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Abstract

Vision based wildlife monitoring is an important task in

the field of environmental monitoring. Wildlife monitoring

activities often create large collections of data needing com-

putational approaches to (semi-) automated detection and

annotation of objects in the images/video. In this work,

we consider the special case of marine wildlife monitoring

using camera equipped fixed observatories. In such cases

where a-priori knowledge about which species to find is lim-

ited, a standard computer vision approach, employing su-

pervised learning, will not be applicable for detecting and

classifying species (or events) in the images.

In a recently proposed unsupervised learning method,

image patches are extracted from a time series of underwa-

ter images that feature moving species (like starfish, etc).

The patches are automatically grouped into clusters with

similar morphology and a so called relevance score is as-

signed to each of the clusters describing the likeliness that it

contains patches showing unusual changes. However, due

to the unsupervised fashion (i) the categories don’t have la-

bels and (ii) do not reflect the species distribution satisfac-

tory.

In this paper, we propose an active learning method that

builds upon these results and can be used to assign taxo-

nomic categories to single patches based on a set of human

expert annotations making use of the cluster structure and

relevance scores. The evaluation shows that compared to

traditional sampling strategies our approach uses signifi-

cantly less manual labels to train a classifier. We are confi-

dent that the results are relevant for non-marine contexts as

well.

1. Introduction

In recent years, a growing number of so called Fixed

long-term Underwater Observatories (FUO) [5, 2, 19, 9]

equipped with fixed digital HD cameras have been de-

ployed. These FUOs allow to monitor marine habitats over

time, including long term changes in a reef [12] or the mon-

itoring of particular species. Some effort has been spent

on the (semi-) automatic classification of species for both

terrestrial and marine applications. In these cases, often, a

supervised classifier is trained. Examples are e. g. [3, 14]

for terrestrial wildlife monitoring and [6, 15] for underwa-

ter wildlife monitoring. However, in environments with

limited a-priori knowledge about the ecosystem it is of-

ten not practicable to train a classifier in a standard su-

pervised fashion, as this approaches are based on a-priori

knowledge about the species present. An unsupervised ma-

chine learning method for detection of short term changes

in the visual field (e. g. occurrence of a specimen) in un-

derwater images has been proposed in [11] for the Lofoten-

Vesterålen (LoVe) FUO (Figure 1). Given a set of images,

the method extracts a set of image patches, showing small

regions where change occurred. The method, furthermore,

groups all patches into clusters of similar change patterns

and assigns a relevance score to every cluster describing

how likely a patch shows an interesting change. In order to

obtain a complete analysis of all species appearances for the

entire observation period, the patches need to be assigned to

taxonomic labels. The computationally detected and clus-

tered patches must therefore be inspected and labeled by

human experts (i. e. marine biologists). To speed up the

manual labeling significantly, we propose an active learn-

ing approach in this paper.

Active learning is applied to facilitate the training of
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Figure 1. One sample image taken by the LoVe Ocean Observa-

tory.

a supervised classifier to classify unsupervised clustered

patches. The point of active learning is that training

samples are chosen in a way that makes the classifier learn

faster, i. e. the classifier needs less trainings samples to

achieve a specific classification performance. Most active

learning methods chose the training samples depending

on the uncertainty of the classifier(s), the expected model

change or the expected improvement of the classification

performance. See [18] for an overview of the methods.

In [13] an active learning method was proposed based on

choosing training samples from clusters obtained using

the k-medoids [8] algorithm. k-medoids is a clustering

algorithm similar to k-means. The main difference is that

the prototype of a cluster is not the mean but the medoid of

the cluster, i. e. the element with the minimal distance to all

elements in the cluster. When choosing training samples,

the classifier considers not only the uncertainty of a sample

but also gives priority to samples that are representatives of

dense clusters.

The contribution of this paper is to propose a new ac-

tive learning method for classification of underwater image

patches (Section 2). Similar to the method in [13], the pro-

posed method makes use of a prior clustering of the sam-

ples. In contrast to other methods, a relevance score (com-

puted as described in [11]) assigned to the clusters is used to

further improve the selection of the training samples. The

success of the strategy of selecting the training samples is

illustrated in Section 4. Section 5 discusses the method and

its evaluation.

2. Methods

In active learning (like in other supervised machine

learning), a classifier is trained with a labeled set of train-

ings samples. In contrast to other supervised machine learn-

Select a label

according to the

sampling strategy

Let the expert

label the sample

Train the classifier

Classify all samples

Classified

samples

repeat until

enough samples

are labeled

Unlabeled

samples

repeat until

enough samples

are labeled

Figure 2. In a typical active learning scenario, the steps ‘select a

sample’, ‘label the sample’, ‘train the classifier’ are repeated in

cycles. If the sampling strategy does not involve the state of the

classifier, it is possible to first select all training samples and then

label the samples (dashed arrows).

ing scenarios, in an active learning scenario, the learner ac-

tively decides which samples have to be labeled and added

to the training set. An active learning scenario for classifi-

cation (see Figure 2) is described by (i) a sampling strategy

for choosing unlabeled data (ii) an oracle (often a human

expert) for labeling the chosen samples and (iii) a classi-

fier (e. g. Bayes classifier, SVM) for automatic classifica-

tion of the unlabeled data. Given these three components,

the active learner works as follows: First, from a pool of

unlabeled samples, one sample is selected according to the

sampling strategy. Next, the chosen sample is labeled by the

oracle and added to the training set. The training set is used

to fit the classifier to the data and the process is repeated. In

the end, the trained classifier is used to classify the complete

dataset.

In contrast to the majority of existing strategies, we do

not involve the classifier in the sample selection process.

The complete trainings set is chosen according to the pro-

posed strategy (see below) before the labels are determined

(see Figure 2 dashed arrows). In the present case, the labels

are determined by a human expert. Thus, it remains to de-

scribe the sampling strategy and the classification in the rest

of this section.
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Table 1. The most frequently used symbols

Notation Meaning

Fj the feature vector of the j-th sample

L the number of labels

ℓ an integer representing a label

cj the cluster index of the sample j
ri the relevance score of cluster i
δj the indicator function of the labeled samples

ℓj The true label of sample j

ℓ̂i The cluster label

ℓ̃j The label predicted for sample j

2.1. Notation and setup

Let N be the number of samples (i. e. image patches)

s1, . . . , sN to be classified. We assume that a feature

representation of the samples is given as feature vectors

F1, . . . , FN . Moreover, we assume that a set of integers l
(called labels) is given representing semantic classes (e. g. :

‘starfish’). The number of semantic classes is denoted by

L. Without loss of generality let 1 ≤ l ≤ L for each label l.

The proposed method expects that the features are al-

ready clustered into M clusters and that a relevance score is

assigned to each cluster. The clustering can be done by any

clustering method, including the method proposed in [11].

The index of the cluster containing the sample j will be de-

noted by cj ∈ {1, . . . ,M}. The relevance scores should

describe how likely patches in a cluster show foreground

(i. e. moving species). Clusters can be determined as de-

scribed in [11]. The relevance score of the cluster with in-

dex i will be denoted by ri. For a quick reference of the

most frequently used notations see Table 1.

2.2. Sampling

The automated sampling strategy has to balance the fol-

lowing two almost conflicting demands:

1. Samples from a cluster with a high relevance score, are

more likely to be selected than samples from a cluster

with a low relevance score.

2. Each sample (whichever cluster it belongs to) has a

chance to be selected.

To implement these demands, the strategy is to first select

a cluster deterministically and then draw a sample from the

cluster randomly. At any iteration, let fi denote the number

of times, a patch from cluster i has been drawn. To any

cluster i we assign a score balancing the relevance and the

accumulative activity of cluster i.

hi =

{
∞ if fi = 0

ri/fi else
(1)

The cluster i′ to draw the next sample from is then given by

i′ = argmax
1≤i≤M

(hi). (2)

For a sample sj (1 ≤ j ≤ N ) let

δj =

{
1 the sample j has been annotated

0 else
(3)

denote the indicator function of the set of labeled samples.

The next sample is then drawn from the set

{sj |cj = i′ ∧ δj = 0} . (4)

As we assume the expert to always label correctly, the label

assigned to the sample j by the human expert is considered

the ground-truth label ℓj .

2.3. Classification

For classification, a Support Vector Machine (SVM) [4]

with a radial basis kernel [17] is used. Multi-class classi-

fication is realized with the one-vs-one method [10]. The

SVM is trained with all samples. To do so, we propagate

the labels from the human expert as follows: First, the ex-

pert labels are propagated to the clusters. For each cluster i,
we define the cluster label by majority voting:

ℓ̂i = argmax
1≤l≤L

|{1 ≤ j ≤ N |δj = 1 ∧ cj = i ∧ ℓj = l}| .

(5)

Next, the labels of the clusters are propagated to the sam-

ples. The label of a sample j for the SVM training is defined

by

ℓ̂cj (6)

i. e. the label of the cluster containing j.

The training set used to fit the the SVM is then given by

the (sample, label)-pairs

{
(Fj , ℓ̂cj )|1 ≤ j ≤ N

}
. (7)

The classifier finally is used to classify all samples. The

label predicted for the sample j by the SVM classifier is

denoted by f(Fj). As we assume the expert to always label

the samples correctly, the final label of a sample sj is given

by

ℓ̃j =

{
ℓj δj = 1

f(Fj) else
(8)

The effect on the evaluation caused by using the labels ℓ̃l
instead of the classifier outputs f(Fl) will be discussed in

Section 5.
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Figure 3. The figure shows the class frequencies and one exam-

ple of each class. Note that the bar depicting the frequency of

background patches is not true to scale for means of better visual-

ization.

3. Material

The proposed method is evaluated on underwater images

provided by the Lofoten Vesterålen (LoVe) Ocean Observa-

tory [5]. LoVe is a fixed long-term underwater observatory

monitoring a coral reef at (N 68◦ 54.474′, E 15◦ 23.145′) in

the Norwegian Sea. The reef is located 22 km off the coast

in a water depth of approximatively 260 m.

The observatory was deployed in October 2013 and takes

one image every 60 minutes. All images are publicly avail-

able online at http://love.statoil.com/. A sam-

ple image of the LoVe images is shown in Figure 1.

The change detection method proposed in [11] has been

applied to a subset of 24 images taken by the LoVe ocean

observatory. The change detection method extracted 3031
image patches divided into 6 categories: Background, Crab,

Starfish type 1, Starfish type 2, See-urchin and Starfish

type 3. As can be seen in the histogram in Figure 3, the

dataset is imbalanced as most of the patches show back-

ground.

4. Evaluation

For evaluation, we applied the proposed method to

the image patches described in the previous section (see

Figure 3). The cluster indices cj from the previous

clustering and the relevance scores ri for the classes are

given by the method in [11]. The features Fj are extracted

using dominant color. To do so, the colors in a patch are

quantized using the modified median cut algorithm [1],

i. e. a color palette C of 5 colors is generated. The

color of each pixel pk in the patch is assigned to the

nearest color γk in the palette. The dominant color is

then argmaxγ∈C |{pk |γk = γ }|, where the pk denote the

pixels in the patch.

The evaluation of the method is twofold: First, the

method is compared to other methods by testing how quick

the learner learns from the drawn samples. Second, the

overall method is evaluated by testing its performance after

a reasonable number of samples has been labeled manually.

4.1. Comparison to other methods

To evaluate the sampling rule, we follow a common strat-

egy: For each number n (1 ≤ n ≤ N ) a training set of

size n is selected according to the proposed sampling strat-

egy and the classifier is trained with the selected samples.

Each time, a performance measure is computed for the clas-

sifier. The progression of the performance measure with in-

creasing number of training samples reflects the quality of

the sampling strategy. A performance measure often used

for this type of evaluation is the accuracy, defined as the

percentage of correct predictions. However, the accuracy

is a poor measure if the dataset is imbalanced as it is of-

ten the case in real-world scenarios (including the dataset

used here, see Figure 3) especially in wildlife monitoring.

A naive classifier that maps everything to the most abun-

dant class, would always have a good accuracy although it

misclassifies all samples from the other (potentially more

important) classes (compare [16]). For an appropriate eval-

uation of the method, we use a slightly modified version

of accuracy that does not involve correctly classified back-

ground. For this, we assume without loss of generality that

the class background has the label 0. Moreover, we define

T̂P =
∣∣∣
{
1 ≤ j ≤ N

∣∣∣ℓj 6= 0 ∧ ℓj = ℓ̃j

}∣∣∣ (9)

to be the number of correctly classified foreground samples

and

N̂ =
∣∣∣
{
1 ≤ j ≤ N

∣∣∣ℓ̃j 6= 0 ∨ ℓj 6= 0
}∣∣∣ (10)

to be the number of samples being either foreground or clas-

sified as foreground. The foreground accuracy is then de-

fined by

â =
T̂P

N̂
. (11)

We denote by â(n) the accuracy that has been measured for

a classifier trained with n samples.

We compare our method to (i) random sampling and (ii)

uncertainty sampling. For each, we use a modification of

the approach in Section 2 that makes neither use of (a) the

precomputed clusters nor (b) the proposed sampling strat-

egy based on the cluster relevances. The first modification

(according to (a)) is that the SVM is not trained with the

propagated labels (see Equation 7) but only with the set
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Figure 4. The figure compares the performance of the proposed

sampling strategy with the performance of random sampling. The

colored areas illustrate the range between the 0.25 percentile and

the 0.75 percentile. The black dotted lines indicate how many

samples have to be labeled before a method achieves at least a

90% accuracy. The proposed method performs better than uncer-

tainty sampling and random sampling. It can also be seen that

uncertainty sampling performs worse than random sampling when

about 20% to 70% of the samples are labeled. See Section 5 for a

discussion of this phenomenon.

{(Fj , ℓj)|1 ≤ j ≤ N ∧ δj = 1} of expert labels. The sec-

ond modification (according to (b)) is that we do not use the

sampling strategy proposed in Section 2.2, but draw

(i) randomly with uniform distribution from all samples

not labeled by the expert.

(ii) according to uncertainty sampling as described in [18]

as soon as samples from at least two different classes

have been labeled by the expert. According to random

sampling when all expert labels are from one class.

We ran each algorithm 200 times generating accuracies

ârel
k (n) (for the proposed sampling), ârnd

k (n) (for random

sampling) and âunc
k (n) (for uncertainty sampling) for 1 ≤

k ≤ 200 and 1 ≤ n ≤ N . The average accuracies for the

proposed method, random sampling and uncertainty sam-

pling are defined by

ârel(n) =
1

200
·

200∑

k=1

ârel
k (n) (1 ≤ n ≤ N) (12)

ârnd(n) =
1

200
·
200∑

k=1

ârnd
k (n) (1 ≤ n ≤ N) (13)

âunc(n) =
1

200
·

200∑

k=1

âunc
k (n) (1 ≤ n ≤ N) (14)

respectively.

Figure 4 shows the accuracies obtained using (i) the

proposed sampling strategy (ii) uncertainty sampling and

(iii) random sampling. It can be seen that the proposed

method learns much faster than the other methods. As in-

dicated by the black dotted line, random sampling needs

87% (2638 labels) of the samples to be labeled to obtain

a 90% foreground accuracy and the uncertainty sampling

needs 78, 3% (2372 samples) of the samples while the pro-

posed method needs only 9.2% (279 labels) of the samples

to be labeled.

4.2. Evaluation of the method

To evaluate the proposed method, we analyze the results

after training the classifier with 300 samples selected ac-

cording to the proposed sampling strategy. In contrast to

the previous subsection, the experiment has only been con-

ducted once. Figure 5 gives an overview of the classifica-

tion. We compute the most common performance measures

separately for every class: Given a label l, we define by

Pl = |{1 ≤ j ≤ N |ℓj = l}| (15)

PPl =
∣∣∣
{
1 ≤ j ≤ N

∣∣∣ℓ̃j = l
}∣∣∣ (16)

TPl =
∣∣∣
{
1 ≤ j ≤ N

∣∣∣ℓ̃j = l ∧ ℓj = l
}∣∣∣ (17)

the number of positives, predicted positives and true posi-

tives, respectively. Precision, recall and F1-score for class l
are then defined by

precisionl =
TPl

PPl

, recalll =
TPl

Pl

and (18)

F1-Scorel = 2 ·
precisionl · recalll

precisionl + recalll
. (19)

From Table 2 it can be seen that the average F1-score is

F1-score =
1

L

L∑

l=1

F1-Scorel = 0.93 (20)

Moreover, it can be seen that the method performs well for

all classes except for the crabs. Possible reasons for this are

discussed in the next section.

2895



Figure 5. Confusion matrix after training the classifier with 300 la-

beled samples. The number in brackets at (i, j) is the total number

of samples with true label i and predicted label j. The fractional

number at (i, j) is the fraction of samples with predicted label j of

all samples with true label i. Consequently, the recall of a class is

found in the corresponding element on the diagonal.

Table 2. The precision, recall and F1-score for each class

class precision recall F1-score

background 1.00 1.00 1.00

starfish type 3 1.00 1.00 1.00

starfish type 1 1.00 0.88 0.93

see-urchin 1.00 1.00 1.00

crab 1.00 0.50 0.67

starfish type 2 1.00 1.00 1.00

5. Discussion and Conclusion

In this work, we have addressed the problem of anno-

tating image regions showing mobile species in a marine

wildlife monitoring scenario. We have shown, how active

learning can be combined with an unsupervised object de-

tection framework to automatically classify large numbers

of objects without an extensive labeling of many training

samples. We compared our approach with two baseline

methods: random sampling and uncertainty sampling. In

both cases we could show that our approach needed much

less training samples, i. e. learned much faster than the

baseline and thereby also requires less time to perform the

manual labeling.

The evaluation of the classification showed that the

method performs good for five out of six classes. How-

ever, only two of 4 samples from the class ‘Crab’ have been

Figure 6. ‘Crab’ samples that have been classified as background.

found (see Figure 6). A possible reason is that the features

of the ‘crab’ class are not well enough separable from the

features of the ‘background’ class. This suggests that fea-

tures have to be selected carefully for the image set and the

monitored habitat.

It is a widely accepted practice that the trainings set used

to fit a classifier and the test set used to test the classifiers

performance are disjoint. A criticism regarding the evalua-

tion can be that (in contrast to this practice) the test set was

a subset of the trainings set in our evaluation. However, we

believe that in the special case of this active learning appli-

cation it is appropriate to include the training set in the test

set since (i) in an practical application, the trainings set is

always a part of the patches that have to be classified and

(ii) the selection of an appropriate trainings set is an im-

portant part of the method and should be considered in the

evaluation.

Figure 4 shows that uncertainty sampling performed

worse than random sampling when the classifier was trained

with about 20% to 70% of the samples. This might seem

unintuitive at first glance, but the reason for this is that

the number of classes is not known a-priori. Uncertainty

sampling prefers to select samples near the border of two

classes. A sample of an unknown class (i. e. no sample

of that class has been labeled by the expert) is less likely

near the border than a sample from of the classes that de-

fine this border. Thus, some classes remain unknown longer

(i. e. until more samples have been labeled) than when ran-

dom sampling is used and this causes the poor accuracy.
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[11] T. Möller, I. Nilssen, and T. W. Nattkemper. Change detec-

tion in marine observatory image streams using bi-domain

feature clustering. In International Conference on Pattern

Recognition (ICPR 2016), 2016.
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