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Abstract

Image-based tracking of animals in their natural habi-

tats can provide rich behavioural data, but is very challeng-

ing due to complex and dynamic background and target ap-

pearances. We present an effective method to recover the

positions of terrestrial animals in cluttered environments

from video sequences filmed using a freely moving monocu-

lar camera. The method uses residual motion cues to detect

the targets and is thus robust to different lighting conditions

and requires no a-priori appearance model of the animal

or environment. The detection is globally optimised based

on an inference problem formulation using factor graphs.

This handles ambiguities such as occlusions and intersec-

tions and provides automatic initialisation. Furthermore,

this formulation allows a seamless integration of occasional

user input for the most difficult situations, so that the effect

of a few manual position estimates are smoothly distributed

over long sequences. Testing our system against a bench-

mark dataset featuring small targets in natural scenes, we

obtain 96% accuracy for fully automated tracking. We also

demonstrate reliable tracking in a new data set that includes

different targets (insects, vertebrates or artificial objects) in

a variety of environments (desert, jungle, meadows, urban)

using different imaging devices (day / night vision cameras,

smart phones) and modalities (stationary, hand-held, drone

operated).

1. Introduction

Knowledge of the precise movement patterns of ani-

mals in their natural habitats is important for many fields

of study, from neuroscience to conservation. Tracking of

animals in the wild is predominantly done through teleme-

try [14], but this has serious drawbacks: the need to tag

animals with sensors limits the application to only 0.3%

of all species [15]; and tags can affect the behaviour ob-

served [18]. Also, telemetry does not provide information

about an animal’s actions, has a limited temporal resolution

and provides no information about the surrounding environ-

ment [8].

Visual object tracking provides a solution [9] and has

already been widely used to extract posture and motion fea-

tures for different model organisms in laboratory conditions

(e.g. flies [6, 32]; worms [33]; larvae [10, 25]; fish [21];

or mice [35, 24]). Yet it has proven difficult to extend the

application of vision-based tracking to dynamic and com-

plex natural environments [8] especially for tiny animals

such as insects. As a result quantification of insect paths

is still often done manually by human experts (e.g. [22, 5]).

Challenges of tracking animals in natural settings include:

(1) small targets do not provide sufficient visual features

to extract a detectable model (caused by a very low per-

animal resolution); (2) animals often provide a low fore-

ground / background contrast ratio (caused by camouflage,

etc.); (3) freely moving animals change their appearance

over time (caused by shadows, locomotion method, etc.);

(4) animals frequently navigate in very cluttered and am-

biguous settings (caused by occlusions, background object

motion, other animals in close proximity, etc.); and (5) cre-

ating manually labelled training data for different and po-

tentially tiny animals is complicated and time consuming.

In addition, if the route of the animal is not known before-

hand, or not confined to a fixed region, the camera has to

move freely to provide continuous recordings over long dis-

tances.
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A comprehensive review of visual animal tracking ap-

proaches is given in [8] which also notes the complete ab-

sence of a system capable to track animals in natural habi-

tats. Likewise many state-of-the-art techniques used for

pedestrian or vehicle tracking might are not appropriate due

to the potential absence of distinctive colour and texture

features and the highly dynamic scenes [31]. Furthermore,

challenge (5) makes deep learning techniques impractical

for many biological studies. In contrast to the approach de-

scribed in [12] our target application is not optimisation of

online tracking, but rather to obtain, offline, the most ac-

curate target position estimate over all video frames. Their

method also requires a minimum target resolution so would

not succeed for some instances of tiny animals (occupying a

few pixels) in the data sets we explore here. These represent

typical applications (most were obtained directly from biol-

ogy research groups) where the video sequence may also be

a unique (one-off) combination of animal target and back-

ground, which we would ideally be able to track without re-

quiring initialisation or any pre-training. These constraints

also clearly limit the applicability of appearance-based de-

tection methods [13, 16, 36, 29].

In order to benchmark tracking systems for natural con-

ditions Bagheri et al. recently introduced the Small Tar-

gets within Natural Scenes (STNS) dataset featuring 25 se-

quences of small objects moving in front of a heavily clut-

tered background [1]. The authors also provide a compari-

son between their own insect-inspired tracking system and 9
state-of-the-art algorithms, finding an overall low accuracy

of current approaches, with the highest success rate reported

as 52.1% [1].

In this paper we present an optimised visual tracking ap-

proach to track any animal in all kinds of wildlife videos.

Given an overhead video of an unmarked animal recorded

using a moving or static camera, our method outputs contin-

uous and globally optimal 2D locations of the animal. Our

main contribution is twofold. Firstly, we make principled

use of motion cues to identify even tiny foreground objects

in front of the complex background, following methods that

have been previously used in different contexts [3].This ap-

proach means that we do not require any a-priori appearance

model of the animal or the terrain, making our algorithm

applicable for all kinds of moving animal and robust to dif-

ferent lighting conditions. Furthermore, our algorithm can

cope with a freely moving camera by automatically com-

pensating the camera motion, using methods similar to the

feature based camera motion removal approach described

in [34]. Secondly, we detect the position of the animal

in all frames of a video jointly, using global optimisation

over a factor graph. Factor graphs provide a general graph-

ical framework to represent functions as a product of lo-

cal functions. These probabilistic models are commonly

used to provide consistent solutions in ambiguous multi-

target tracking approaches [20, 30] or to identify physical

parts of an articulated object class [7]. In our application

of this method to animal tracking, the main advantage is to

exploit the fact that the experimenter is naturally following

the target animal with the camera. Global optimisation then

automatically handles ambiguities such as occlusions and

intersections, enables an implicit initialisation of the most

prominent animal, reinitialises after very long occlusions,

and allows for an easy integration of user input to deal with

any remaining unresolved situations.

2. Methods

2.1. Algorithm overview

An overview of our proposed algorithm is given in Fig-

ure 1. A video of the animal is recorded using a moving

or stationary camera. The algorithm first determines and

removes any camera motion between consecutive frames

(Section 2.2) then extracts remaining foreground motion

for each frame to build 2D probability distributions of hy-

pothetical animal locations called unary potentials (Sec-

tion 2.3). These are combined with 2D motion mod-

els, called pairwise potentials, to define a factor graph

which is used to induce smoothness in animal localiza-

tions over all video frames jointly (i.e. global optimisa-

tion). As illustrated in Figure 1 each, hypothetical ani-

mal location is associated with a 2D Gaussian centred at

this location resulting in multiple pairwise potentials. The

tracking results can be reviewed and manually corrected if

necessary (Section 2.4). Corrections are transformed into

unary potentials where the variance tends to zero, and in-

corporated into the global optimisation approach so that

a single manual position influences the entire sequence.

Software available at http://blog.inf.ed.ac.uk/

insectrobotics/habitracks

2.2. Camera motion

In many cases, filming an animal in its natural habitat

requires following it with a freely moving camera. Our

algorithm starts by estimating the relative camera motion

(Figure 1) by matching ORB features [28] in consecutive

frames It, It+1. These matches are subsequently used in a

RANSAC approach [26] to find the perspective transforma-

tion Ht←t+1 which warps all points on the image plane of

It+1 to the camera position of frame It:

It ≈ Ĩt+1 = Ht←t+1 ◦ It+1 (1)

where ◦ is the mathematical operator warping the pix-

els (images or points) in homogeneous coordinates using

the transformation Ht←t+1. Note that Ht←t+1 is a non-

singular and bijective matrix so that it can be inverted

(H−1t→t+1) to warp frame It on frame It+1 and that warp-

ing over a distance of k consecutive frames can be done by
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Figure 1. Overview of our tracking pipeline illustrating the pro-

cessing steps from video input: camera motion removal (purple);

unary (blue) and pairwise (yellow) potential calculation; optional

sparse corrections (red); combined (same colour code) for factor

graph optimisation to produce estimated animal locations.

using

Ht←t+k =

k−1∏

i=1

Ht←t+i. (2)

Perspective transformations with these properties are also

called homographies and can be used to virtually warp

frames onto future and past relative camera positions.

2.3. Optimal tracking

We formulate animal detection as a probabilistic infer-

ence problem to estimate the animal positions pt = (xt, yt)
for all frames t ∈ {1, ..., T} with highest probability across

the entire video. Each random variable pt can take N

states where N is the spatial resolution of the video frames

(N = width×height). If very high resolution recordings are

used, this state space N can be reduced by a user-specified

sub-sampling value (in [0, 1]), which speeds up computation

by lowering the dimensionality. Given p = {p1, p2, ..., pT }
and D = {D1,D2, ...,DT } we model this problem as max-

imising an energy function associated with a factor graph

E(p | D) =

(
T∑

i=1

Φ(pi|Di)

)
+

(
T−1∑

i=1

Ψ(pi, pi+1)

)
(3)

Dt specifies the observed variable extracted from the frames

It and encodes the animal’s motion between consecutive

frames. Φ is the unary potential measuring the conditional

probability of the animal’s position pt given the observation

Dt. Φ will encourage positioning the animal where there

is observed motion. Ψ is a pairwise potential encouraging

smoothness in animal motion between consecutive frames t

and t+ 1.

In order to compute the observed variables from the im-

ages we first warp the image at t + 1 onto the camera po-

sition of frame t (c.f . Equation 1). The remaining motion

between the warped frame Ĩt+1 and It should be the mov-

ing animal of interest, hence we define Dt as |It − Ĩt+1|.
However note this will also include remaining background

motion such as shadows, moving plants and other nearby

animals. If the motion of the animal is much slower than

the video frame rate this difference image can be gener-

ated for t + k distant frames (k ≥ 1) by warping using

the transformation given in Equation 2. From a visual point

of view Dt is a heat map with high values indicating motion

at this position. This motion-based approach means that

tracking does not rely on animal appearances, no marking

is required, and all kinds of imaging sensors can be used

(e.g. day / night vision, thermographic camera), but it does

require that the animal is moving in the majority of frames

(approximately > 50%). Under this assumption, the heat

maps Dt can be interpreted as two-dimensional probability

distributions where high values correspond to a high proba-

bility of the animal’s position.

The unary potential is then defined as

Φ(pt | Dt) = Dt · N (µc, σ
2
U )|pt

(4)

The observed variable Dt is weighted by a two-dimensional

Gaussian N centred at the image (µc =
(

height

2
, width

2

)
)

using a user specified variance σ2
U and evaluated at pt.

Weighting biases the maps based on the assumption that

the experimenter naturally tries to keep the animal in the

centre of the image, in the case of a moving camera, and

also avoids artefacts at the image boundaries caused by the

warping. Since this assumption cannot be made for sta-

tionary recordings the observed variables are simplified to

D̂t = |It − It+1| and the unary potentials are defined as

Φ̂(pt | D̂t) = D̂t|pt
for fixed camera videos.

Pairwise potentials ensure smooth animal motions pt and

pt+1 by

Ψ(pt, pt+1) = N (pt+1 | pt, σ
2
P ) (5)

σ2
P controls for the maximal velocity of the animal in con-

secutive frames given its resolution in the frame and the
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Figure 2. Global optimisation using a factor graph. The formal

notation given in the text is linked to the individual variables and

factors of the graph. The overall task is to identify the best pos-

sible sequence of random variables which maximise the energy of

all potentials. Note, the 2D Gaussian which specifies Ψ could be

centred anywhere in the image (nine examples are illustrated).

used frame-rate. Given the state space N for all pt, pt+1

each pairwise potential has the dimensionality of N2. Since

σ2
P is usually small, Ψ is mostly zero, thus the computa-

tional expense can be greatly reduced by modelling Ψ with a

truncated version [11]. Note that this motion model only as-

sumes smooth motion in terms of proximity but does not re-

strict the motion to any direction so that it is general enough

to apply for all kinds of behaviour (e.g. forward / backwards

movement, erratic direction changes).

By combining the unary and pairwise potentials in fac-

tor graphs the goal is to identify the animal positions pt =
(xt, yt) for all frames t ∈ [1, T ] (c.f . Figure 2) [7]. The

overall energy of this optimisation task is then

arg max
p1,...,pT

E(p | D) (6)

which can be solved globally by using the max-sum algo-

rithm [2] that guarantees finding the global optimum of the

energy.

This approach proves to be highly effective as the global

optimisation automatically disambiguates many difficult

tracking situations. For example, intersecting paths with

other animals, or uncertainty about which animal is being

followed in the initial frames, are usually resolved by the

fact that the target animal is the only one present in all

frames, as the experimenter follows it throughout the se-

quence. Similarly, most short pauses or temporary occlu-

sions of the animal are handled correctly and the algorithm

initialises automatically by identifying the most prominent

moving object. Note that the output of our detection method

is a single point, the estimated x,y position of the animal in

the video frame.

2.4. Sparse corrections

Some situations such as long occlusions can result in in-

valid unary potentials Φ since the corresponding observed

variables Dj will not represent the actual motion and loca-

tion of the animal. To deal with this, we include a mech-

anism for sparse manual corrections to be incorporated in

the global optimisation framework. For any single frame,

the user can enter the animal’s location p∗m, and this is used

to generate a unary potential Φ∗ with highest probability at

p∗m and a zero probability everywhere else (Figure 1). This

is automatically incorporated into the factor graph given by

Equation 6, such that the influence of this single correction

spreads over the entire sequence and thus affects the global

result. In other words, a very small number of manually

entered positions during ambiguous situations can fix hun-

dreds of frames by seamlessly integrating the user input into

the global detection pipeline.

2.5. Parameter settings

Our tracking approach works on videos recorded from

uncalibrated cameras and only 3 straightforward parame-

ters need to be set. The first parameter specifies the max-

imal motion of the camera relative to the used frame rate

which is specified by the standard deviation of a 2D Gaus-

sian σ2
U (used to define the unary potentials; Equation 4).

In a similar fashion the maximum displacement of the an-

imal has to be specified by σ2
P (with σ2

P ≪ σ2
U (used to

define the pairwise potentials, Equation 5). Both are given

in pixels. Finally, in order to increase processing speed the

observed variables Dt and thus dimensionality of the ran-

dom variables pt can be down-sampled by a constant fac-

tor. We used a down-sampling factor of 50% in all tests.

In theory, these three parameters could also be estimated

automatically from the video: The homographies comprise

the camera translations between consecutive frames which

could be used in combination with the resolution and frame

rate to estimate σ2
U and since the experimenter is following

the animal, this camera motion also indirectly reflects the

speed of the animal and thus σ2
P . Since the the detection ac-

curacy is not very sensitive to these parameters we used the

same σ2
P in all scenarios and only adjusted σ2

U according to

the spatial resolution.

2.6. Evaluation datasets

Our tracking approach is evaluated based on the pub-

licly available Small Targets within Natural Scenes (STNS)
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dataset and using an additional new dataset. The STNS

dataset consists of 25 video sequences including heavy

clutter and camera motion and is particularly dedicated to

benchmark small target tracking systems in natural environ-

ments [1]. The smallest target length in the STNS dataset

is ∼ 33 pixels, and targets are recorded in front of natural

environments. However the data set does not include realis-

tic animal tracking scenarios i.e. overhead videos of terres-

trial animals moving through their natural habitat. There-

fore we have collected and manually annotated an addi-

tional dataset. The Wildlife Animal Tracking (WAT) dataset

is a collection of 12 videos featuring various animals (ant,

dung beetle, coyote, woodlouse, penguin, artificial object)

and environments (desert, jungle, steppe, rocks, meadow,

laboratory, urban). The set also covers a variety of imag-

ing devices (camcorder, action camera, smart phone cam-

era) and modalities (day / night vision, stationary / hend-

held / drone operated). The scenarios include all kinds of

challenges such as moving shadows, lens flare, clutter, di-

rect occlusion of the animal, camouflage, changes in overall

brightness and animal appearance, erratic animal motions

and neighbouring animals. The video resolutions range

from 640×480 to 3840×2160 pixels and the animal length

ranges from less than 5 pixels up to 196 pixels (c.f . Fig-

ure 3). WAT database (videos and manual ground truth

annotations) available at (http://blog.inf.ed.ac.

uk/insectrobotics/WAT).

2.7. Evaluation metrics

The ground truth target position, based on hand anno-

tation, is specified by its centre of mass in each frame pGt
as well as the length of the object L. These measures

are used to define a bounding circle centred on the target.

The tracking accuracy is calculated using the Euclidean dis-

tance between the ground truth animal centres {pG1 , ..., p
G
T }

and the calculated animal centres returned by our algorithm

{p1, ..., pT }: d(pt, p
G
t ) = ||pt − pGt ||. Since both datasets

include sequences with different video and target resolu-

tions these distance measures are normalised by the bound-

ing circle diameter (i.e. animal length) L to generate the so-

called normalised centre errorn(NCE) which can be used to

cross-compare all scenarios [4]:

NCE(pt, p
G
t ) =

d(pt, p
G
t )

L
(7)

3. Results

3.1. STNS dataset tracking accuracy

The authors of the STNS dataset benchmarked 10 state-

of-the-art tracking approaches for their success rate, defined

as the percentage of frames in which the calculated object

position is within the ground truth bounding box [1]. The

success rate for these algorithms, averaged over all 25 sce-

narios, varied from 14.2% to 52.1%. For comparison, we

evaluated our tracking approach using the same data and

error metric, obtaining a success rate of 96.5%. It should

however be noted that the algorithms evaluated in [1] per-

form successive frame-to-frame tracking, which potentially

enables real-time tracking. In contrast, our algorithm op-

erates on all images in a global optimisation scheme so is

inherently a post-processing method with processing time

depending on the overall sequence. The time required was

equivalent to 0.19 seconds per frame on the shortest and

0.37 seconds per frame on the longest sequence in the STNS

dataset (measurements on a standard laptop with a 3.1GHz

Intel Core i7 CPU and 16GB DDR3 memory without paral-

lelisation).

We show the performance of our algorithm for each of

the 25 individual scenarios quantified by the NCE for each

frame (c.f . Equation 7) in Figure 4. The error is normalised

by the length of the target so that deviations below 0.5 an-

imal lengths from the centre of mass equate to successful

matches (detections that are located on the object; c.f . Fig-

ure 4 top right). The average error is below 0.36 animal

lengths and the average range specified by the first and third

quantile is [0.27, 0.52]. As shown in Figure 4 the major-

ity of detections are within the 0.5 animal length boundary.

Only video 9 has a median NCE of 0.52 (slightly above

0.5), which is caused by a long occlusion of the object. For

some scenarios there is a maximum NCE of 10 or more,

and many outliers (+-symbols), but this is largely due to

the target leaving the field of view of the camera.

3.2. WAT dataset tracking accuracy

In contrast to the STNS dataset the target is always in the

field of view of the camera in the WAT dataset (yet some-

times occluded). Results of our tracking algorithm on the

WAT dataset are given in Figure 5. The median error never

exceeds 0.5 indicating the estimated position is within the

animal’s boundary. The worst median score (0.48) was ob-

tained in the Camouflage scenario, where the background

contrast ratio is very low and the animal tiny (36 pixels

within a 2MP image; c.f . Figure 3). As a consequence

the small appearance of the almost invisible object causes

our algorithm to track the ants’ shadow or nearby compres-

sion noise. The median distance between the centre of mass

and detection is 17 pixels (animal length × median NCE

= 36 × 0.48) which is still in the range of manual annota-

tion variability especially since the camouflaged ant is al-

most invisible.

The most outliers occurred in the Occluded and Wood-

louse scenario (Figure 5). In the former video the animal

was under foliage in more than 14% of all frames making

determination of location already ambiguous in the manual

annotation. Since our algorithm incorporates all frames in
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Camera Phone

Resolution 1920x1080

Object diameter 58 pixel

Special Characteristics

- Object and scene shadows

- Motion blur (low frame rate)

- Camera jitter

- Compression artefacts

Environment Urban

Coyote

Camera Drone

Resolution 1280x720

Object diameter 128 pixel

Special Characteristics

- Remote controlled drone

- Lens flare

- Brightness changes

- Changing object appearance

Environment Field

Dung Beetle

Camera GoPro

Resolution 2704x1440

Object diameter 56 pixel

Special Characteristics

- Moving cameraman shadow

- Wide angle

- Dung ball next to target

- Abrupt camera motion

Environment Steppe

Fixed camera (ant)

Camera GoPro

Resolution 1920x1080

Object diameter 30-5 pixel

Special Characteristics

- Fixed camera

- Very small object appearance

- Wide angle

- Wind (background motion)

Environment Arena

Jungle (ant)

Camera Pocket Cam

Resolution 640x480

Object diameter 76 pixel

Special Characteristics

- Moving canopy shadows

- Cluttered environment

- Changing object appearance

- Dynamic background

Environment Jungle

Seq. length (#frames)

Night vision (ant)

Camera Night vision

Resolution 3840x2160

Object diameter 196 pixel

Special Characteristics

- Night vision

- Ultra high resolution

- Noisy images (high ISO)

- Carrying food

Environment Desert night

Camouflage (ant)

Camera Camcorder

Resolution 1920x1040

Object diameter 36 pixel

Special Characteristics

- Camouflage (low contrast)

- Small object appearance

- Rapid animal motion

- Laser pointer pattern

Environment Desert day

Occluded (ant)

Camera Camcorder

Resolution 1920x1040

Object diameter 36 pixel

Special Characteristics

- Animal behind leaf (>100 frames)

- Irregular background (bush)

- Moving camera shadow

- Dynamic environment

Environment Desert bush

Clutter (ant)

Camera Camcorder

Resolution 1920x1040

Object diameter 44 pixel

Special Characteristics

- Strong clutter

- Occlusions (gap)

- Moving plant shadows

- Carrying food

Environment Desert clutt.

150

Seq. length (#frames) 130

Seq. length (#frames) 380

Seq. length (#frames) 200

Seq. length (#frames) 300

Seq. length (#frames) 195

Seq. length (#frames) 450

Seq. length (#frames) 710

Seq. length (#frames) 450

Woodlouse

Camera Phone

Resolution 1920x1080

Object diameter 13 pixel

Special Characteristics

- Very low animal resolution

- Very low animal contrast

- Ambiguous background

- Strong jitter

Environment Concrete

Seq. length (#frames) 400

Penguins

Camera Drone

Resolution 1280x720

Object diameter 15 pixel

Special Characteristics

- Remote controlled drone

- Very crowded scene

- Pronounced animal shadows

- Low animal resolution

Environment Rocks

Seq. length (#frames) 75

Bumblebee

Camera Fixed cam.

Resolution 1920x1080

Object diameter 12 pixel

Special Characteristics

- Fixed camera

- Laboratory environment

- Very low animal resolution

- Erratic animal motion (flying)

Environment Laboratory

Seq. length (#frames) 470

Figure 3. WAT dataset overview. Our dataset comprises 12 video sequences showing different targets (artificial, insects and vertebrates)

in different environments (urban, desert, jungle, etc.). Length of each sequence is given in frames. For each video an image of the overall

scene, a close-up of the object of interest and a table showing the key characteristics is given (from left to right).

which the ant is visible between the foliage and enforces

smooth transition (i.e. linearly interpolates between valid

detections) the resultant trajectory is a very plausible ap-

proximation to the hidden real path (Figure 3). The Wood-

louse scenario suffers from the same contrast issues as the

Camouflage scenario: the tiny animal (13 pixel) is almost

indistinguishable from the background (c.f . Figure 3). Fur-

thermore, abrupt camera motion and slow automatic fo-

cussing (recorded using a mobile phone) causing strong blur

so that 57 frames are not tracked correctly (NCE > 0.5).

In all other scenarios the average NCE is below 0.26 ani-

mal lengths and the maximally observed deviation from the

ground truth is below 2.8 animal lengths (again caused by

occlusions). The global optimisation automatically disam-

biguates many difficult tracking situations. For example,

intersecting paths with other animals, or uncertainty about

which animal is being followed in the initial frames (Pen-

guin scenario), are usually resolved by the fact that the tar-

get animal is the only one present in all frames, as the exper-

imenter follows it throughout the sequence. Similarly, most

short pauses or temporary occlusions of the animal are cor-

rected for automatically.

3.3. Sparse correction evaluation

For particularly difficult video sequences, our automatic

tracking procedure can be straightforwardly enhanced by al-

lowing the user to indicate the animal’s location manually in

one or more frames (c.f . Figure 1) as high confidence unary
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Figure 5. Distribution of normalised centre error (NCE) [4] using our new WAT dataset: as for Figure 4. Plot highlighted in blue indicates

the NCE in the Woodlouse (WL) scenario after manual corrections.

potentials. The optimisation procedure automatically prop-

agates these to neighbouring frames, such that a few manual

inputs may be sufficient to correct hundreds of frames. To

demonstrate the effect, we generated a version of the (al-

ready difficult) Clutter scenario in which we replaced 100
consecutive observed variables Dt by random salt and pep-

per noise images (with intensity values in [0, 100]). This

increased the number of detection mismatches from ground

truth (NCE > 0.5) from 3 to 98 for automatic tracking, and

produces a median error distance of 2.15 animal lengths.

We then incrementally added manual corrections, always

dividing the distorted sequence into two equal halves i.e.

starting with a single correction after 50 frames, etc. As

visible in Figure 6 (red curves) the first correction has the

strongest impact on the median NCE, already reducing the

mismatch distances to ∼ 1 animal length. After only 5 cor-

rections there are few remaining mismatches with the NCE

asymptotically approaching y = 0.5.

The impact of sparse corrections was additionally tested

in a non-manipulated scenario. Figure 5 shows the NCE

of the Woodlouse scenario before and after manual correc-

tions (plot highlighted in blue) and the incremental changes

caused by the corrections are given in Figure 6 (purple

curves). After applying 5 manual corrections, there are few

remaining outliers and the maximum NCE is 0.75 animal

lengths. The median deviations of all outliers decreases

from 1.83 to 0.83 animal lengths after the first correction

and declines to 0.58 animal lengths after five corrections

(with a standard deviation of 0.08). We conclude that our

global optimisation strategy in combination with sparse cor-

rections is a powerful tool to efficiently deal with even very

ambiguous situations.

4. Discussion

We have demonstrated a system that performs fully au-

tomatic visual tracking of individual animals in complex

wildlife environments. It works with a single uncalibrated
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Figure 6. Sparse correction performance evaluation. Red : 100

consecutive images in the Clutter scenario were replaced by ran-

dom noise images to induce mismatches. Blue: the woodlouse

scenario contained 57 mismatches (caused by blurred images)

which are corrected by 5 manual corrections. The median, stan-

dard deviation and maximum of the NCE for all mismatches is

plotted against the number of corrections used. After only 5 cor-

rections the error approaches 0.5.

camera, making no prior assumptions about the animal or

environment appearance. It can be directly applied to exist-

ing video footage of highly variable quality and complexity,

requiring only that the animal of interest remains mostly in

shot and is moving in the majority of frames. Our algorithm

is extremely robust, and sparse user input can be easily in-

tegrated to correct for the most difficult situations. Only

three straight-forward parameters are necessary and the al-

gorithm does not require a priori information about the an-

imal or environment nor does it require any training. Since

we make explicit use of the camera motion to extract the

detections the inverse of these transformations (i.e. homo-

graphies H−1t←t+k; Equation 2) can be used to also extract

camera motion compensated trajectories up to the limits of

a cumulative error (Risse et al. in preparation). In the future,

we will extend our algorithm towards multi-target tracking

based on an iterative version of our probabilistic optimisa-

tion.

A limitation in the current implementation is that it rep-

resents the animal as a single point. This will be within

the animal’s boundary, but need not consistently represent

the same location on the body, which may introduce trajec-

tory artefacts for larger animals (relative to the video reso-

lution). Additionally, it means no instantaneous orientation

information or body shape information is provided. How-

ever, future enhancements could use our robust detection

method as an initialisation for fitting a tight bounding box

around the animal to obtain animal segmentation [27]. Tem-

plate matching [17] or other techniques for shape descrip-

tion [23] and action classification [19] can then be applied

straightforwardly for more detailed analyses tuned to the

specific animal and question of interest. Another limita-

tion is that the animal has to move in the majority of the

frames in order to be tracked correctly. Even though mod-

erate stops of the animal are compensated due to the global

optimisation, very long motion pauses (> 50%) in combi-

nation with strong background motion might cause incor-

rect detections. Sparse corrections are however an effec-

tive method to address these situations: the resultant low

variance unary eliminates the background noise and highly

scores the correct position which is smoothly distributed

over the entire sequence as demonstrated using the WAT

dataset.

Even though the global optimisation strategy of our algo-

rithm does not allow real-time tracking its processing speed

and batch processing capabilities allow to track animals in

very long videos in reasonable time. Intermediate results

like unary potentials are directly saved to disk and a trun-

cated version of the pairwise potentials is used to prevent

memory overflows. Furthermore, optional down-sampling

of the observed variables is integrated into our algorithm to

further increase the processing speed.

Our algorithm does not rely on any commercial software

packages, is implemented in C++, and will be released as

open source. It only requires OpenCV and Qt packages

and provides a graphical user interface to include sparse

corrections and review results. The focus in its develop-

ment was to enable behavioural researchers to track ani-

mals in their natural habitats without specialised recording

devices, complex calibration procedures, or expert knowl-

edge. Our method thus has the potential to significantly

advance behavioural, ecological and physiological research

across many scenarios and model organisms.

Acknowledgments

We thank Antoine Wystrach for support and feedback,

and Marie Dacke, Lana Khaldy (Department of Biology;

Lund), Natalie Hempel de Ibarra, Theo Robert (CRAB,

Exeter), Ajay Narendra (Ecological Neuroscience, Syd-

ney) and Justin Watkins (Kansas, USA) for providing field

recordings. This work was supported by EPSRC grant

EP/M008479/1.

References

[1] Z. M. Bagheri, S. Wiederman, B. Cazzolato, S. Grainger,

and D. O’Carroll. Performance of an insect-inspired target

tracker in natural conditions. Bioinspiration & Biomimetics,

12(2):025006, Jan. 2017. 2, 5, 7

2847



[2] C. Bishop. Pattern Recognition and Machine Learning (In-

formation Science and Statistics), 1st edn. 2006. corr. 2nd

printing edn. Springer, 2007. 4

[3] C. Cedras and M. Shah. Motion-based recognition a survey.

Image and Vision Computing, 1995. 2

[4] L. Cehovin, A. Leonardis, and M. Kristan. Visual Object

Tracking Performance Measures Revisited. IEEE Trans. Im-

age Processing, 25(3):1261–1274, 2016. 5, 7

[5] M. Collett, L. Chittka, and T. S. Collett. Spatial memory in

insect navigation. Current biology : CB, 23(17):R789–800,

Sept. 2013. 1

[6] H. Dankert, L. Wang, E. D. Hoopfer, D. J. Anderson, and

P. Perona. Automated monitoring and analysis of social be-

havior in Drosophila. Nature methods, 6(4):297–303, Apr.

2009. 1

[7] L. Del Pero, S. Ricco, R. Sukthankar, and V. Ferrari. Discov-

ering the Physical Parts of an Articulated Object Class from

Multiple Videos. CVPR, pages 714–723, 2016. 2, 4

[8] A. I. Dell, J. A. Bender, K. Branson, I. D. Couzin, G. G.

de Polavieja, L. P. J. J. Noldus, A. Pérez-Escudero, P. Per-
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