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Abstract

Monitoring animals in the wild without disturbing them

is possible using camera trapping framework, which is a

technique to study wildlife using automatically triggered

cameras and produces great volumes of data. However,

camera trapping collects images often result in low im-

age quality and includes a lot of false positives (images

without animals), which must be detection before the post-

processing step. This paper presents a two-channeled per-

ceiving residual pyramid networks (TPRPN) for camera-

trap images objection. Our TPRPN model attends to gen-

erating high-resolution and high-quality results. In order

to provide enough local information, we extract depth cue

from the original images and use two-channeled perceiv-

ing model as input to training our networks. Finally, the

proposed three-layer residual blocks learn to merge all the

information and generate full size detection results. Be-

sides, we construct a new high-quality dataset with the help

of Wildlife Thailand’s Community and eMammal Organiza-

tion. Experimental results on our dataset demonstrate that

our method is superior to the existing object detection meth-

ods.

1. Introduction

Our wildlife population is increasingly threatened be-

cause human behavior is changing the natural system

through aggressive resource acquisition and landscape

changes. In addition, the urbanization of our society has

reduced the interaction between humans and wildlife, and

many outdoor recreation activities have decreased in popu-

larity. As a result of this problem, our society has caused

more problems for wildlife, while also reducing the focus

on wildlife species and natural ecosystems. This has cre-

ated a major barrier to effective management of natural re-

sources and wildlife conservation.

Studying and monitoring wildlife can be achieved by

means of non-invasive sampling techniques such as the

camera trapping approach [14, 4, 8]. This method cap-

tures digital images of wild animals, using small devices

composed of a digital camera and a passive infrared sensor.

Camera trapping helps the biologist to sample animal pop-

ulations and to observe species for conservation purposes,

e.g. delineating species distributions, monitoring animal be-

havior, and detecting rare species [16, 19, 17, 13].

Figure 1. Examples of challenging image conditions.

Although camera trapping is a useful methodology in

ecology, this method generates a large volume of images,

there are many challenges in camera-trap images due to

environmental conditions, animal behavior, and hardware

limitation. Therefore it is a big challenge to process the

recorded images and even harder, if the biologists are look-

ing to identify all photographed species. In order to help

biologists to reduce a large number of redundant work, au-
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Figure 2. The framework of the two-channeled perceiving residual pyramid networks(TPRPN).

tomatic processing the camera-trap images methods should

be used.

As a pre-processing stage of animal classification, au-

tomatic detection of animal in camera-trap images still re-

mains an unsolved problem due to very challenging image

conditions (Fig.1). Figure 1 shows some examples of chal-

lenging image conditions in camera-trap images.

A few previous works [15, 18, 10, 2] proposed solutions

for this problem. Shukla et.al [10] design a simple pipeline

comprising of superpixel segmentation, texture based fea-

ture extraction followed by mean shift clustering using the

learned metric. Giraldozuluaga et.al [2] presents a Multi-

Layer Robust Principal Component Analysis (RPCA) for

camera-trap images segmentation, which uses histogram

equalization and Gaussian filter as pre-processing, texture

and color descriptors as features, and morphological filters

with active contour as postprocessing.

Although, those approaches can segment most of the an-

imals in camera-trap images, it is very difficult to produce

good results when an animal has low features contrast com-

pared to the background. In this work, we propose a two-

channeled perceiving residual pyramid networks to solve

the aforehand problem. First, we extract depth cue from

the original images. Then, we use two-channeled perceiv-

ing model as input to training our networks. Finally, the

proposed three-layer residual blocks learn to merge all the

information and generate detection results.

To evaluate the proposed method, we have constructed a

new dataset collected from more than 10 thousand camera-

trap images. Extensive experimental evaluations show that

the proposed method achieves superior performance than

the existing object detection methods tested on this new

dataset.

The rest of the paper is organized as follows: in section 2

the TPRPN algorithm is described. Section 3 describes the

experiments and results used to test the models. Finally, in

section 4 conclusions are presented.

2. Proposed Algorithm

2.1. Depth Map Generation

We collect the nearest frame of the original image as its

image pairs.

Then, given an image pair, we can easily obtain a rough

depth map using image correspondences. Since, most of the

stereo matching algorithms may not be reliable in complex

scenes, due to large depth range or flat regions, we first use

Flow [12] to generate the flow map, which is robustness in

both indoor and outdoor scenes.

Then we get the depth map according to the flow map.
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Figure 3. The visual process of depth map generation.

We get the depth map by utilizing the RGB information.

Specifically, SLIC [6] is applied to over-segment the color

image. As the color image and the rough depth map are

aligned, we calculate the significant peaks of the depth his-

togram within each superpixel on the rough depth map.

Suppose that a peak contains np pixels, the bins next to the

peak contain nl and nr pixels respectively, and the super-

pixel contains N pixels. A peak is considered significant if

the following conditions are satisfied:

np

N
≥ δ1,min

np

nl

,
np

nr

≥ δ2, (1)

where δ1 and δ2 are the threshold value.

Pixels inside the superpixel are assigned with the aver-

age depth value of the nearest peak. This process can help

smooth the rough depth map, remove tiny noisy areas, fill

blank holes, and refine object boundary errors (Fig.3).

2.2. Two­channeled Perceiving for Deep Features

The pre-trained VGG16 [11] networks are used in our

method. We use a part of the convolutional layers and re-

move all the fully connected layers, so those fully connected

layers are not shown in Fig.2.

In our work, the input size is 3 × 256 × 256, so that

both the widths and heights of the feature maps output from

these layers are 32. And we use original images and cor-

responding depth maps as input to get both two-channeled

perceiving deep features.

2.3. Three­layer Residual Blocks

As residual networks [3] achieved the state-of-the-art re-

sults on image classification, we employ the residual archi-

tecture in our deep networks. Denoting the input and output

respectively as xi and yi, and formula of the original resid-

ual block is:

yi = F (xi) + xi, (2)

where F(x) is a residual function. In our three-layer residual

block, we add deep local features extracted from pre-trained

networks as extra inputs. Denote local features as u, the

output of three-layer residual block is:

yi = Ri + Up(xi), (3)

Ri = F (xi, ui), (4)

where Up is a upsample layer. xi are upsampled by scale

2, and xi and µi are concatenated in depth. Then we use

convolutional layers to learn the residual Ri.

For refinement, we aim to generate large and high qual-

ity feature maps after each step. In our three-layer resid-

ual block, the width and height of output yi are twice over

the size of xi, and additional local information µi are used.

Unlike the unpooling layer which only recovers limited in-

formation, we directly extract the local features before the

pooling layers in the pre-trained networks. In this way, we

hypothesize that all the lost information can be recovered

and used to generate high quality feature maps.

Pooling operation loses local information, and we aim

to recover this information for generating high-resolution

and high-quality detection maps. We extract deep features

from conv1 1, conv2 2 and conv3 3 in pre-trained networks,

and before those features are input into three-layer residual

blocks, they respectively pass through a batch normaliza-

tion layer and one (for features from conv2 2 and conv3 3)

or two (for features from conv1 2) convolutional layers. Lo-

cal features are added into three-layer residual blocks. And

after each three-layer residual block, the widths and heights

are doubled. Finally, we can get a full size detection map.

Figure 4. The PR curve evaluation result on VWM dataset.

3. Experimental Results

3.1. Datasets

We collect the VWM dataset with the help of the

Wildlife Thailand, which is a community website for shar-

ing information, photographs and experiences on Thai-

land’s wildlife, nature and protected areas in order to help
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Method MAE F-measure

HS 0.3294 0.2042

BSCA 0.2423 0.4179

LPS 0.1189 0.4754

TPRPN 0.0722 0.7303

Table 1. MAE and F-measure Results. Ours is better.

everyone have the opportunity to explore Thailands out-

standing wildlife and National Parks. The dataset contains

more than 100 camera-trap images with the manual annota-

tion which are collected from 12 videos.

In our experiments, we use the training dataset and val-

idation dataset from MSRA10K [1], which contains many

objects in the real world. We only use our VWM dataset as

the testing dataset, which can avoid impacting comparison

test results.

3.2. Evaluation indicators

Experimental evaluations are based on standard mea-

surements including precision-recall curve, MAE (Mean

Absolute Error), F-measure. The precision is defined as:

Precision =
‖pi | d(pi) ≥ dt ∩ pg‖

‖pi | d(pi) ≥ dt‖
, (5)

where pi | d(pi) ≥ dt indicates the set that binarized from

a detection map using threshold dt. pg is the set of pixels

belonging to groundtruth object.

The recall define as:

Recall =
‖pi | d(pi) ≥ dt ∩ pg‖

‖pg‖
. (6)

The precision-recall curve is plotted by connecting the P-R

scores for all thresholds.

The MAE is formulated as:

MAE =

∑N

i=1
‖GTi − Si‖

N
. (7)

where N is the number of the testing images, GTi is the area

of the ground truth of image i, Si is the area of detection

result of image i.

The F-measure is formulated as:

Fmeasure =
2× Precision×Recall

Precision+Recall
. (8)

3.3. Comparison

We compare the performance of our method with several

state-of-the-art object detection methods. Including HS [9],

BSCA [7] and LIP [5]. We use the codes provided by the

authors to reproduce their experiments. For all the com-

pared methods, we use the default settings suggested by the

authors. We use our dataset to evaluate the performances.

We randomly select some result maps of these methods and

show them in Fig.5. The proposed method TPRPN can bet-

ter detect animals, and our method is more similar to the

ground truth.

As shown in Figs.4 and Table.1, our TPRPN has a huge

improvement over previous state-of-the-art methods.

4. Conclusion

In this paper, we proposed a two-channeled perceiving

residual pyramid networks towards automatic wild animal

detection in low quality camera-trap images. We extract

depth cue from the original images and use two-channeled

perceiving model as input to training our networks. Then,

we use the three-layer residual blocks to merge all the in-

formation and generate full size detection results. Besides,

we build a new high quality dataset with the complex wild

environment based on dataset design principles. The exper-

imental results on VWM dataset demonstrate our algorithm

improves the quality of wild animal detection and is more

robustness. To encourage future works, we make the dataset

and related materials open. All of these can be found on our

project website1.
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