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Abstract

Image-based tracking of animals in their natural habi-

tats can provide rich behavioural data, but is very challeng-

ing due to complex and dynamic background and target ap-

pearances. We present an effective method to recover the

positions of terrestrial animals in cluttered environments

from video sequences filmed using a freely moving monocu-

lar camera. The method uses residual motion cues to detect

the targets and is thus robust to different lighting conditions

and requires no a-priori appearance model of the animal

or environment. The detection is globally optimised based

on an inference problem formulation using factor graphs.

This handles ambiguities such as occlusions and intersec-

tions and provides automatic initialisation. Furthermore,

this formulation allows a seamless integration of occasional

user input for the most difficult situations, so that the effect

of a few manual position estimates are smoothly distributed

over long sequences. Testing our system against a bench-

mark dataset featuring small targets in natural scenes, we

obtain 96% accuracy for fully automated tracking. We also

demonstrate reliable tracking in a new data set that includes

different targets (insects, vertebrates or artificial objects) in

a variety of environments (desert, jungle, meadows, urban)

using different imaging devices (day / night vision cameras,

smart phones) and modalities (stationary, hand-held, drone

operated).

1. Introduction

Knowledge of the precise movement patterns of ani-

mals in their natural habitats is important for many fields

of study, from neuroscience to conservation. Tracking of

animals in the wild is predominantly done through teleme-

try [14], but this has serious drawbacks: the need to tag

animals with sensors limits the application to only 0.3%

of all species [15]; and tags can affect the behaviour ob-

served [18]. Also, telemetry does not provide information

about an animal’s actions, has a limited temporal resolution

and provides no information about the surrounding environ-

ment [8].

Visual object tracking provides a solution [9] and has

already been widely used to extract posture and motion fea-

tures for different model organisms in laboratory conditions

(e.g. flies [6, 32]; worms [33]; larvae [10, 25]; fish [21];

or mice [35, 24]). Yet it has proven difficult to extend the

application of vision-based tracking to dynamic and com-

plex natural environments [8] especially for tiny animals

such as insects. As a result quantification of insect paths

is still often done manually by human experts (e.g. [22, 5]).

Challenges of tracking animals in natural settings include:

(1) small targets do not provide sufficient visual features

to extract a detectable model (caused by a very low per-

animal resolution); (2) animals often provide a low fore-

ground / background contrast ratio (caused by camouflage,

etc.); (3) freely moving animals change their appearance

over time (caused by shadows, locomotion method, etc.);

(4) animals frequently navigate in very cluttered and am-

biguous settings (caused by occlusions, background object

motion, other animals in close proximity, etc.); and (5) cre-

ating manually labelled training data for different and po-

tentially tiny animals is complicated and time consuming.

In addition, if the route of the animal is not known before-

hand, or not confined to a fixed region, the camera has to

move freely to provide continuous recordings over long dis-

tances.
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A comprehensive review of visual animal tracking ap-

proaches is given in [8] which also notes the complete ab-

sence of a system capable to track animals in natural habi-

tats. Likewise many state-of-the-art techniques used for

pedestrian or vehicle tracking might are not appropriate due

to the potential absence of distinctive colour and texture

features and the highly dynamic scenes [31]. Furthermore,

challenge (5) makes deep learning techniques impractical

for many biological studies. In contrast to the approach de-

scribed in [12] our target application is not optimisation of

online tracking, but rather to obtain, offline, the most ac-

curate target position estimate over all video frames. Their

method also requires a minimum target resolution so would

not succeed for some instances of tiny animals (occupying a

few pixels) in the data sets we explore here. These represent

typical applications (most were obtained directly from biol-

ogy research groups) where the video sequence may also be

a unique (one-off) combination of animal target and back-

ground, which we would ideally be able to track without re-

quiring initialisation or any pre-training. These constraints

also clearly limit the applicability of appearance-based de-

tection methods [13, 16, 36, 29].

In order to benchmark tracking systems for natural con-

ditions Bagheri et al. recently introduced the Small Tar-

gets within Natural Scenes (STNS) dataset featuring 25 se-

quences of small objects moving in front of a heavily clut-

tered background [1]. The authors also provide a compari-

son between their own insect-inspired tracking system and 9
state-of-the-art algorithms, finding an overall low accuracy

of current approaches, with the highest success rate reported

as 52.1% [1].

In this paper we present an optimised visual tracking ap-

proach to track any animal in all kinds of wildlife videos.

Given an overhead video of an unmarked animal recorded

using a moving or static camera, our method outputs contin-

uous and globally optimal 2D locations of the animal. Our

main contribution is twofold. Firstly, we make principled

use of motion cues to identify even tiny foreground objects

in front of the complex background, following methods that

have been previously used in different contexts [3].This ap-

proach means that we do not require any a-priori appearance

model of the animal or the terrain, making our algorithm

applicable for all kinds of moving animal and robust to dif-

ferent lighting conditions. Furthermore, our algorithm can

cope with a freely moving camera by automatically com-

pensating the camera motion, using methods similar to the

feature based camera motion removal approach described

in [34]. Secondly, we detect the position of the animal

in all frames of a video jointly, using global optimisation

over a factor graph. Factor graphs provide a general graph-

ical framework to represent functions as a product of lo-

cal functions. These probabilistic models are commonly

used to provide consistent solutions in ambiguous multi-

target tracking approaches [20, 30] or to identify physical

parts of an articulated object class [7]. In our application

of this method to animal tracking, the main advantage is to

exploit the fact that the experimenter is naturally following

the target animal with the camera. Global optimisation then

automatically handles ambiguities such as occlusions and

intersections, enables an implicit initialisation of the most

prominent animal, reinitialises after very long occlusions,

and allows for an easy integration of user input to deal with

any remaining unresolved situations.

2. Methods

2.1. Algorithm overview

An overview of our proposed algorithm is given in Fig-

ure 1. A video of the animal is recorded using a moving

or stationary camera. The algorithm first determines and

removes any camera motion between consecutive frames

(Section 2.2) then extracts remaining foreground motion

for each frame to build 2D probability distributions of hy-

pothetical animal locations called unary potentials (Sec-

tion 2.3). These are combined with 2D motion mod-

els, called pairwise potentials, to define a factor graph

which is used to induce smoothness in animal localiza-

tions over all video frames jointly (i.e. global optimisa-

tion). As illustrated in Figure 1 each, hypothetical ani-

mal location is associated with a 2D Gaussian centred at

this location resulting in multiple pairwise potentials. The

tracking results can be reviewed and manually corrected if

necessary (Section 2.4). Corrections are transformed into

unary potentials where the variance tends to zero, and in-

corporated into the global optimisation approach so that

a single manual position influences the entire sequence.

Software available at http://blog.inf.ed.ac.uk/

insectrobotics/habitracks

2.2. Camera motion

In many cases, filming an animal in its natural habitat

requires following it with a freely moving camera. Our

algorithm starts by estimating the relative camera motion

(Figure 1) by matching ORB features [28] in consecutive

frames It, It+1. These matches are subsequently used in a

RANSAC approach [26] to find the perspective transforma-

tion Ht←t+1 which warps all points on the image plane of

It+1 to the camera position of frame It:

It ≈ Ĩt+1 = Ht←t+1 ◦ It+1 (1)

where ◦ is the mathematical operator warping the pix-

els (images or points) in homogeneous coordinates using

the transformation Ht←t+1. Note that Ht←t+1 is a non-

singular and bijective matrix so that it can be inverted

(H−1t→t+1) to warp frame It on frame It+1 and that warp-

ing over a distance of k consecutive frames can be done by
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Figure 1. Overview of our tracking pipeline illustrating the pro-

cessing steps from video input: camera motion removal (purple);

unary (blue) and pairwise (yellow) potential calculation; optional

sparse corrections (red); combined (same colour code) for factor

graph optimisation to produce estimated animal locations.

using

Ht←t+k =

k−1Y

i=1

Ht←t+i. (2)

Perspective transformations with these properties are also

called homographies and can be used to virtually warp

frames onto future and past relative camera positions.

2.3. Optimal tracking

We formulate animal detection as a probabilistic infer-

ence problem to estimate the animal positions pt = (xt, yt)
for all frames t ∈ {1, ..., T} with highest probability across

the entire video. Each random variable pt can take N

states where N is the spatial resolution of the video frames

(N = width×height). If very high resolution recordings are

used, this state space N can be reduced by a user-specified

sub-sampling value (in [0, 1]), which speeds up computation

by lowering the dimensionality. Given p = {p1, p2, ..., pT }
and D = {D1,D2, ...,DT } we model this problem as max-

imising an energy function associated with a factor graph

E(p | D ) =

 
TX

i=1

Φ(pi|Di)

!

+

 
T−1X

i=1

Ψ(pi, pi+1)

!

(3)

Dt specifies the observed variable extracted from the frames

It and encodes the animal’s motion between consecutive

frames. Φ is the unary potential measuring the conditional

probability of the animal’s position pt given the observation

Dt. Φ will encourage positioning the animal where there

is observed motion. Ψ is a pairwise potential encouraging

smoothness in animal motion between consecutive frames t

and t+ 1.

In order to compute the observed variables from the im-

ages we first warp the image at t + 1 onto the camera po-

sition of frame t (c.f . Equation 1). The remaining motion

between the warped frame Ĩt+1 and It should be the mov-

ing animal of interest, hence we define Dt as |It − Ĩt+1|.
However note this will also include remaining background

motion such as shadows, moving plants and other nearby

animals. If the motion of the animal is much slower than

the video frame rate this difference image can be gener-

ated for t + k distant frames (k ≥ 1) by warping using

the transformation given in Equation 2. From a visual point

of view Dt is a heat map with high values indicating motion

at this position. This motion-based approach means that

tracking does not rely on animal appearances, no marking

is required, and all kinds of imaging sensors can be used

(e.g. day / night vision, thermographic camera), but it does

require that the animal is moving in the majority of frames

(approximately > 50%). Under this assumption, the heat

maps Dt can be interpreted as two-dimensional probability

distributions where high values correspond to a high proba-

bility of the animal’s position.

The unary potential is then defined as

Φ(pt | Dt) = Dt · N (µc, σ
2
U )|pt (4)

The observed variable Dt is weighted by a two-dimensional

Gaussian N centred at the image (µc =
�

height

2
, width

2

�
)

using a user specified variance σ2
U and evaluated at pt.

Weighting biases the maps based on the assumption that

the experimenter naturally tries to keep the animal in the

centre of the image, in the case of a moving camera, and

also avoids artefacts at the image boundaries caused by the

warping. Since this assumption cannot be made for sta-

tionary recordings the observed variables are simplified to
bDt = |It − It+1| and the unary potentials are defined as
bΦ(pt | bDt) = bDt|pt for fixed camera videos.

Pairwise potentials ensure smooth animal motions pt and

pt+1 by

Ψ(pt, pt+1) = N (pt+1 | pt, σ
2
P ) (5)

σ2
P controls for the maximal velocity of the animal in con-

secutive frames given its resolution in the frame and the
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