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Abstract

We address the problem of identifying individual

cetaceans from images showing the trailing edge of their

fins. Given the trailing edge from an unknown individual,

we produce a ranking of known individuals from a database.

The nicks and notches along the trailing edge define an indi-

vidual’s unique signature. We define a representation based

on integral curvature that is robust to changes in viewpoint

and pose, and captures the pattern of nicks and notches in

a local neighborhood at multiple scales. We explore two

ranking methods that use this representation. The first uses

a dynamic programming time-warping algorithm to align

two representations, and interprets the alignment cost as a

measure of similarity. This algorithm also exploits learned

spatial weights to downweight matches from regions of un-

stable curvature. The second interprets the representation

as a feature descriptor. Feature keypoints are defined at the

local extrema of the representation. Descriptors for the set

of known individuals are stored in a tree structure, which al-

lows us to perform queries given the descriptors from an un-

known trailing edge. We evaluate the top-k accuracy on two

real-world datasets to demonstrate the effectiveness of the

curvature representation, achieving top-1 accuracy scores

of approximately 95% and 80% for bottlenose dolphins and

humpback whales, respectively.

1. Introduction

We address the problem of identifying individual

cetaceans from images of their fins — dorsal fins for bot-

Figure 1. Example images of dorsal fins from the Bottlenose dol-

phin dataset. Although the fins in each row may appear similar,

they are from distinct individuals. Note that the identifying infor-

mation in each fin comes from one or two large markings. Com-

pare this to the case for the Humpback dataset, where the identify-

ing information is spread along the entire contour.

tlenose dolphins, and flukes for humpback whales. Fitting

into the broad domain of contour-based recognition [15],

the fin instance recognition problem is particularly chal-

lenging, as illustrated in Figures 1 and 2.

Our hypothesis is that the information necessary to dis-

tinguish between the outlines of fins from distinct individu-

als is encoded in local measures of integral curvature [12].
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Figure 2. Example images of flukes from the Humpback whale

dataset. The two upper images are from the same individual, while

the two lower images are from distinct individuals. Note that, un-

like for the Bottlenose dataset, the information necessary for iden-

tification is spread along the entire length of the fluke trailing edge.

Differential curvature measures have been applied to a vari-

ety of recognition problems, but these approaches are sensi-

tive to noise [22]. Integral curvature, which produces more

stable measurements, has been applied to category recogni-

tion problems like identifying leaf species [14].

In this paper, we propose novel combinations of integral

curvature representation for extracted outline contours and

two matching algorithms for identifying individuals. The

first interprets the curvature representation as a sequence,

and defines the similarity between two representations as

the cost of warping one sequence onto the other. The second

treats subsections of the representation as feature descrip-

tors, and matches them using approximate nearest neigh-

bors. Each takes a query image and produces a ranking of

known individuals from a database. We also introduce a

method for learning spatial weights that describe the rela-

tive importance of points along the trailing edge, which en-

ables the matching algorithm to assign higher value to the

most distinguishing areas of the fin contours.

In cetacean research, identifying individuals observed

during a survey is a fundamental part of studying popula-

tions. Traditionally, techniques such as tagging or branding

are used to make identification easier. Not only do these re-

quire specialized equipment and training, but they also tend

to be invasive, requiring catch-and-release of wild animals.

As a less invasive alternative, photo identification requires

no direct contact with the animals. Instead, researchers use

images of long-lasting markings, such as nicks, notches, or

scars, to track individuals over time [8, 28].

Photo identification presents its own challenges. The im-

ages showing distinct individuals observed during a study

need to be matched against a database containing images

of known individuals. For large cetacean populations cov-

ering a large geographical area and monitored over a long

time period, this can be very time-consuming when done

using manual methods. Additionally, parts of the trailing

edge required for identification are often occluded by water

or viewpoint, requiring the use of multiple images per in-

dividual. Even when the trailing edge contours are consis-

tently visible, direct matching between trailing edges from

different images is problematic. Because the images are

captured “in the wild”, animals occur in a wide variety of

poses and are photographed from varying viewpoints. Even

for a small change in viewpoint, out-of-plane rotations can

lead to difficulty in matching nicks and notches.

By presenting likely matches for a query individual to

the user in order of similarity, manual identification may

be substantially accelerated by reducing (on average) the

number of individuals to compare per query.

1.1. Time­Warping Sequence Alignment

It is possible to treat the curvature representations of the

trailing edges as vectors and compute their similarity us-

ing any vector norm. The start and endpoints of fins are

ambiguous, and pose and viewpoint stretch some sections

and foreshorten others, so we need to account for nicks and

notches occurring at differing locations along the trailing

edge. We use a dynamic programming time-warping algo-

rithm [23] that computes the alignment cost of two repre-

sentations. Rather than a one-to-one matching, as with a

vector norm, this allows many points from one represen-

tation to match to one point in the other, and vice versa.

This warps one representation onto the other, where the

alignment cost is the sum of errors for local correspon-

dences [12].

1.2. Descriptor Indexing

Considering that the nicks and notches used for identifi-

cation are often sparsely distributed along the trailing edge,

and that points in between offer little value for identifica-

tion, it seems desirable to use only the former when per-

forming an identification. To do this, we compute local ex-

trema in the trailing edge representation, i.e., points corre-

sponding to regions of high curvature in the original trail-

ing edge, and use these as feature keypoints [11]. Between

these keypoints, we extract feature descriptors, resample

them to a fixed length, and normalize using the Euclidean

norm. All individuals from the database are stored in a tree-

like structure, after which the most likely candidate matches

for a given trailing edge are computed using the local naive
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Bayes nearest neighbor classifier [19].

1.3. Contributions

The primary contributions of this work are that we (a)

develop an integral curvature measure to represent trailing

edge contours in such a way that the representation is robust

to changes in viewpoint and pose that make direct compari-

son difficult, (b) propose integration of these measures with

time-warping alignment and descriptor indexing algorithms

as two approaches for ranking potential matches, (c) de-

velop a learning algorithm to weight sections of the trailing

edge contour, and (d) produce results using this representa-

tion and these algorithms on real-world datasets from active

cetacea research groups to confirm their efficacy.

2. Related Work

The curvature computed at points along a contour is of-

ten used to represent shape information [6, 14, 20]. For dif-

ferential curvature, this is defined as the change of the angle

of the normal vector along the length of the contour [6].

This representation is sensitive to noise, however, and in-

stead we use integral curvature. A fixed shape is placed at

points along the contour, while measuring the area of the in-

tersection of the shape with the contour [22]. Using integral

curvature to capture shape information is a key part of the

Leafsnap system [14], which classifies leaves by using cur-

vature histograms at multiple scales as shape features. We

briefly compare to Leafsnap in Section 5.

In terms of identifying dolphins from their dorsal fins,

most notable is DARWIN [24]. The key idea behind DAR-

WIN is to account for changes in viewpoint by computing

a transformation between two fins to align them, and using

the resulting sum of squared distances to define a similar-

ity score [25]. As pointed out in [7], a fundamental prob-

lem with this approach is that fins from distinct individuals

are unlikely to align correctly, with the result that similarity

scores cannot be compared reliably to produce a ranking.

Another system, Finscan [9], frames the problem of

comparing two dorsal fins as a string matching problem [1].

In this setting, they compute a low-level string representa-

tion of the trailing edge curvature. Because the curvature

function defined in terms of derivatives is typically noisy,

they refine this representation to a high-level string repre-

sentation. To compute the similarity between two string

representations, they use a linear time-warping algorithm.

In both DARWIN and Finscan, the extraction of the trail-

ing edge is a semi-automatic, interactive process where the

user manually corrects an initial estimate of the trailing

edge. The size of our datasets, as well as our goal of scal-

ing to real-world scenarios, makes comparison with these

systems impractical. Instead, we design our representation

and matching algorithms to be robust against the occasional

inaccurate trailing edge extraction.

In [11], the authors propose a trailing edge indexing al-

gorithm and apply it to great white sharks. After defining

keypoints for feature extraction by convolving the contour

with a Difference-of-Gaussian kernel, they explore the use

of both the Difference-of-Gaussian norm and the descriptor

from [2]. The descriptor indexing algorithm in our work is

similar, except that we instead use the curvature representa-

tion as a feature descriptor.

A notable approach to the more general problem of rank-

ing is the triplet network [10, 27], a natural extension of

the Siamese network [4, 26]. A triplet network is a neu-

ral network that learns a useful representation by minimiz-

ing the distance between the representations of instances of

the same class, while maximizing the distance between rep-

resentations from different classes. One key advantage of

this approach is that the representation does not need to be

designed by hand, rather, it is learned from a large set of

labeled training data. The resulting representation is then

used to embed query instances into the same space, where

a ranking may be computed. We briefly explored the use

of triplet networks using the original trailing edge contours

as well as the curvature representation, but found that our

small datasets would lead to overfitting. Additionally, the

parametric nature of these models makes it difficult to ap-

ply them to new datasets [29], whereas we confirm in Sec-

tion 5.3 that our approach may be applied unchanged to an

unseen dataset of the same species.

3. Datasets and Preprocessing

We use two real-world datasets provided by active re-

search groups to evaluate our approach. The first dataset

is provided by the Sarasota Dolphin Research Program and

is illustrated in Figure 1. This dataset contains 10,713 im-

ages representing 401 distinct bottlenose dolphins (Tursiops

truncatus). Researchers take photos of the dolphins encoun-

tered at a particular time and place, and the best images of

each individual are separated into encounters. These images

are cropped to the dorsal fin and added to the dataset. The

second dataset is provided by the Cascadia Research Col-

lective and shown in Figure 2. This dataset contains 7,173
images representing 3,572 humpback whales (Megaptera

novaeangliae). Unlike the first dataset where each indi-

vidual appears in multiple images per encounter, here each

individual typically appears in only a single image per en-

counter.

Given an image, a fully-convolutional neural network

(FCNN) [16] outputs the probability that each pixel is part

of the trailing edge. Anchor points are computed, and a

shortest-path algorithm selects pixels based on costs de-

termined by a combination of the FCNN and image gra-

dients. For dorsal fins, this includes a spatial transformer

network [13] that transforms the image such that the fin is

approximately perpendicular to the image plane.
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4. Individual Identification

4.1. Curvature Representation

Given a trailing edge contour represented as an ordered

set of coordinates, {(x1, y1), (x2, y2), . . . , (xn, yn)}, we

wish to represent this contour such that it is robust to

changes in viewpoint and pose. For this we use an in-

tegral curvature measure that captures local shape infor-

mation at each point along the trailing edge. For a given

point (xi, yi) that lies on the trailing edge, we place a cir-

cle of radius r at the point and find all points on the trail-

ing edge that lie within this circle, i.e., pi = {(xj , yj) |
(xi − xj)

2 + (yi − yj)
2 ≤ r2}. To describe a point (xi, yi)

by its local curvature, we first orient the points pi such that

pi(1) and pi(n) lie on a horizontal line. The coordinates

of the points in pi are then clipped to the dimensions of an

axis-aligned square with side length 2r centered at (xi, yi).
Using the bottom side of this square as the axis for the inde-

pendent variable, we use trapezoidal integration to approxi-

mate the area under the curve defined by the discrete points

pi. We define the curvature c ∈ [0, 1] at this point as the ra-

tio of the area under the curve to the total area of the square,

which implies that the curvature value for a straight line is

c = 0.5. See Figure 3 for an illustration. By computing this

integral curvature measure at all points along the trailing

edge, we obtain the curvature representation of the trailing

edge for a single value of r. To control the extent to which

we capture local and global information, we vary the ra-

dius of the circle placed at each point by choosing multiple

values of r (typically four). The result is a matrix C of di-

mensions m× n, where m is the number of values of r that

we choose and n is the number of points along the trailing

edge. The scalar Cij ∈ [0, 1] is the curvature value for the

ith value of r at the jth point along the trailing edge.

4.2. Ranking

We explore two types of methods that use the curvature

representation defined in Section 4.1 to produce a ranking

of known individuals given a query.

4.2.1 Sequence Alignment

Dynamic Time-Warping. The first method for comparing

representations that we explore interprets the curvature rep-

resentations as temporal sequences and computes an align-

ment cost between them [12, 23]. Given that the start and

endpoints of the trailing edges are not only ambiguous, but

also often under water, it is desirable to allow some degree

of warping when computing correspondences. If we define

ci and c′j as the ith and jth columns (each a vector rep-

resenting the curvature values at a point) of two curvature

representations C and C ′ of lengths m and m′, respectively,

then the total alignment cost c(m,m′) is defined recursively

Figure 3. For a given point (xj , yj), the curve segments lying in-

side circles of radii r1, r2, . . . , rm (left) are transformed to be hor-

izontal (right). The curvature at the point for a particular r is then

defined as the ratio of the area under the curve (shaded) to the area

of a square of side length 2r.

Figure 4. Curvature representation of a dorsal fin from the Bot-

tlenose dataset (top) and fluke from the Humpback dataset (bot-

tom) computed for four different values of r.

as

c(i, j) = d(ci, c
′

j)

+ min{c(i− 1, j), c(i, j − 1), c(i− 1, j − 1)}, (1)

where d defines the distance between two points based on

their curvature values at multiple scales. It is possible to use

a simple vector norm, such as d(ci, c
′

j) = ||ci − c′j ||2.

Spatial Weights. The definition above, however, treats

the contribution from correspondences along the entire
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length of the trailing edge as equal. We know that the end of

the trailing edge is often underwater for dorsal fins, and the

tips often cropped for flukes. Ideally, we would thus like

corresponding points from these unstable regions to con-

tribute less towards the total alignment cost.

To realize the above, we define a weight vector w, where

the elements w1, w2, . . . , wn describe the relative impor-

tance of each point along the trailing edge. In doing so,

we define a more meaningful distance function as

d(ci, c
′

j |w) = wiwj ||ci − c′j ||2, (2)

where the product wiwj scales the contribution of each cor-

respondence to the total alignment cost based on the relative

importance of the points.

Learning the Weights. To determine suitable values

for the elements of w, we frame the problem as an uncon-

strained optimization problem where we maximize the top-

k score (the fraction of times the correct individual appears

in the first k entries of the ranking) over a training set. For

the training set we use the images in the database, and take

the images from a single encounter for each individual to be

used as queries. The separation of images into database and

queries is described in Section 5.1.

To avoid overfitting, rather than learn all the elements of

w, we reduce the number of parameters by expressing w

as a linear combination of the Bernstein polynomials [17]

of degree n evaluated at uniformly spaced points between

0 and 1. The linear combination of Bernstein polynomials

determined by coefficients c is defined as

Bn(x) =

n
∑

i=0

cibi,n(x), (3)

where

bi,n(x) =

(

n

i

)

xi(1− x)n−i, i = 0, 1, . . . , n. (4)

These polynomials have two particular properties that are

desirable for our application, namely that (a) they are pos-

itive between 0 and 1, i.e., bi,n(x) ≥ 0 for x ∈ [0, 1],

and (b) they form a partition of unity, i.e.,
n
∑

i=0

bi,n(x) = 1.

We use the latter to initialize the search at c = 1, which

leads to a uniform w. We set n = 10 and optimize for the

coefficients c using an open-source package for Bayesian

optimization [21]. These coefficients c define a polyno-

mial f(x|c) on the interval x ∈ [0, 1]. After defining

n uniformly-spaced points x1, x2, . . . , xn on this interval,

where n is the number of points on the trailing edge con-

tour, we compute the entries in the spatial weight vector as

wi = f(xi|c). This leads to the weight vectors shown in

Figure 5 for the Bottlenose and Humpback datasets.

Figure 5. The spatial weight vector w obtained by performing

unconstrained optimization of the top-k score for the Bottlenose

dataset (top) and the Humpback dataset (bottom). Note how the

weights shrink toward the edges. For the Bottlenose dataset the

endpoint of the dorsal fin is often under water. For the Hump-

back dataset the tips of the fluke are sometimes cropped, and the

shortest-path algorithm often skips across the notch.

4.2.2 LNBNN Classification

Similar to [11], we use the local naive Bayes nearest

neighbor (LNBNN) algorithm [19] to produce a ranking of

known individuals [5]. Our work differs from [11] in that

we use the integral curvature representation both to compute

descriptors and to determine keypoints.

Feature Descriptor. Instead of using the Difference-of-

Gaussian norm defined in Equation 1 in [11] to encode local

shape information, we use the curvature representation de-

fined in Section 4.1 of this work. Subsections of the curva-

ture representation are resampled to a fixed length, normal-

ized by the Euclidean norm, and used as feature descriptors.

Feature Keypoints. Similar to [11], we choose the key-

points between which to define the subsections mentioned

above by resampling the curvature representation to a fixed

length and choosing as keypoints the n− 2 largest local ex-

trema of the curvature representation at each scale as well

as the start and endpoints. Combinations of these keypoints

yields
(

n

2

)

subsections per scale, between which we extract

the corresponding values from the curvature representation.

LNBNN Classification. These feature descriptors are

computed for all known individuals in the database, and

placed in a data structure for approximate nearest neighbors

using ANNOY [3]. We compute a score for each individ-

ual using LNBNN classification, specifically Algorithm 2

as defined in [19]. The benefit of using LNBNN instead

of standard approximate nearest neighbors is that it consid-

ers not only the distance to the nearest descriptor from a

given individual, but also the distance to the nearest descrip-

tor from a different individual [5]. The difference between

these is used to update the score, which reduces the contri-

bution from non-distinctive feature descriptors.
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5. Experiments

To demonstrate the effectiveness of our curvature repre-

sentation and matching algorithms, we evaluate the two ap-

proaches from Section 4.2 for producing a ranking of known

individuals on the Bottlenose and Humpback datasets. We

use the top-k score, defined as the fraction of the time the

correct individual appears in the first k entries of the rank-

ing, to evaluate time-warping (with and without learned

spatial weights), as well as LNBNN using our curvature de-

scriptor and the Difference-of-Gaussian descriptor [11].

In particular, we show that when using top-1 accuracy,

the curvature representation outperforms the Difference-

of-Gaussian descriptor by 95% to 91% on the Bottlenose

dataset, and 80% to 40% on the Humpback dataset. To

compare against Leafsnap [14], we also construct the His-

togram of Curvature over Scale from our integral curvature

representation, and produce a ranking using the histogram

intersection distance. We were unable to achieve good re-

sults with this, however, and we suspect that the reason is

that computing a histogram over the curvature representa-

tion loses the spatial information of the nicks and notches

necessary for individual identification.

Additionally, because humpback whales often have

uniquely identifying patterns of scarring and pigmentation

on their flukes, we also compare against HotSpotter [5],

which uses LNBNN with SIFT descriptors [18]. The tex-

ture information captured by HotSpotter is complementary

to the curvature of the trailing edge, and so we also evaluate

combining our identification algorithms with HotSpotter.

We run experiments identical to those described in the

following section on two related datasets to ensure the gen-

erality of our approach.

5.1. Defining Queries

Bottlenose Dolphins. We randomly select m = 10 en-

counters for each individual, and use all the images from

these encounters for the database. When an individual ap-

pears in only n encounters such that m > n, we use n − 1
encounters for the database so that we have at least one

query. The images from remaining encounters are used as

query encounters. We also investigate the effect of varying

m on the top-k accuracy in Section 5.4.

Humpback Whales. The Humpback dataset typically

contains only a single image per individual in each en-

counter and two encounters per individual. In practice, this

means that most individuals are represented by one image

in the database.

When evaluating time-warping and HotSpotter, we use

the minimum alignment cost across images in the encounter

as the similarity score. For LNBNN, we stack the descrip-

tors from all images in the encounter to build the query.

We run all experiments on five random splits and report

mean scores, however, there is little variance across runs.

5.2. Qualitative Results

Before quantitatively evaluating our algorithms, we

show successful and unsuccessful identifications for the

Bottlenose and Humpback datasets in Figures 6 and 7, re-

spectively. In each figure, we show the pair of images

(query and database) that contributes the most to the total

score. We plot a minimal subset of matches such that the

sum of the LNBNN scores from these matches is at least

half the total score. Although the matches shown are sparse,

in practice the entire length of the contour is matched, albeit

with lower scores. Pairs of lines of the same color indicate

the start and endpoints of the trailing edge corresponding to

the matched curvature descriptor. The matches are ordered

such that the strongest match is shown in red, and the weak-

est in purple. The sections of the trailing edge not covered

by strong LNBNN matches is shown in blue.

There are two main causes of misidentifications, namely

(a) errors in the contour extraction that cause distinguishing

features to be poorly represented in the curvature vectors,

and (b) distinctions between very smooth trailing edges that

are insufficiently valued by the matching algorithm. Both

are amplified by significant viewpoint differences between

database and query trailing edges for the correct match.

5.3. Ranking Performance

To evaluate ranking performance, we compare two vari-

ations of each of the algorithms from Section 4.2. Next, we

describe the parameter choices for each of these algorithms.

Time-Warping Alignment. When using learned spa-

tial weights, we use the relevant w as shown in Figure 5

for the Bottlenose and Humpback datasets. For the Bot-

tlenose dataset, we resample the curvature representation

to 128 points and set the Sakoe-Chiba bound [23] in the

dynamic time-warping algorithm to 8. We use scales of

{0.04, 0.06, 0.08, 0.10}. For the Humpback dataset, these

are set to 748, 75, and {0.02, 0.04, 0.06, 0.08}, respectively.

For both datasets, we determine the radii of the circles

used for integral curvature (Figure 4) by multiplying the

scales by the maximum dimension of the fin, specifically,

the height for dorsal fins, and the width for flukes.

Descriptor Indexing. When doing LNBNN classifica-

tion, we set the number of keypoints at which we define

contour subsections to 32. The keypoints are placed along

the trailing edge (which is resampled to 1024 points) at the

points corresponding to the local extrema of the curvature or

Difference-of-Gaussian representation, as appropriate. We

set the dimension of the feature descriptors to 32. The top-k

accuracy plateaus or slightly degrades on both datasets for

larger dimensions. We speculate that this is due to the noisy

nature of our extracted trailing edges, where resampling to

a smaller feature dimension acts as a form of smoothing.

The scales for the Difference-of-Gaussian descriptors are

the same as described in [11].
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Figure 6. Bottlenose dataset. The top row shows an instance where

the correct individual is ranked first. Note how the strongest match

(shown in red) corresponds to the most distinct notch. The middle

row shows an instance where a different individual is ranked first,

while the correct individual, ranked second, is shown in the bottom

row. For all rows, we show the query (left) and database (right)

images that contribute most to the match score. Weak LNBNN

matches are not shown.

The results for the Bottlenose and Humpback datasets

are shown in Figures 8 and 9, respectively. With LNBNN,

the curvature descriptor outperforms the Difference-of-

Gaussian descriptor for both datasets. We argue that this

is because of the robustness with which integral curvature

can capture noisy local information — with a sufficiently

large number of points representing the trailing edge, the

exact coordinates of any single point have little effect on

the curvature value.

Evaluation. The relative performance of the two match-

ing algorithms is different for the two datasets — it is

likely that this is because of how the identifying informa-

tion is distributed. For the Bottlenose dataset, where only a

few distinct marks are useful for identification, the descrip-

tor indexing approach performs better. For the Humpback

dataset, where the information necessary for identification

is spread along the entire length of the trailing edge, the

Figure 7. Humpback dataset. The top four images show an in-

stance where the correct individual is ranked first (top left), fol-

lowed by the database individual ranked second (top right). The

bottom four images show an instance where a different individual

is ranked first (bottom left), while the correct individual is ranked

second (bottom right). For both cases, we show the query (top) and

database (bottom) images that contribute most to the total match

score. Weak LNBNN matches are not shown.

Figure 8. Top-k scores for time-warping alignment and LNBNN

for the Bottlenose dataset.

time-warping alignment approach achieves similar results.

We repeat these experiments on two smaller datasets to

determine if our approach generalizes to datasets of the

same (or similar) species. On a common dolphin dataset

with 3744 images representing 186 individuals, we achieve

74% top-1 accuracy using time-warping and 69% using

LNBNN, and on a humpback whale dataset with 1388 im-

ages representing 419 individuals, we achieve 86% top-1
accuracy using time-warping and 89% using LNBNN.

5.4. Number of Encounters per Known Individual

While we choose the encounters from the Bottlenose

dataset randomly to evaluate our algorithms, researchers
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Figure 9. Top-k scores for time-warping alignment, LNBNN, and

HotSpotter for the Humpback dataset.

Figure 10. The effect of varying the number of encounters used to

represent each individual in the database for the Bottlenose dataset

for the two best performing algorithms on this dataset, namely

time-warping with spatial weights (TW+SW), as well as LNBNN

with curvature descriptors (LNBNN+C).

may wish to choose the best images of each known individ-

ual for the database. Figure 10 shows the effect of increas-

ing the number of encounters. Adding more encounters, and

hence more images, to the database has several advantages.

First, there are more viewpoints represented, which makes

it more likely that a given query aligns well with one from

the database. Second, more images per individual acts as

insurance against the event where images may have distinc-

tive parts of the trailing edge occluded. Choosing database

images to maximize the information content for identifica-

tion is a problem we intend to address in future work.

5.5. Error Correlation

In addition to evaluating the ranking performance of

each algorithm separately, we also explore the possibility

of combining algorithms. If the correct individual appears

in the top-k entries of either of the algorithms, we consider

the match to be correct. Combining our algorithms with

HotSpotter [5] is of particular interest to us, because of their

complementary nature — while our matching algorithms

Figure 11. Combining algorithms that use complementary sources

of information (fluke pigmentation and trailing edge curvature)

improves performance on the Humpback dataset.

use the integral curvature of the trailing edge, HotSpotter

uses SIFT [18] descriptors extracted from the interior of

the fluke to describe the unique patterns of pigmentation.

Figure 11 shows that augmenting time-warping (TW+SW)

with HotSpotter (HS) improves the top-1 accuracy from

80% to 89%, and augmenting LNBNN with HotSpotter im-

proves the top-1 accuracy from 79% to 88%.

6. Conclusion

We introduced novel combinations of integral curvature

representation and two matching algorithms for identifying

individual cetaceans from their fins. This representation

captures the local pattern of nicks and notches in such a

way that they may be compared using either a time-warping

algorithm or descriptor indexing. The effectiveness of our

method is shown by computing accuracy scores on two real-

world datasets, each with distinct challenges. For the Bot-

tlenose dataset, with very little information per image, de-

scriptor indexing outperforms time-warping because it con-

siders not only the feature distance, but also distinctiveness.

For the Humpback dataset, there are few images per indi-

vidual, but many features per image. The time-warping

algorithm is well-suited for this problem, because it pre-

serves the spatial integrity of curvature along the trailing

edge while exploiting learned spatial weights to emphasize

matches from regions of stable curvature. As a result, the

performance of the two algorithms is similar. In both cases,

we demonstrate that we achieve results that can greatly ac-

celerate the process of cetacean identification.

While the focus of this paper has not been on the de-

tails of the contour extraction, a major focus of future work

will be a unified algorithm that works on both species and

leads to a generalization that allows rapid adaptation to new

species. An important consideration will be to restrict the

amount of manually-generated training data required.
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