriate eval-
uation of the method, we use a slightly modified version
of accuracy that does not involve correctly classified back-
ground. For this, we assume without loss of generality that
the class background has the label 0. Moreover, we define

= |{1<j<NjG£onG =0} ©

to be the number of correctly classified foreground samples
and

N:Hgg‘gzv‘éﬂéoveﬂéo}( (10)

to be the number of samples being either foreground or clas-
sified as foreground. The foreground accuracy is then de-
fined by

TP

a=—=. 11

N

We denote by a(n) the accuracy that has been measured for
a classifier trained with n samples.

We compare our method to (i) random sampling and (ii)
uncertainty sampling. For each, we use a modification of
the approach in Section [2] that makes neither use of (a) the
precomputed clusters nor (b) the proposed sampling strat-
egy based on the cluster relevances. The first modification
(according to (a)) is that the SVM is not trained with the
propagated labels (see Equation [7) but only with the set
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Figure 4. The figure compares the performance of the proposed
sampling strategy with the performance of random sampling. The
colored areas illustrate the range between the 0.25 percentile and
the 0.75 percentile. The black dotted lines indicate how many
samples have to be labeled before a method achieves at least a
90% accuracy. The proposed method performs better than uncer-
tainty sampling and random sampling. It can also be seen that
uncertainty sampling performs worse than random sampling when
about 20% to 70% of the samples are labeled. See Sectionfor a
discussion of this phenomenon.

{(F;,£;)]1 <j < N Ad; =1} of expert labels. The sec-
ond modification (according to (b)) is that we do not use the
sampling strategy proposed in Section[2.2] but draw

(i) randomly with uniform distribution from all samples
not labeled by the expert.

(ii) according to uncertainty sampling as described in [18]]
as soon as samples from at least two different classes
have been labeled by the expert. According to random
sampling when all expert labels are from one class.

We ran each algorithm 200 times generating accuracies
a'(n) (for the proposed sampling), @ (n) (for random
sampling) and @}"*(n) (for uncertainty sampling) for 1 <
k <200and 1 < n < N. The average accuracies for the

proposed method, random sampling and uncertainty sam-

pling are defined by

200
@) = oY oapn) (1<n<N) (2)
i
am(n) = %.Zar,gd(n) (1<n<N) (13)
) L m
a'"(n) = ﬁo-kz::la‘}fc(n) (1<n<N) (14
respectively.

Figure @ shows the accuracies obtained using (i) the
proposed sampling strategy (ii) uncertainty sampling and
(iii) random sampling. It can be seen that the proposed
method learns much faster than the other methods. As in-
dicated by the black dotted line, random sampling needs
87% (2638 labels) of the samples to be labeled to obtain
a 90% foreground accuracy and the uncertainty sampling
needs 78, 3% (2372 samples) of the samples while the pro-
posed method needs only 9.2% (279 labels) of the samples
to be labeled.

4.2. Evaluation of the method

To evaluate the proposed method, we analyze the results
after training the classifier with 300 samples selected ac-
cording to the proposed sampling strategy. In contrast to
the previous subsection, the experiment has only been con-
ducted once. Figure [3] gives an overview of the classifica-
tion. We compute the most common performance measures
separately for every class: Given a label [, we define by

Poo= [1<i<NIG=1)] (15)
PP, — ‘{1gjgN‘éj=l}‘ (16)
TP, — ‘{1§j§N‘2j:lMJ—:zH 17)

the number of positives, predicted positives and true posi-

tives, respectively. Precision, recall and F1-score for class [

are then defined by

recall; = E and (18)
P,

precision; - recall;

precision; + recall;

. TP
preCISu)nl = i;f;}
l

F1-Score; = 2 - (19)

From Table2]it can be seen that the average F1-score is

L
— 1
Fl-score = 7 ;Fl-Scorel =0.93 (20)

Moreover, it can be seen that the method performs well for
all classes except for the crabs. Possible reasons for this are
discussed in the next section.
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Figure 5. Confusion matrix after training the classifier with 300 la-
beled samples. The number in brackets at (%, 7) is the total number
of samples with true label ¢ and predicted label j. The fractional
number at (¢, §) is the fraction of samples with predicted label j of
all samples with true label i. Consequently, the recall of a class is
found in the corresponding element on the diagonal.

Table 2. The precision, recall and F1-score for each class

class precision recall Fl-score

background 1.00 1.00 1.00
starfish type 3 1.00 1.00 1.00
starfish type 1 1.00 0.88 0.93

see-urchin 1.00 1.00 1.00
crab 1.00 0.50 0.67
starfish type 2 1.00 1.00 1.00

5. Discussion and Conclusion

In this work, we have addressed the problem of anno-
tating image regions showing mobile species in a marine
wildlife monitoring scenario. We have shown, how active
learning can be combined with an unsupervised object de-
tection framework to automatically classify large numbers
of objects without an extensive labeling of many training
samples. We compared our approach with two baseline
methods: random sampling and uncertainty sampling. In
both cases we could show that our approach needed much
less training samples, i. e. learned much faster than the
baseline and thereby also requires less time to perform the
manual labeling.

The evaluation of the classification showed that the
method performs good for five out of six classes. How-
ever, only two of 4 samples from the class ‘Crab’ have been

Figure 6. ‘Crab’ samples that have been classified as background.

found (see Figure[6)). A possible reason is that the features
of the ‘crab’ class are not well enough separable from the
features of the ‘background’ class. This suggests that fea-
tures have to be selected carefully for the image set and the
monitored habitat.

It is a widely accepted practice that the trainings set used
to fit a classifier and the test set used to test the classifiers
performance are disjoint. A criticism regarding the evalua-
tion can be that (in contrast to this practice) the test set was
a subset of the trainings set in our evaluation. However, we
believe that in the special case of this active learning appli-
cation it is appropriate to include the training set in the test
set since (i) in an practical application, the trainings set is
always a part of the patches that have to be classified and
(i1) the selection of an appropriate trainings set is an im-
portant part of the method and should be considered in the
evaluation.

Figure 4| shows that uncertainty sampling performed
worse than random sampling when the classifier was trained
with about 20% to 70% of the samples. This might seem
unintuitive at first glance, but the reason for this is that
the number of classes is not known a-priori. Uncertainty
sampling prefers to select samples near the border of two
classes. A sample of an unknown class (i. e. no sample
of that class has been labeled by the expert) is less likely
near the border than a sample from of the classes that de-
fine this border. Thus, some classes remain unknown longer
(i. e. until more samples have been labeled) than when ran-
dom sampling is used and this causes the poor accuracy.
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