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Abstract

In this paper we present a new type of approach for
estimating surface height from polarimetric data, i.e. a
sequence of images in which a linear polarising filter is
rotated in front of a camera. In contrast to all previous
shape-from-polarisation methods, we do not first transform
the observed data into a polarisation image. Instead, we
minimise the sum of squared residuals between predicted
and observed intensities over all pixels and polariser an-
gles. This is a nonlinear least squares optimisation prob-
lem in which the unknown is the surface height. The for-
ward prediction is a series of transformations for which we
provide analytical derivatives allowing the overall problem
to be efficiently optimised using Gauss-Newton type meth-
ods with an analytical Jacobian matrix. The method is very
general and can incorporate any (differentiable) illumina-
tion, reflectance or polarisation model. We also propose a
variant of the method which uses image ratios to remove
dependence on illumination and albedo. We demonstrate
our methods on glossy objects, including with albedo varia-
tions, and provide comparison to a state of the art approach.

1. Introduction

The polarisation state of light reflected from a dielectric
(i.e. non-metallic) object conveys information about both
the material properties and shape of the object [18]. The
reason for this phenomenon is that unpolarised light be-
comes partially polarised when it is reflected specularly [13]
or diffusely via subsurface scattering [1]. The degree of po-
larisation and the orientation of the polarisation are related
to local surface orientation, the refractive index of the mate-
rial and whether the reflection was diffuse or specular. Usu-
ally, this information is not visible in an image captured by
a conventional camera. However, using either a custom po-
larisation camera (based on polarising beamsplitters or mi-
cropolarising filters on the sensor) or simply placing a linear
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polarising filter in front of a conventional camera, this rich
source of additional information becomes available.

Shape-from-polarisation (SfPol) has received far less at-
tention than other shape-from-X methods in the last two
decades. One of the reasons for this is that polarisation in-
formation is an innately ambiguous shape cue. Previous
work has therefore either relied on simple priors for dis-
ambiguation [, 10] or combined polarisation with an addi-
tional cue such as shading [8, | 5], photometric stereo [3,12],
binocular stereo [2] or a coarse depth map [7]. A recent
trend in shape-from-shading [ 1 6] and photometric stereo [9]
has been to estimate surface height directly rather than sur-
face orientation. Recovering height from orientation re-
quires an additional step of surface integration. Estimating
height directly reduces the number of unknowns, guarantees
satisfaction of integrability constraints and avoids accumu-
lation of errors through a two-step process. Very recently,
the same idea has been considered for SfPol [7, 15].

In this paper, we propose a completely new approach to
the SfPol problem. Like [7, | 5], we estimate surface height
directly. However, unlike all previous methods, we do not
decompose the captured data into a polarisation image and
then estimate shape as an independent second step. This two
step approach ignores potential uncertainty in the estimated
polarisation image. Instead, we take an energy minimisa-
tion approach and optimise a nonlinear least squares cost
that directly measures error between the observed data and
that predicted from the estimated surface height. Our cost
function is justified by a probabilistic interpretation (Sec-
tion 2.1). Our approach is very general. We can incor-
porate any illumination, reflectance or polarisation model
without any requirement that they be invertable. We only
require that they are differentiable and in Section 3 provide
all derivatives necessary to compute an analytical Jacobian
matrix relating surface height and polarimetric intensities.
In addition, in Section 4 we propose a variant of our method
which uses image ratios to avoid estimating or assuming re-
flectance or illumination properties. For practical applica-
tion, we also propose additional priors and a hierarchical
approach allowing our method to be applied to challenging
real world data.
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1.1. Related work

All previous SfPol methods begin by estimating a polar-
isation image (defined precisely in Section 2). This is usu-
ally done by linear least squares [ 7] or nonlinear sinusoid
curve-fitting [ 1] when the rotation angles of the polarising
filter are known. If the angles are not known, these can also
be estimated as part of the decomposition process [ 14].

Using only polarisation information, the surface orien-
tation at each pixel is only known up to a binary ambigu-
ity. So, early work focussed on solving the disambigua-
tion problem with less emphasis on dealing with additional
sources of noise. Atkinson and Hancock [1] and Huynh et
al. [5] assumed object convexity by propagating outward
facing boundary normals into the object interior. Miyazaki
et al. [10] employed a similar assumption plus a statistical
model on the zenith angle distribution to eliminate errors
caused by an inaccurate estimate of the refractive index and
weak polarisation in some areas.

Instead of relying on a heuristic or statistical model for
disambiguation, another class of methods incorporate an ad-
ditional shape cue. Methods that use shape-from-shading
[8, 15] require no additional observations (since a polari-
sation image includes an intensity channel). Of particular
relevance, Smith et al. [15] linearised the problem in sur-
face height and also proposed a method to estimate illumi-
nation from a polarisation image. Ngo et al. [12] consider
the relationship between photometric stereo and polarisa-
tion constraints. All these algorithms are based on the Lam-
bertian model assumption or necessitate knowledge of the
light source. Kadambi et al. [7] achieve very impressive re-
sults by using polarisation information to refine a depth map
obtained by a depth sensor. Huynh er al. [0] extended their
previous work to a multispectral setting and enforced an in-
tegrability condition during disambiguation. Non-diffuse
models have also been considered. Morel ef al. [11] used
a specular polarisation model suitable for analysing metal-
lic surfaces. Rahmann and Canterakis [13] treat depth esti-
mation as an optimisation problem and incorporate multiple
polarisation images to estimate depth for specular surfaces.

2. Polarisation image

Unpolarised light becomes partially polarised when it
is reflected from a surface. This is true both for specu-
lar reflection and diffuse, subsurface reflection. Hence, if
reflected light is passed through a linear polarising filter
which is rotated through a sequence of orientations, ¥; with
7 = 1..P, then the observed intensity varies sinusoidally:

5% (un, @, p) = iun (14 peos(20; —2¢]). (1)

The sinusoid has period 7 and can be characterised by three
quantities which together are referred to as a polarisation
image. The unpolarised intensity, i,,, is the mean value of

the sinusoid. This is the intensity that would have been ob-
served without a polariser being present and hence depends
on the reflectance properties of the surface and the illumi-
nation in the scene. The phase angle, ¢ € [0, ), defines the
phase shift. The degree of polarisation (DOP), p € [0,1],
is the ratio between the amplitude and mean value of the
sinusoid. The three components of a polarisation image de-
pend on the local surface geometry at the point of reflection
as well as the material properties as will be made explicit
in Section 3. A simplified expression can be obtained by
taking ratios between different polariser orientations:

5% (Gun, @, )

59 (i, 6, p)

14 pcos29; — 2¢)]
14 pcos[29y, — 2¢]°

2
This has the effect of removing any dependency on %, and
hence on any assumed reflectance model, material proper-
ties or illumination. Hence, using only this ratio expression
eliminates the need to estimate albedo and lighting and to
assume an underlying reflectance model.

= fﬁj,ﬂk (¢a p)

2.1. Probabilistic polarisation model

We assume that observations are subject to additive
Gaussian noise: i%bjs = z‘g;’d(iun,qﬁ,p) + €, where € ~
N(0,0%) and o2 is the unknown variance of the noise.
Therefore, i%b: ~ N (ig;?d,az) is itself a normally dis-
tributed random variable. Hence, we can write a probabilis-
tic polarisation model as:

.obs | - [Z%bg - ig?d(iuna ¢7 P)]2
p(z%@b‘zun, b, p) = C<02) €xXp ( . ; )

202
3)

where C(0?) is a normalising constant. The maximum like-
lihood solution to the SfPol problem is therefore the surface
that gives rise to model intensities that minimise the error to
the observed intensities in a least squares sense. This pro-
vides justification for our idea of posing the problem as a
nonlinear least squares optimisation over the unknown sur-
face height. Note that all previous work begins by estimat-
ing the maximum likelihood polarisation image (i.e. p, ¢
and 7, at each pixel independently) and then computes sur-
face normals [1] or surface height [7, 15] that is in some
sense optimal with respect to the polarisation image. The
problem with this two stage approach is that polarisation
image quantities whose estimate is highly uncertain are re-
lied upon to the same degree as those with high certainty.

Under the same noise assumption, the expression (2) is
a ratio between two normally distributed random variables
and hence follows a Cauchy distribution. In this case, the
solution that minimises (in a least squares sense) the er-
ror between the observed ratios and those predicted by our
model is the best linear unbiased estimator (BLUE) [4].
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3. SfPol as analysis by synthesis

We now show how the components of a polarisation im-
age can be derived from the gradient of the surface height
function and provide derivatives for each transformation.
Subsequently, this enables us to compute analytical deriva-
tives directly relating surface height and sinusoidal inten-
sity, and hence to minimise residuals between observed and
predicted intensities by nonlinear least squares. This pro-
vides an analysis by synthesis approach for SfPol. We as-
sume that a surface is being viewed orthographically so that
it can be written as a height function z(z,y) where (z,y)
is a pixel coordinate. We define the gradient of the surface
height at a pixel as the vector g € R? containing the partial
derivatives: g = [0z/0z 0z/dy|*.

3.1. Gradient to surface normal

The function n : R? + R? transforms the gradient vec-
tor into a vector whose direction is normal to the surface.
The function and its first derivatives (Jacobian) are given
by:

n@%ﬂ,mwzgﬁ. @

The function i : R® — R3 normalises a vector to have unit
length such that ||n|| = 1:

n I nn”

= P Talw) = -
] [l ~ nf?

®)

n(n)

3.2. Surface normal to spherical coordinates

It is convenient to transform the surface normal vector n
into spherical coordinates (c, #) in a viewer-centred coordi-
nate system. The azimuth angle is computed by the function
a : R? — [0,27), defined (along with its gradient) as fol-
lows:

_ T
a(n) = atan2 (2, 1), V(i) = [m s 0} .
The zenith angle is computed by the function § : R?
[0, 7]:

—1

T
Vil - o

6(n) = arccos(fig), Vé(n)= {0 0

3.3. Orientation to polarisation image

The surface orientation (expressed as a surface normal
or spherical coordinates) can be used to compute the three
components of a polarisation image. For diffuse polarisa-
tion, the phase angle, given by the function ¢ : [0,27) —
[0, 7), is simply the azimuth angle modulo 7 [1]:

{04, ifael0,m) 9¢

=1. 8
o —m, otherwise O ®)

The unpolarised intensity is assumed to adhere to the Lam-
bertian reflectance model and is modelled by the function
i R% = R:

iun (D) = kgnTs,  Vig,(n) = kgs. 9)
where s € R? is a point light source and k,; € [0,1] the
diffuse albedo, both of which are assumed known.

Finally, the DoP can be computed by the function p :
[0,7] + [0,1] from the zenith angle and the index of re-
fraction, 7, that we again assume is known. Assuming a
diffuse polarisation model, the DoP is given by:

sin(6)? (77 - %)2

2 2 2 '
4 cos(0)4/n?—sin(0)” —sin(6) (7]—1—%) +2n2+2
(10)

p(0)=

The derivative % for the diffuse model is given by:

op 2 cos(0) sin(6) (n — }7)2

o _ . "
96 4 cos(6) /n2 — sin(6)2 — sin(6)2 (n+ %) +2n2 42

sin(9)2 (n — %)2

X

b 2
(4 cos(0) /n? — sin(6)2 — sin(0)2 (n + %)z 4202 + 2)

112 4cos(0)2 sin(0
(4 sin(0) \/n2 — sin(6)2 + 2 cos(0) sin(6) (n + 7) + M) .
n

\/n2 — sin(6)2

3.4. Polarisation image to sinusoidal intensities

Finally, the function ¢5°¢ : R® — R given in (1) can be
used to compute an intensity associated with polariser angle
9. The partial derivatives of this function are given by:

-mod
%Z? =1+ p cos(29 — 2¢),
Tun
-mod
ag; = —2iypsin(2¢ — 20, (11)
smod
828’9 = Gy cos(2¢ — 200).
Ji

3.5. Nonlinear least squares

Assume that the surface height values for an image with
N foreground pixels are stored in the vector z € R . The
gradient of the surface height function at every pixel can
be approximated using finite differences which can be ex-
pressed as a matrix multiplication. We write this as a func-
tion G : RN s R2V:

G(z) = Bj 7, Jalz) = By] (12)

where D, € RV*N and D,, € RV*¥ evaluate the surface
gradient in the horizontal and vertical directions respec-
tively and are sparse (two non-zero entries per row using
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forward finite differences). Using the derivation in Sections
3.1 to 3.4 we can construct a function IT*¢ : R?V — RV
that computes the predicted intensities for all pixels with
polariser angle ¥ from the surface gradient at every pixel.
The derivatives of this function are stored in the Jacobian
matrix J Irgod(G) € RNV*2N which is constructed using the
chain rule applied to the appropriate sequence of derivatives
given previously. We can now compute a vector of residuals
r € RVP and the Jacobian of the residual function:

J 1ol (G(2z))

91

Inbs _ Imod(G(Z))

r(z)= » Jr(z)= Ja(z),

I — I(G(2)) Ty (G(2))
P

where I"bb € RY is the vector of observed intensities with
the jth polarlser orientation. Finally, we can solve the fol-
lowing nonlinear least squares problem:

minr(z)r(z). (13)

z

We emphasise that, under the assumption of the probabilis-
tic model in Section 2.1, this is the maximum likelihood
solution for z given the observed intensities. In practice, we
minimise (13) using the trust-region-reflective algorithm, as
implemented in the Matlab 1sgnonlin function. We ini-
tialise with a plane, i.e. z = 0.

3.6. Priors

The basic framework described above can be unstable
when to applied to real data (for example introducing spikes
into the estimated height map) and sometimes converges on
local minima. For this reason, we introduce two additional
priors.

Smoothness We compute residuals to measure smooth-
ness via convolution of the height map with a Laplacian of
Gaussian filter:

Voot Lz, Jr(2) = /oo L

(14
where L € RM*N has five non-zero entries per row and
M 1is the number of pixels with 4 neighbours. Each row
of L evaluates the convolution of the LoG kernel with the
neighbourhood around one pixel. The residuals are zero for
planar regions of the surface. wgmoom controls the weight of

the smoothness prior.

T'smooth (Z) =

Convexity To encourage global convexity, we compute
residuals between the azimuth angles given by the estimated
height and that of outward facing normals along the bound-
ary:

Sin(sboundarya(z)) - Sin(aboundary)

w,
m COS(Sboundarya(Z)) - COS(O‘boundary)
15)

Tconvex (Z) =

where Shoundary € {0, 1}5* is a selection matrix that se-
lects the B pixels lying on the boundary of the object, a(z)
is a vector of the azimuth angles for all pixels computed by
the series of transformations given above and Qtyoundary €
RZ is the vector of azimuth angles of the outward facing
vectors to the boundary of the foreground mask. We mea-
sure the angular difference in Cartesian coordinates to avoid
wrap-around issues.

4. Ratio-based formulation

The method described in Section 3 requires known
albedo and lighting and assumes diffuse reflectance and
diffuse polarisation. By using the ratio formulation in (2)
we can avoid these requirements and derive an uncalibrated
method. Moreover, we can use the ratio-based formulation
as initialisation, use the estimated height map to estimate
lighting and albedo and then run the full optimisation to fur-
ther refine the solution. Note however that (2) depends only
on the DOP and phase angle. This means that this infor-
mation alone could only recover the surface up to a binary
convex/concave ambiguity [15]. In practice, we find that
convex/concave ambiguities can be inconsistently resolved
so we propose a hierarchical scheme and automatically ad-
just prior weights appropriately.

The derivatives of the ratio function fﬁjﬂgk :R?2— Rin
(2) are given by:

Vfo;9.(0,0) = (16)

2p sin(2¢7219;c)(p cos(2 ¢72'19]')+1) 2psin(2¢>7219j)
(poos(2¢—205)+1)7 T poos(26—205)+1

CDS(2¢72’19]' ) —cos(2¢—29y,)
(p cos(26—209,)+1)2

We extend the ratio function to all pixels via the func-
tion Fi§*}, : R*Y  RY that computes the predicted ra-
tios for all pixels from the surface gradient at every pixel.

The derivatives of this function Jguw (G) € RN*2ZN
o

can again be computed by the appropriate combination of
derivatives from Section 3. We can now compute a vector
of residuals r € RY(P~1 by taking ratios between each
pair of consecutive polariser angles:
b d
F5 o, = Fiy,(G(2)

2
r(z) = : )
L F?ﬁid Lo (G(2))

an
JF$(;(|)192 (G)

Jr(z) = : Ja(z),
Jps  (G)

dp_1.9p

where F%bs 0, = IObs / I°bs is a vector of ratios between ob-

served intensities w1th polarlser angles ¥; and Vy,.
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4.1. Specular polarisation

The residuals above are invariant to the unpolarised in-
tensity and hence to the illumination, albedo and reflectance
model. The only requirement is to select a polarisation
model to compute DOP and phase angles. In Section 3 we
assumed diffuse polarisation. However, our optimisation
framework allows us to switch in any polarisation model.
In particular, if we assume (as in previous work [15]) that
pixels are labelled as diffuse or specular dominant, then we
can use a specular polarisation model for specular pixels
without assuming a particular specular reflectance model.
The specular DOP is given by:

2sin(0)? cos(d) \/n%—sin()>
n2 —sin(#)® —n? sin(h)*>+2sin(6)"

p(0,n) = (18)

In addition, phase angles must be shifted by 7 [1] for spec-
ular pixels. In previous work, specular polarisation intro-
duced an additional ambiguity since the model above can-
not be analytically inverted (there are two possible solu-
tions). In our optimisation-based approach, this does not
matter since we simply need derivatives:

9p 2sin(#)* y/n? — sin(9)?
90 n2sin(h)* —n2 — 2sin(0)* + sin(0)?
4 cos(0)” sin(h) 1/n? — sin(6)?
n?sin(0)® — n2 — 2sin(h)" + sin(9)?
2cos(#)?sin(0)*
n2—sin(0)” (n2sin(0)* —n2 —2sin(0)* +sin(0)?)

2cos(0) sin(0)* /n? — sin(h)?

(n? sin(0)? — 2 — 2sin(0)* + sin(0)2)2

+

x (2cos(0) n” sin(@) —8 cos(#) sin(#)*+2 cos(6) sin(0)) .

4.2. Hierarchical estimation

To ensure globally consistent resolution of con-
vex/concave ambiguities, we propose to solve the optimi-
sation in a hierarchical setting. Within this setting, we
also automatically adjust the weights of the priors such that
finescale details can still be recovered at the highest reso-
lution without the smoothness term dominating. From the
initial input images, we construct an image pyramid. We
initialise at the lowest resolution using a plane and then use
the result of each optimisation to initialise the optimisation
at the next finer scale by interpolation.

The weights for the two prior constraints are reduced
during the optimisation process so that it is initially dom-
inated by the priors and gradually relies more upon the po-
larisation information. We propose to update wsmeon and

Figure 1: Qualitative results on synthetic Blinn-Phong
bunny with uniform albedo. See Figure 2 for details.

Figure 2: Qualitative results on synthetic Blinn-Phong
bunny with varying albedo. The four rows are syn-
thetic data with Gaussian noise of standard deviation o =
0%, 0.5%, 1%, 2% respectively. (a) Input; (b) normal map
derived from height recovered by proposed ratio method;
(c) normal map from full optimisation method; (d) normal
map from [1]; (¢) normal map from [15]; (f) ground truth.

Weonvex according to the current ratio model error in the first
equation of (17). The initialisation of two weights are cal-
culated by multiplication between two empirically chosen
constants and initial mean value of polarisation intensity er-
ror vector. Then the weights are updated every 10 iterations
during optimisation according to recalculated mean ratio-
residual cost.

5. Experiments

We present experimental results on both synthetic and
real data. We compare the two proposed methods (the ratio-
based formulation and the full optimisation) to both classi-
cal [1] and state-of-the-art [15] methods.
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Synthetic data We use the Stanford Bunny height map
and render unpolarised intensity images with light source
s = [sin(15°),0,cos(15°)]7 the Blinn-Phong model. We
experiment with both uniform albedo and varying albedo
(for which we use the Lena image).

We simulate polarisation using (1) and vary the polariser
angle from 0° to 180° in 30° increments. Finally, we cor-
rupt the data by adding Gaussian noise with zero mean and
varying standard deviation, saturate and quantise to 8 bits.
We use these noisy synthetic images as input.

We report the RMS errors of the surface height and mean
angular errors of the surface normal in Tab. 1. The ratio-
based method offers good performance and is relatively un-
affected by varying albedo. The subsequent refinement us-
ing the full optimisation further improves performance and
always outperforms the comparison methods. Qualitatively,
the ratio method sometimes makes convex/concave errors
(like flipping the bunny ear to a convex shape) that are par-
tially corrected by the full optimisation.

The visual result of synthetic data is shown in Fig. 1
and 2. Normal maps are visualised as R = (n, + 1)/2,
G = (ny +1)/2and B = (n, + 1)/2. For compari-
son method [ 1], surface normals are estimated directly. For
the proposed method and comparison method [15], surface
height is estimated and we compute surface normals using
finite difference approximations of the gradient of the re-
covered surface. Comparing the estimated normal maps,
we can see that our full optimisation method can recover
more fine details than the ratio method and is still able to
recover lots of details under significant noise. With varying
albedo, the results of both our proposed methods are much
better than the two comparison methods [1,15]. With a good
initial shape estimation from the ratio method, the full op-
timisation method can calculate a varying albedo map as
long as light source direction is known, and add details be-
yond the result of the ratio method. The boundary propoga-
tion method [ 1] can handle varying albedo but is extremely
sensitive to noise and incorrectly resolves convex/concave
interpretations in some places. The linear method [15]
degrades less gracefully with noise, with the Laplacian
smoothness term dominating and the resulting surface be-
ing very flat. Since it is not invariant to albedo, this method
fails completely for the varying albedo case.

Real data We show qualitative results on real images in
Figures 3, 5 and 7 (zoom for detail). In each case (a)
shows an input image, (b)-(d) show estimated depth and
normal maps for the ratio-based method, the full optimi-
sation and [15] respectively, (e) and (f) show re-renderings
of the surfaces recovered by the ratio-based method and the
full optimisation respectively. In general, the results of [15]
suffer from flattening in specular regions since they assume
the normals in specular pixels all point in the halfway di-

o =0% o =0.5% o=1% o =2%

. Height |Normal | Height |[Normal | Height | Normal | Height | Normal
Setting| Method |/ pix) | deg) | (pix) | (deg) | (pix) | (deg) | (pix) | (dep)
Prop. Ratio| 7.89 | 8.82 | 8.86 | 11.16 | 9.77 | 12.78 | 9.89 | 18.92
Uniforn{ Prop. Full | 7.70 | 7.12 | 7.70 | 7.16 | 7.72 | 7.27 | 7.61 | 7.56
albedo [15] 13.47 | 860 | 810 | 10.18 | 18.51 | 16.30 | 19.00 | 29.76

[1] 37.25| 42.02 | 34.56 | 40.31 | 36.01 | 42.47 | 35.84 | 44.01

Prop. Ratio| 9.81 | 13.59 | 11.90 | 17.79 | 10.92 | 17.58 | 10.43 | 21.14
Varying| Prop. Full | 7.61 | 7.31 | 7.62 | 741 | 7.59 | 7.77 | 7.60 | 8.69
albedo [15] 10.42 | 15.64 | 11.17 | 1539 | 13.36 | 17.27 | 17.35 | 22.39
[1] 36.68 | 42.14 | 42.81 | 43.34 | 34.96 | 44.17 | 42.33 | 46.52

Table 1: Height and surface normal errors on synthetic
data. Results shown for proposed ratio and full optimisa-
tion method and two comparison methods.

rection. Our ratio method avoids this assumption. Our full
optimisation result is initialised by the ratio method and is
able to improve fine details. Note particularly in 7(f) that
our method is able to recover the fine detail in the writing
on the handle of the watergun. The object in Figure 6 con-
tains varying albedo. This causes [15] to fail completely
while the ratio method is invariant to these variations and
the initialisation of the full optimisation using the albedo
and depth estimated by the ratio method remains stable.

6. Conclusions

We have proposed a new approach to the SfPol problem'.
Although we use a very general method (nonlinear least
squares), the approach is still able to obtain state-of-the-art
results from a planar initialisation. In contrast to previous
methods, our estimated shape is optimal with respect to an
explicit noise model. Previous work (e.g. [1,6-8, 10, 15])
implicitly assumes Gaussian noise when estimating a polar-
isation image using least squares. However, uncertainty in
the estimated quantities is ignored in the subsequent shape
estimation, so the reconstructed shape is not optimal with
respect to the assumed noise model.

There are many ways in which this work could be ex-
tended. A mixed diffuse/specular polarisation model could
be used and specular reflectance could be modelled. Albedo
and lighting parameters could be estimated as part of the
optimisation process, though this would probably necessi-
tate additional priors to regularise the problem. Since we
present the cost function as a series of differentiable steps,
it would be very easy to incorporate into a convolutional
neural network to be trained by backpropagation. For ex-
ample, a network being trained to regress depth from po-
larisation measurements could use our transformations as
layers to compute a loss between the intensities computed
from the estimated depth and the input.

I'Source code: github.com/waps101/polarisation_optimisation
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(a)

(d)

Figure 3: Qualitative results on porcelain vase. See Fig. 7 caption for details.

Figure 5: Qualitative results on porcelain bear. See Fig. 7 caption for details.
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(a)

(b)

(@)

(e) ®

Figure 7: Qualitative results on plastic watergun: (a) Input grayscale image; (b) Recovered depth map and normal map from
ratio method; (c) Recovered depth and normal map by full polarisation model and estimated light source; (d) Recovered
depth map and normal map from [ 5] (e) a new pose of object estimated from ratio method. (f) a new pose of captured object
calculated from full polarisation model.
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