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Abstract

Fine-grained change detection under variant imaging

conditions is an important and challenging task for high-

value scene monitoring in culture heritage. State-of-the-art

methods solve this problem by jointly optimizing three relat-

ed factors, i.e., camera pose difference, illumination varia-

tion, and the true minute change of the scene. Their per-

formances are highly dependent on the delicate choice of

key parameters, which significantly limits their feasibility

in real-world applications. In this paper, we show that after

a simple coarse alignment of lighting and camera differ-

ences, fine-grained change detection can be reliably solved

by a deep network model, which is specifically composed of

three functional parts, i.e., camera pose correction network

(PCN), fine-grained change detection network (FCDN), and

detection confidence boosting. Since our model is properly

pre-trained and fine-tuned on both general and specialized

data, it exhibits very good generalization capability to pro-

duce high-quality minute change detection on real-world

scenes under varied imaging conditions. Extensive experi-

ments validate the superior effectiveness and reliability over

state-of-the-art methods. We have achieved 67.41% relative

F1-measure improvement over the best competitor on real-

world benchmark dataset.

1. Introduction

Change detection is a widely studied problem that is

broadly useful in a lot of computer vision applications, such

as scene abnormal detection, visual surveillance, remote

sensing, vision based automatic driving [9, 10, 17, 18, 41].

Most studies about change detection focus on extracting

large-scale significant changes of the scene with relatively

constant illuminations and fixed camera poses [31, 37].
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Figure 1. Generalization power and parameters robustness of dif-

ferent fine-grained change detectors. For each testing example, we

conduct two kinds of experiments, whose results are separated by

a red dotted line. The left side respectively shows the two observa-

tion images, ground truth (GT), minute change detection results of

our approach (Ours) and FGCD detector [12] using two different

parameters (Parameter 1 & 2). We can see for the 1st case, param-

eter 1 produces more promising detection than parameter 2, while

parameter 2 is much better than parameter 1 for the 2nd case. In

contrast, the proposed DeepFCD exhibits very good generalization

ability and can constantly generate reliable minute change detec-

tion results for both cases. On the right side, we show the influence

of parameters variances to the minute change detection accuracy

(i.e., F1-measure), from which we can clearly see the sensitivity

of state-of-the-art FGCD detector [12] to key parameters.

Recently, a new problem, fine-grained change detec-

tion [12], has been proposed to discover and localize the

minute changes occurred in real-world high-value scenes,

e.g., ancient murals, sculptures, inscriptions and allimpor-
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tant buildings. This problem could be very challenging, s-

ince the imaging conditions, i.e., the lighting conditions and

camera poses, are not fixed, but the target changes are sub-

tle and fine-grained. State-of-the-art methods [12, 34] solve

fine-grained change detection as a joint optimization prob-

lem of the three most related factors, i.e., camera pose dif-

ference, illumination variation, and the true minute change

of the scene. However, as shown in Fig. 1, the performance

of such explicit joint optimization strategy via low-level

energy minimization [12] highly depends on the delicate

choice of key parameters. It is hard, if only possible, for

such methods to find an optimal parameters setting to be

universally applicable to most cases. Hence, it is highly

necessary to provide a nonparametric fine-grained change

detector with much better generalization power.

In this paper, we try to import the great generaliza-

tion power of deep learning into this new and challenging

problem. An inevitable obstacle for the proposed Deep-

FCD model is the severe lacking of large-volume real-

world scenes with fine-grained changes. Hence, besides

the FGCD benchmark [12], we elaborately captured 305
groups of real-world scenes with artificial or natural minute

changes. To further boost the number of training samples,

we present scene-aware minute change augmentation to

produce enough amount of effective training samples from

the selected training image dataset. We find that, after a

simple coarse alignment of illumination and camera pose

differences, fine-grained change detection can be satisfac-

torily solved a hybrid deep network model, namely Deep-

FCD. Specifically, our model is composed of three func-

tional components: 1) camera pose correction network (PC-

N), a dual model formed by a 4-layer CNN and a clas-

sical optical flow generator, e.g., SiftFlow [26], 2) fine-

grained change detection network (FCDN), a 9-layer CN-

N that takes stacked multi-lighting images of two observa-

tions as input and directly outputs minute change map, and

3) detection confidence boosting (BS). We propose a spatial

alignment layer to connect PCN and FCDN, and develop

the corresponding error backpropagation procedure to real-

ize fine-tuning of the whole network. Our model is firstly

pre-trained on general data, followed by fine-tuning on the

specialized FGCD augmentation dataset. Extensive experi-

ments validate the superior generalization power and much

better performance over state-of-the-art fine-grained change

detectors. Our model particularly achieves 67.41% relative

F1-measure improvement, with 0.242 absolute F1-measure

boosting, compared to the best competitor, FGCD-S [12]

(with overall F1-measure 0.359) on real-world testing set.

2. Related Work

Scene change detection. Although a lot of successful

approaches have been proposed to handle general change

detection for large-scale application, e.g., remote sens-

ing [18, 41], urban environment monitoring [9, 31, 36, 37],

such methods are almost infeasible for fine-grained change

detection, due to its high precision requirement and the

property being sensitive to illumination and camera varia-

tion. Recently, several researchers [12, 34] have proposed

solutions for fine-grained change detection. For example,

Feng et al. [12] propose a jointly optimized geometry cor-

rection, lighting correction and change detection method

and provide a benchmark dataset for minute change detec-

tion. Stent et al. [34] present a minute change detection

method with absolute difference based on elaborate pose

and lighting correction. Although such methods are able

to generate good results, they have to select key parameter-

s carefully for different scenes, which is not practical for

real-world application that may contain various noise and

complex scene changes. Unlike the above low-level vision

based methods, we propose a fully deep network based so-

lution for fine-grained change detection, which helps to get

rid of parameter selection while obtains significant detec-

tion precision improvement.

Image alignment and dense correspondence. Dense

correspondence via optical flow is significantly importan-

t for fine-grained change detection [12]. Recent work [11]

proposes to control the camera pose before shooting image.

However, more works use optical flow to conduct image

alignment. Traditional optical flow methods using low-level

feature and optimization framework [1, 35] are able to gen-

erate satisfied results for less complicated scenes. Howev-

er, when illumination and camera variation become serious,

such methods usually fail. Although deep learning based

optical flow has been proposed, i.e., the FlowNet [8], it can

only estimate coarse corresponds and easily influenced by

illumination. Therefore, all above methods are not available

for fine-grained change detection when considering com-

plex illumination and camera variations. Instead of naive-

ly training an end-to-end CNN for optical flow, we present

a pose correction network (PCN), which consists of dual

model formed by a 4-layer CNN and SiftFlow [26]. C-

NN model leans incremental quantity to compensate Sift-

Flow [26] for precise pose correction. The experiment re-

sults show that PCN can boost the change detection perfor-

mance.

Illumination correction. Illumination correction also

plays an important role in fine-grained change detection.

Although a lot of methods including lighting correction and

color constancy [2, 14, 15, 38, 40], intrinsic image decom-

position [3, 6, 21, 29] and even the deep learning based

methods [4, 13] have been proposed recently and can be

used to correct illumination, such methods still cannot di-

rectly apply to precisely end-to-end fine-grained change de-

tection. In [12], the authors propose a simple lighting cor-

rection in an iterative optimization fine-grained change de-

tection framework, wherein, lighting parameters needed in-
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Figure 2. Framework of the proposed deep fine-grained change detector, DeepFCD. See text for details.

tentional adjustment for different scenes. In this paper, our

DeepFCD tolerates the deficiency of using coarse lighting

correction method [12] with same parameters on all scenes

and obtains much speed boost.

Deep learning and applications. Since the success

of the ImageNet [25], deep learning has obtained sig-

nificant progressive in classification, recognition, detec-

tion [7, 16, 22, 24, 27, 30, 32]. However, the require-

ment of large-volume training data becomes bottleneck of

applying deep learning to specific task, e.g., fine-grained

change detection. Recent work [23] tries to use a weak-

ly supervised approach to train a CNN for change detec-

tion. However, they ignore the pose and illumination dif-

ferences between two observations which results in coarse

change detection. For fine-grained change detection, there

are not enough training data, even lack of real changes in

real-world scenes. In this paper, we propose feasible scene-

aware minute change augmentation to guarantee the amount

of effective training samples. In addition, we propose a s-

patial alignment layer to connect PCN with FCDN, and de-

velop the corresponding error backpropagation procedure to

realize fine-tuning of the whole network.

3. Learn to Detect Fine-Grained Changes

As illustrated in Fig. 2, given the last observations X =
[xEL, xDSL1

, · · · , xDSLk
] and the current observations Y =

[yEL, yDSL1
, · · · , yDSLk

], our goal is detecting the changes

from X to Y. Images with subscript EL are collected un-

der environment lighting, while images with subscript DSLi

are collected under the i-th directional side lighting. The

camera pose and lighting conditions may be different when

collecting the two observations. The whole process of fine-

grained change detection can be modeled by

C = F (X,Y) = F ′(X′,Y′), (1)

where X′ and Y′ are coarse aligned X and Y, F′ is the

change detection function with coarse aligned X′ and Y′.

In this paper, we model F′ by a deep convolutional neural

network, DFCD, which consists of two subnetworks PCN

and FCDN. PCN is devised for fine scale pose correction

which can eliminate the effects of the unify parameters in

coarse alignment. FCDN is for change detection, which can

tolerate misalignment of pose and lighting between X and

Y. Thus Eq. (1) can be rewritten as

C = F ′(X′,Y′;WPCN,WFCDN), (2)

where WPCN and WFCDN are the parameters of PCN and

FCDN, respectively. In this paper, we first pre-train PCN

and FCDN independently. And then we joint tune them by

a novel layer, i.e., spatial alignment layer.

For coarse alignment, we first conduct white balance op-

eration on all observed images to remove the color of illu-

minations. This is different from previous work [12] that

applies global photometric correction to the previous obser-

vations X. We actually find that the white balance opera-

tion can remove the illuminations like global photometric

correction, but takes much less time. Next, coarse spatial

alignment is achieved by SiftFlow [26]. We then employ

the normal-aware lighting correction [12] for coarse light-

ing correction. All parameters of the coarse alignment are

fixed in our evaluations. In this paper, we use MatCon-

vNet [39] for network training and testing.

3.1. Sceneaware minute change augmentation

The amount of fine-grained change data of real-world

scenes is small for training. To effectively train our deep
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Figure 3. Scene-aware minute change augmentation. Green indi-

cates augmented changes, and red denotes original changes.

model with abundant data, we synthesize more data by past-

ing spatially transformed changes on images. We paste the

regions of changes to the regions of other scenes that have

similar material, texture and appearance. This scene-aware

minute change augmentation is shown in Fig. 3.

We first conduct scene segmentation on current obser-

vations Y = [yEL, yDSL1
, · · · , yDSLk

] according to the

material, texture and appearance of scene. Note that this

can be conducted by automatical segmentation algorithm-

s or by human. In our experiment, our staffs label each

scenes by hand to guarantee the segmentation quality. Then

we augment the changes by randomly cropping and re-

sizing each real change and paste them to the positions

where similar changes have high probability to occur. Let

C = {c1, c2, . . . , cN} denotes the original change region

set, where cj = [cjEL, c
j
DSL1

, · · · , cjDSLk
] is the real change

region under environment and directional side lightings.

Specially, for each scene, we crop each original change cor-

responding the multiple lightings and distort it with random

resizing and cropping. The resize ratio is randomly selected

from [ 48 ,
5
8 , . . .

12
8 ]. The areas of the cropped changes are

more than half of the area of original change. The resizing

and cropping process can be formed by ĉj = f(cj). We esti-

mate the paste positions of the distorted change ĉj by select-

ing the closest position that randomly sampled K (K = 10)

positions from the same segment. Note that we pasted the

distorted changes to the corresponding lighted images. By

pasting the distorted changes to the current observations,

we can use a sliding window to uniformly collecting train-

ing samples. We discard the sample that total changes’ area

is less then 0.8 times of a sample’s area. Here, the change’s

area is calculated as the area of its bounding box.

3.2. Learning of camera pose correction

The purpose of camera pose correction network PCN is

to eliminate the effects of using unify parameters in coarse

alignment and achieve fine scale pose correction. How-

ever, we do not need to design a complex network like

FlowNet [8] for accurate optical flow estimation. A cheap

way is using traditional optical flow method (e.g., Sift-

Flow [26]) and computing a compensation quantity for pre-

cise optical flow. In this paper, we use a four layer con-

volutional neural network for computing the compensation

quantity. Thus we can formalize our PCN by

fPCN =FPCN(X
′,Y′;WPCN)

=FSiftFlow(X
′,Y′) + FCNN(X

′,Y′;WCNN),

=fSiftFlow + fCNN

(3)

where fSiftFlow is optical flow that computed by Sift-

Flow [26] function FSiftFlow, fCNN is compensation quan-

tity that computed by the proposed four layer CNN func-

tion FCNN. Actually WPCN is identical to WCNN. Unlike

FlowNet [8], which needs lots of training data to train, PCN

uses a side branch for computing the residual of optical flow

between the ground truth with SiftFlow [26], which is more

easy to learn. We learn PCN by minimizing

‖fGT − fPCN‖2 + λ‖fPCN‖2, (4)

where fGT is ground truth optical flow, and fPCN is the

estimated optical flow via the dual-model.

Architecture. As shown in Fig. 2, our camera pose cor-

rection network PCN is a dual model of two components.

One component is a conventional optical flow detector, for

which we use SiftFlow [26] due to its efficiency. The output

of the first component is a coarsely estimated optical flow

field. The second component is a 4-layer convolutional neu-

ral networks. It concatenates the pair of images as the input

and the output compensates the quantity of coarse flow esti-

mation, which is added to the coarse optical flow estimates

to get better estimation. Note that we partition layers by

convolution operations and therefore, batch normalization

and ReLU do not belong to individual layers. We use 3× 3
filters, and pad the input images with one all-0 row/column

out of each side of the image. The last convolutional layer

has two outputs corresponding to the flow estimation of two

images. The dimension of the output feature is set to 64 in

the whole net. Besides the fourth layer, all of the previous

three layers use batch normalization and ReLU.

Pre-training procedure. PCN is pre-trained on the

general MPI Sintel Flow dataset with 1041 training image

pairs [5]. We randomly initialize the parameters of PCN

and train it by stochastic gradient descent algorithm. We use

fixed learning rate 10−11, batch size 1, weight decay (i.e., λ)

0.0005, and momentum 0.95. We have run 17 epoches. To

use PCN, we take pair of images with corresponding light-

ing as input. The average of estimated optical flows under

all lightings is calculated as final optical flow.

3.3. Deep finegrained change detection

After the coarse alignment and fine scale pose correction

by PCN, we use a nine layers network for minute change de-

tection. This is different from the previous work FGCD [12]

that uses low-rank model to iteratively compute the minute
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changes, our model directly computes the minute changes

with deep model that has more powerful recognition and

generalization abilities. The fine-grained change detection

network FCDN learns to detect minute changes from large

real-world scenes. It can tolerate the diversity of the real-

world minute changes and can tolerate the effects of the u-

nify of the parameters. We formalize this process by

C = FFCDN(X
′′,Y′;WFCDN), (5)

where X′′ is the pose corrected X′, WFCDN is the parame-

ters of FCDN.

Architecture. Our fine-grained change detection net-

work FCDN is shown at the bottom right of Fig.2. FCD-

N takes a H × W × 42 matrix as input, which consists of

previous and current observations under environment light-

ing and 6 directional side lightings, arranged in pairs, i.e.,

[XEL; YEL; XDSL1
; YDSL2

; · · · ; XDSL6
; YDSL6

]. The out-

put of FCDN is a H × W × 2 matrix, where one channel

is the unchange probability map and the other is the change

probability map. The entire network employs 9 layers of

building blocks with convolution, batch normalization and

ReLU. The output feature numbers in middle layers are al-

so set to 64. Each convolutional layer uses filters of size

3 × 3. When performing convolution, we pad one all-0
row/column to each side of the image to maintain the spatial

resolution.

Pre-training procedure. To effectively train FCDN, we

first do coarse alignment for all training samples, which are

then sequentially processed by the normal-aware lighting

correction and camera pose correction procedure of state-

of-the-art minute change detector FGCD [12]. Note, all key

parameters of FGCD are fixed to generate the pre-training

samples of FCDN. The parameters of FCDN are randomly

initialized, and the network is trained by stochastic gradient

descent. We adopt multinomial logistic loss for training and

use fixed learning rate 10−3, batch size 50, weight decay

0.0005, and momentum 0.95. We have run 20 epoches.

3.4. Jointly finetuning FCDN and PCN

Although pre-trained PCN and FCDN can be connected

to detect fine-grained changes, we show that it is easy to

learn DFCD that can jointly fine-tune PCN and FCDN, as

shown in the right of Fig. 2. To back propagate the deriva-

tives of FCDN to PCN, we remove the loss function of PCN

and add a spatial alignment layer between FCDN and PC-

N. Spatial alignment layer takes coarsely aligned images

and optical flow as inputs and output spatially aligned im-

ages. Formally, FSA denotes forward computation of spatial

alignment layer, and FFCDN denotes fine-grained change

detection function. The spatial alignment layer is used to

calculate pose corrected observation XSA as

XSA = FSA(X
′, fPCN), (6)

Next we concatenate XSA and Y′ to compute changes by

C = FFCDN(XSA,Y
′;WFCDN), (7)

In general optical flow algorithm, FSA is a warping func-

tion. Nevertheless, it is difficult to compute the derivative

of FSA. To facilitate the derivative computation, we approx-

imate Eq. (6) by XSA(p) = X′(p′), where p′ = p + fPCN.

Note that p and p′ are pixel positions. Thus, the fPCN

derivative of loss L can be calculated by

∂L

∂fPCN
=

∂L

∂FFCDN

∂FFCDN

∂XSA

∂XSA

∂fPCN

=
∂L

∂FFCDN

∂FFCDN

∂XSA

∂XSA

∂p

∂p

∂fPCN

=
∂L

∂FFCDN

∂FFCDN

∂XSA

∂XSA

∂p
(−1),

(8)

where ∂XSA

∂p
is image gradient on horizontal and vertical

directions. After getting the derivative of fPCN, we can

compute derivatives of parameters in each layer by standard

backpropagation.

The DFCD network is fine-tuned by stochastic gradient

descent with multinomial logistic loss. We use fixed learn-

ing rate 10−6 for FCDN and 10−11 for PCN, batch size 15,

weight decay 0.0005, and momentum 0.95. We use all our

augmented training samples, which are first processed by

our coarse alignment in this fine-tuning stage.

3.5. Detection confidence boosting

For each pixel p, we measure its detection confidence by

Sconf(p) = 1− emin(PP(p),PN(p))−max(PP(p),PN(p)), (9)

where PP(p) and PN(p) are the outputs of FCDN indicating

the positive and negative possibility of pixel p, respective-

ly. Note, larger Sconf(p) means higher fine-grained change

detection confidence. From Sconf , we can derive a high

confidence detection map Shc by thresholding Shc(p) =
1(Sconf(p) ≥ α), where 1(·) is a boolean function with

1(true) = 1 and 1(false) = 0.

As shown in the top row of Fig. 4, the precisions of our

positive and negative high confidence detections are both

very high, but the recall of our positive detection is not

good enough. Hence, it is necessary to propagate the cor-

rect positive detections in the image domain. To this end,

we propose to use high confidence positive and negative

detection pixels as foreground and background seeds, re-

spectively, and conduct seeded image segmentation [20] to

further boost the detection accuracy of our model. As vali-

dated by the bottom row of Fig. 4, by setting α = 0.934, the

proposed detection confidence boosting can help to further

improve the F1-measure by 0.016.
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respectively. Note, the precision of high confidence positive and
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4. Experimental Results

4.1. Setup

Dataset. In [12], a real-world dataset was built for fine-

grained change detection of misaligned scenes under variant

imaging conditions, denoted as FGCD. The FGCD dataset

consists of 16 scenes belonging to three subsets, i.e., natural

changes in outdoor scenes (Dp), real changes under labora-

tory conditions (Db) and artificial changes on statues (Ds).

In this paper, we built a new subset (Dext), containing 12
outdoor scenes and 293 indoor scenes. For each scene, we

capture 7 images under different illumination conditions,

including one environment lighting and 6 directional side

lightings. Combining the four subsets together forms our

dataset FGCDext, with more details listed in Table 1.

Table 1. Details of datasets.
Dataset Dp Db Ds Dext Total

FGCDext 2 10 4 305 321

FGCDext−Train 1 8 3 291 303

FGCDext−Test 1 2 1 14 18

FGCDext−Aug 42 288 3 510 843

FGCDext−AugSp 2100 17244 295 27491 44314

The testing dataset FGCDext−Test is formed by select-

ing 18 scenes randomly from the four subsets in FGCDext.

To train our FCDN networks, we first conduct scene-aware

minute change augmentation (Sec. 3.1) to FGCDext−Train,

to obtain an augmented training dataset FGCDext−Aug,

containing 843 groups of images. The training sample set

FGCDext−AugSp is finally generated by sampling 44, 314
groups of image patches from FGCDext−Aug, with a patch

size of 128 × 128. From FGCDext−AugSp, we randomly

select 90% samples for training, and the remaining 10% are

used for validation.

Baselines. We select the state-of-the-art fine-grained

change detection method FGCD [12] and two change de-

tection methods, SC SOBS [28] and SENSE [33], which re-

ported best results in CDNet challenge 2012 and 2014 [19],

as baseline methods.

FGCD [12] uses two strategies for change decision, i.e.

linear SVM (denoted as FGCD-S) and simple difference

plus threshold (denoted as FGCD-T). We use the training

dataset FGCDext−Train to train the SVM model for FGCD-

S, and find an optimal threshold via difference evolution for

FGCD-T. We then run their codes with recommended pa-

rameters on the testing dataset FGCDext−Test.

SC SOBS [28] and SENSE [33] require a pair of two im-

ages as inputs. Since our image data for one scene contain

multiple images, we apply two strategies to generate SOBS

and SENSE results. The first strategy is to use every two

images as the input and average all detection results (e.g.

denoted as SC SOBS M). The second strategy is to aver-

age all the images before change detection (e.g. denoted

as SC SOBS A). In addition, we conduct our lighting cor-

rection and pose correction as preprocessing for SC SOBS

and SENSE. These method variants are denoted with a mark

LF (e.g., SENSE LF).

In total, we have 10 baseline methods. Except for FGCD

variants, we tune each method via difference evolution by

evaluating F1-measure on the training set. We also test

4 variants of our method. To be specific, FCDN denotes

the minute changes using SiftFlow only; DFCD denotes the

minute changes using PCN; DFCD+FT denotes DFCD with

fine-tuning; and DFCD+FT+BS denotes DFCD with fine-

tuning and detection confidence boosting.

Criteria. Following the experiment settings of [19],

we use F1-measure (F1), precision (Pr) and recall (Re) for

quantitative evaluation.

4.2. Quantitative comparison

The quantitative evaluation results of different methods

on Dext, Dp, Db, Ds are reported in Table 2. From the

table, we find that our preprocessing is helpful to improve

SC SOBS [28] and SENSE [33]. However, the improved

variants still get poor performance.

From Table 2 for dataset Dext, we find that fine-

grained change detection methods are consistently better

than conventional change detection methods in terms of F1-

measure. We also note that FGCD-S is better than FGCD-T,

as presented in [12]. Our approach DFCD+FT+BS can sig-
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Table 2. Average F1-measure of compared methods on datasets

Dext, Dp, Db and Ds.

Method F1-Dext F1-Dp F1-Db F1-Ds

SC SOBS A 0.026 0.009 0.093 0.028

SC SOBS M 0.023 0.006 0.065 0.024

SC SOBS LFA 0.142 0.211 0.097 0.143

SC SOBS LFM 0.048 0.097 0.144 0.044

SENSE A 0.051 0.021 0.434 0.054

SENSE M 0.026 0.007 0.117 0.027

SENSE LFA 0.219 0.116 0.148 0.231

SENSE LFM 0.047 0.042 0.315 0.049

FGCD-T 0.313 0.142 0.14 0.333

FGCD-S 0.405 0.002 0.181 0.432

FCDN 0.571 0.35 0.629 0.6

DFCD 0.573 0.361 0.628 0.603

DFCD+FT 0.607 0.365 0.603 0.634

DFCD+FT+BS 0.616 0.376 0.586 0.641

nificantly improve the performance of the state-of-the-art

FGCD-S [12] by 52.10% in terms of F1-measure (an ab-

solute increase of 0.211). Since the images of Dp dataset

suffer from uncontrollable illuminations and camera mis-

alignment in outdoor scenes, all compared methods report

poor results in the third column of Table 2. Compared with

FGCD-T [12], DFCD+FT+BS obtains significantly im-

provement about 164.8% relative F1-measure improvemen-

t (an absolute increase of 0.234). As shown in the fourth

column of Table 2 for dataset Db, conventional change de-

tection methods SC SOBS [28] and SENSE [33] perfor-

m better on Db dataset than on the other three dataset-

s (SENSE A [33] achieves F1-measure of 0.434). However,

fine-grained change detector FGCD-S [12] performs bad,

only obtaining an F1-measure of 0.181. In contrast, our D-

FCD+FT+BS significantly improves the F1-measure over

FGCD-S [12] by 223.76% (an absolute increase of 0.405)

on Db. In the last column of Table 2, FGCD-S [12] shows

the best performance on Ds than on other three dataset-

s (with F1-measure of 0.432). However, DFCD+FT+BS

obtains an improvement of 48.38% over FGCD-S [12], with

an absolute increase of 0.209.

Fig. 5 plots the PR curves for comparative methods.

Note that not all the methods can have PR curves plotted,

for instance SC SOBS variants and DFCD+FT+BS, which

generate hard segmentation results. As shown in Fig. 5, our

method outperforms the state-of-the-art change detection

and fine-grained change detection methods. We also note

that in Fig. 5 (b) all curves have low values. This tells us

that the outdoor scenes are very challenging for fine-grained

change detection. Fig. 6 shows fine-grained change detec-

tion examples for three kinds of real-world scenes. Our de-

tection results shows better precision than others.

It is clear that fine-tuning is helpful to improve the

F1-measure, and confidence boosting can further improve

the F1-measure. We also calculate the average F1-

measure across the four test datasets for our methods

and FGCD [12]. Our DFCD achieves an average score

of 0.569; DFCD+FT achieves 0.595; and DFCD+FT+BS

achieves 0.601. On the other hand, FGCD-S [12] report-

s 0.359, while FGCD-T [12] is 0.285. In comparison,

DFCD+FT+BS obtains an improvement of 67.41% over

FGCD-S [12], with an absolute increase of 0.242.

4.3. Discussion

4.3.1 Importance of change augmentation

To verify the importance of the scene-aware minute change

augmentation (Sec.3.1), we train a FCDN with 12,349 train-

ing samples without data augmentation. From Table 3, we

can clearly see that scene-aware data augmentation signif-

icantly improves the performance. Note, such strategy is

generally helpful for other CNN-based training tasks.

Table 3. Comparison of F1-measure of FCDN with (W)

or without (WO) scene-aware minute change augmentation.

FGCDext−Sp denotes training sample without data augmentation.

- Dp Db Ds Dext

FCDN WO 0.007 0.163 0.425 0.373

FCDN W 0.35 0.629 0.6 0.571

FGCDext−Sp 100 479 295 11475

4.3.2 Parameters robustness

From the experiments, we find that FGCD [12] is sensitive

to parameters. As shown in Fig. 1, its detection results as

well as F1-measure can change greatly. On the contrast,

our method uses fixed parameters in coarse alignment on

all datasets and achieves the best detection performance. In

other words, our method is rather robust.

4.3.3 Timing Performance

We now report the timing performance of our method and

FGCD. The two methods are conducted on the same ma-

chine without using GPU acceleration. The size of test im-

ages is 457×643. As listed in Table 4, the coarse alignmen-

t just takes about 97s, almost half of the timing of FGCD.

Our pose correction spends 8.4 more seconds, which is the

computation time of PCN. For the change detection step,

FGCD-T costs 288.7s while our DFCD uses 3.6s, which

is about 80 times faster. FGCD-S and DFCD+FT+BS are

a bit slower than FGCD-T and DFCD, respectively. Since

our DFCD+FT has the same test process with DFCD, we

only show the timing for DFCD. On the whole test dataset,

the running time are 3, 805.7s for DFCD and 26, 213.9s for

FGCD. Our method is 6.9 times faster than FGCD.

5. Conclusion

In this paper, we have proposed DeepFCD, a reliable

fine-grained change detection model under variant imaging
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DFCD FCDN FGCD-S FGCD-T SENSE A SENSE LFA SENSE M SENSE LFM

Figure 5. Comparisons of PR curves on Dext (a), Dp (b), Ds (c) and Db (d), respectively.

Last observation Current observation Ours FGCD-T

F1=0.8166 F1=0.3040 F1=0.0700F1=0.7062 F1=0.2503

F1=0.6343 F1=0.3036 F1=0.0161F1=0.0217

F1=0.8009 F1=0.1518 F1=0.6511F1=0.3603 F1=0.1768

F1=0.4410 F1=0.1284 F1=0.0596F1=0.0011 F1=0.1769

F1=0.3610 F1=0.1420 F1=0.0042F1=0.0020 F1=0.0097

F1=0.5150

F1=0.3707 F1=0.0084 F1=0.0000F1=0.0000 F1=0.0343

FGCD-S SC SOBS LFM- SENSE LFM

Figure 6. Comparisons of different fine-grained change detectors on several real-world scenes. Green color represents true positive, red

color denotes false positive, blue color denotes false negative.

Table 4. Time comparison of our method and FGCD [12].

Method Coarse Alignment Pose Correction Change Detection

FGCD-T 188.8s 55.1s 288.7s

FGCD-S 188.8s 55.1s 289.4s

DFCD 97.1s 63.5s 3.6s

DFCD+FT+BS 97.1s 63.5s 4.7s

conditions. To our best knowledge, this is the first practi-

cal minute change detector using deep learning scheme and

exhibiting satisfactory generalization power, superior accu-

racy and reliability on challenging real-world data. Our ma-

jor contributions are three-fold. First, we propose a hybrid

deep network model, i.e., DFCD, taking coarsely aligned

images as input and outputting fine-grained change map di-

rectly, which realizes end-to-end minute change detection

via DNN and significantly improves the robustness to pa-

rameters and generalization power of state-of-the-art meth-

ods. Second, we help to construct a larger benchmark

dataset of real-world scenes with both artificial and natu-

ral fine-grained changes. We also present feasible scene-

aware minute change augmentation to further guarantee the

amount of effective training samples. Third, we present a

spatial alignment layer and corresponding error backpropa-

gation method to enable the joint fine-tuning of pose correc-

tion and fine-grained change detection networks on valuable

real data. In near future, we plan to explore more effec-

tive training strategies and to realize detection confidence

boosting and accurate lighting correction via proper deep

network models.
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