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Abstract

In this work, multimodal fusion of RGB-D data are an-

alyzed for action recognition by using scene flow as early

fusion and integrating the results of all modalities in a late

fusion fashion. Recently, there is a migration from tradi-

tional handcrafting to deep learning. However, handcrafted

features are still widely used owing to their high perfor-

mance and low computational complexity. In this research,

Multimodal dense trajectories (MMDT) is proposed to de-

scribe RGB-D videos. Dense trajectories are pruned based

on scene flow data. Besides, 2DCNN is extended to mul-

timodal (MM2DCNN) by adding one more stream (scene

flow) as input and then fusing the output of all models. We

evaluate and compare the results from each modality and

their fusion on two action datasets. The experimental result

shows that the new representation improves the accuracy.

Furthermore, the fusion of handcrafted and learning-based

features shows a boost in the final performance, achieving

state of the art results.

1. Introduction
In the last few years human action recognition has been

an active research area in computer vision due to its poten-

tial applications, including health-care monitoring[1], inter-

active gaming [2], surveillance [3], and robotics [4], just to

mention a few. In past decades, research on human action

recognition has been extensively explored on RGB data.

The recent advances in imaging devices, and in particular

Microsoft Kinect, have facilitated the capturing of low-cost

and high sample rate depth images in real-time alongside

color images. Depth information complements the conven-

tional RGB cameras by providing partial 3D information of

the scene. Therefore, fusing these multimodal information

into highly discriminative feature sets can lead methods to

achieve higher levels of performance.

Many approaches [5, 6] have demonstrated that late fu-

sion of both RGB and depth modalities is effective for ac-

tion recognition. Moreover, motion-based representations

on the basis of optical flow analysis have been provided the

state of the art results for several years [7, 8]. Compared

to optical flow, which is the projected motion onto the 2D

image plane, scene flow [9] is the real 3D motion of objects

that move completely or partially with respect to a cam-

era. Scene flow can record motions in real 3D world while

optical flow can only capture information in image plane.

Therefore, whenever there is a significant motion perpen-

dicular to the image plane, scene flow can be more discrim-

inative than optical flow. Scene flow can be considered as a

kind of early fusion which preserve 3D motion information

from the spatial structure of both RGB and depth modali-

ties.

Recent progress on human action recognition mainly re-

lies on designing an efficient and robust video represen-

tation which can be broadly categorized into two classes:

handcrafted representation and learning-based features. Re-

cently, learning-based feature representations have received

great attention from action recognition researchers. How-

ever, handcrafted approaches are still widely used owing to

their high performance and low computational complexity.

Traditional handcrafted representation approaches can

be decomposed into: 1) detectors which discover informa-

tive regions for action recognition and 2) descriptors which

describe the visual pattern of the detected regions. Among

various handcrafted feature schemes proposed for action

recognition so far, dense trajectory (DT) [10] and improved

dense trajectory (iDT) [7] have become very popular.
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Unlike handcrafted approaches, deep-based methods au-

tomatically learn features from raw data by utilizing a train-

able feature extractor followed by a trainable classifier. In

[11, 12], deep architectures used for action recognition are

categorized in four groups: 2D models, motion-based input

features, 3D models, and temporal networks.

Here, we focus on comparing the performance of hand-

crafted and deep learning features for multimodal human

action recognition. In this work, DT from handcrafted fea-

tures and 2D convolutional neural network (2DCNN) have

been extended by using four modalities; i.e, RGB, depth,

optical flow, and scene flow.

In more detail, we present MMDT by exploiting scene

flow. In MMDT, as the detection part, dense trajectories are

pruned by exploiting scene flow information. Moreover, we

use histogram of normal vector (HON) by extracting nor-

mal vectors of depth images. We also evaluate the incor-

poration of scene flow information in deep learning action

recognition systems. Each modality is trained separately by

2DCNN, and final classification is done by score averaging.

Furthermore, we evaluate the accuracy of the combina-

tion of both handcrafted and deep learning representations

as the second level of fusion. Each of them has its own ben-

efits. Handcrafted features are more powerful in describing

motion information while deep learning-based representa-

tions are quiet good at describing appearance data. The

experimental results show that fusing the information from

different modalities can boost the accuracy rather than us-

ing just one modality. Furthermore, the second level of fu-

sion also improves final recognition performance, achieving

state of the art results on two public available datasets.

The contributions of this paper are summarized as fol-

lows: a) To reduce the effect of noise in depth images, a

simple yet efficient depth image denoising and multimodal

registration are first applied; b) A comprehensive study is

provided for video representation from handcrafted features

and learning-based one. A framework is introduced to inte-

grate the output of handcrafted and learning-based features;

c) We exploit scene flow as a good source of discriminative

data to extend DT for multimodal data; d) Instead of random

frame selection, and to get a complete coverage of video and

providing high-level semantic information, keyframes are

extracted as relevant visual information to discriminate ac-

tions; d) Different kinds of input data (RGB, scene flow, and

optical flow) are analyzed for deep models; e) Finally, we

study the effect of late fusion of the class membership prob-

abilities of two methods for final classification, and achieve

state of the art results on two public RGB-D action datasets.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews related work. Proposed methodology is in-

troduced in section 3. Experimental results on two public

available datasets are presented in section 4. Finally, sec-

tion 5 concludes the paper.

2. Related Work

Literature of vision based human action recognition can

be divided into two main groups: handcrafted based meth-

ods and deep learning based approaches. In this section, we

review important literature related to handcrafted and deep

methods for action recognition in image sequences.

2.1. Handcrafted Methods

Many video representations in action recognition are the

spatio-temporal extension of classical descriptors in image

recognition to the temporal dimension [13, 14, 15, 16]. [13]

proposed 3D-SIFT which is the 3D extension of SIFT de-

scriptor to include temporal dimension. This descriptor is

invariant to orientation (temporally as well), which presum-

ably can better generalize the underlying information to dis-

criminate actions. Similarly, in [14], authors introduced the

idea of HOG3D.

[15] proposed HON4D descriptor for depth data. In this

work, histogram of oriented normals (HON) is extended

to the temporal dimension based on the distribution of 4D

normal vectors in some spatio-temporal cells around a re-

gion of interest while performing an action. Authors in

[16] proposed supervised spatio-temporal kernel descriptor

(SSTKDes) for recognizing human actions as the extended

version of supervised kernel descriptor (SKDES) [17].

Motion features like optical flow are very successful on

action recognition, since they have local temporal informa-

tionIn [18], authors introduced histogram of oriented flow

(HOOF). In [19] it is proposed the motion boundary his-

tograms (MBH) by using the second order of optical flow.

Using trajectories which consider longer temporal infor-

mation is the main idea of some successful the approaches.

In [10, 19, 7], authors propose the use of optical flow for tra-

jectory construction, and descriptors are computed around

representative trajectories. More details about this tech-

nique are reviewed in Section 3.2.1.

Similarly, scene flow [20, 21, 9] is introduced for RGB-

depth data as the actual 3D motion field in real 3D world.

Most of the existing methods for calculating scene flow are

based on stereo or multiple view camera systems [20, 21].

These methods suffered from a high computational cost.

Jaimez et al. in [9] proposed the first dense real-time scene

flow algorithm for RGB-D cameras. It is an iterative solver

which performs pixel-wise updates and can be efficiently

implemented on modern GPUs.

As optical flow measures motion in pixels, the number

and length of the trajectories are directly influenced by the

distance to the camera. Thus, further objects from camera

have smaller size in pixels. Using depth images it is possi-

ble to extract scene flow (3D motion field), which is mea-

sured in meters, and therefore, having trajectories invariant

to camera distance. Besides, as scene flow has an additional

dimension (z-axis, or depth direction), one can track motion
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in this direction as well, dealing with the situation of having

a dominant motion around this axis. In this paper, we use

this method for computing scene flow, which is then used

to prune the dense trajectories obtained by RGB. It is worth

mentioning that an extended version of DT has been pro-

posed as iDT [7] in which the camera motion is removed

from trajectories. The camera of all used data in this re-

search is fixed, hence DT is selected for this work due to its

simpler computation.

2.2. Deep Learning Models

Dealing with the temporal dimension of the data is the

most crucial challenge for deep learning-based human ac-

tion recognition [22]. Based on the way it is dealt with, a

survey [11] categorized deep models in four groups, i.e. 2D

models, Motion-based input features, 3D models, and Tem-

poral methods.

In the first group, [23, 24] use a pre-trained model on one

or more frames which are sampled from the whole video.

Then, the entire video is labeled by averaging the result of

the sampled frames. To consider temporal information, in

the second category, [25, 8] compute 2D motion features

like optical flow. Afterwards, these features are exploited as

different input channels of a 2D network. The third group

introduces 3D filters in the convolutional and pooling layers

to learn discriminative features along both spatial and tem-

poral dimensions [26, 27]. The input data of these networks

are a fixed length sequence of frames. Finally in the fourth

category, temporal sequence modeling tools like recurrent

neural network (RNN) [28] are utilized to process temporal

information. RNN models suffered from short memory. To

solve this problem, Long Short-Term Memory (LSTM) [29]

is added as a hidden layer of RNN [30, 31].

Among previous methods, 2DCNN [8] and its exten-

sions [32, 33] have achieved state of the art results on

RGB datasets. Therefore, these methods have been se-

lected in this paper to be extended and analyzed for RGB-D

data. In the work of [8], authors present two-stream con-

volutional neural network (CNN) which incorporates both

spatial (video frames) and temporal networks. Individual

frames are utilized as the input data of the spatial network

which is fine-tuned from a pre-trained network on ImageNet

[34]. The temporal model is trained by using stacked frames

of optical flow as input. For the test mode, 25 frames are

randomly selected from the video and each of them is la-

beled by both networks. Then score averaging is used to

classify the whole video.

In this paper, different modalities are used as the input

data for deep learning-based method. In 2DCNN instead

of random selection of frames from the input sequence, we

evaluate the effect of extracting keyframes. Finally, as the

classification part, the score averaging is used which im-

proved the accuracy of the model.

3. RGB-D action recognition analysis

The main aim of this paper is to compare the perfor-

mance of handcrafted and deep learning features for action

recognition from multimodal data. To this end, we extend

two state of the art methods, i.e. DT and 2DCNN,which

were originally proposed for RGB data. In order to reduce

the effect of noise in depth images, a denoising and regis-

tration step is first performed as a simple pre-processing of

the multimodal data (section 3.1). Next, we extend DT to

multimodal DT (MMDT) (section 3.2) by using scene flow

as well as RGB and optical flow. Finally, we include scene

flow as a new input stream to 2DCNN (section 3.3) and per-

form late fusion of all models.

3.1. Denoising and data alignment

Kinect depth images capture the distance to the objects

as pixel values. However, due to the limitations of the IR

sensor, depending on the captured material and distance

from the objects to the camera, pixel values may result in

reading errors. We recover missing data by interpolating

zero value pixels from its surrounding data based on elliptic

PDE. Inpainting reconstruction is then smoothed using a hy-

brid median filter (HMF) in order to reduce any pixel flick-

ering between consecutive frames. Compared to the classi-

cal median filter, this method removes noise while improv-

ing corner preservation. This is achieved by considering

a 3-step method consisting of computing different medians

for different spatial directions; ranking horizontal/vertical

and diagonal medians separately to finally compute the me-

dian of both of them along with the central pixel value.

Furthermore, some datasets are not distributed with an

accurate RGB-D alignment. This is a common issue to ad-

dress when working with images captured using a Kinect

device, since their IR and optical cameras are separated

from each other. In these cases, RGB-D registration is also

required. In our case, we use the intrinsic (focal length and

the distortion model) and extrinsic (translation and rotation)

camera parameters to warp the color image to fit the depth

one. Example results of the denoising and registration pre-

processing procedures are shown in Figure 1.

3.2. Handcrafted Features

DT [10] were proposed for RGB data, obtaining cur-

rent state of the art results for handcrafted features in action

recognition. Here, DT is extended to be applied on RGB-D

data by taking into account the depth information and mo-

tion features from RGB-D; i.e., by means of scene flow.

3.2.1 Dense Trajectories

Dense Trajectories provide a video representation based on

densely sampled trajectories and a set of descriptors: HOG

for the spatial appearance, HOF for the first-order motion
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Figure 1: 1st row: inpainting+HMF results of a depth sam-

ple from isoGD [35] dataset. 2nd row: superposition before

registration. 3rd row: superposition after registration.

information, and MBH for the second-order motion infor-

mation, respectively. Dense sampling leads the method to

capture local information both from foreground and its sur-

rounding objects. In other words, this method considers

both motion appearance features.

DT algorithm is computed over multi-scale images. The

first step consists of dense sampling of feature points over

the first frame to ensure feature points cover all spatial po-

sitions and scales. Points over homogeneous areas are re-

jected because of tracking unfeasibility. Then, dense opti-

cal flow is computed for the current frame with respect to

the next one. Then, three kinds of trajectories are removed:

static trajectories which have no motion information, tra-

jectories with sudden large displacements, and trajectories

with higher XY variances.

In its standard version, sampled trajectories are tracked

along L = 15 frames. As it can bee seen in Figure 2 the

space-time volume around each trajectory is divided into

nσ × nσ × nt cells, where nσ = 2 and nt = 3. For

each sub-division of the spatio-temporal grid, descriptors

are computed (HOG, HOF and MBH) from a neighborhood

of N × N pixels, with N = 32 around each points in the

trajectories. Then, the final descriptor is constructed by the

concatenation of the histograms of each cell.

3.2.2 Multimodal Dense Trajectories

Trajectories. The original DT algorithm used optical flow

for trajectory construction. However, this presents the draw-

back that trajectories are computed from pixels of the im-

age plane. The correspondence along pixels and real world

spatial coordinates directly depends on the distance to the

camera. Hence, the same movement performed at different

points of the space may produce different trajectory lengths

in terms of pixels. Meter is utilized as the unit for scene flow

Figure 2: Dense trajectories algorithm. a) multi-scale dense

sampling, b) pixel tracking for trajectory construction and

c) descriptor extraction around trajectories.

(a) No prune (b) Pruned

Figure 3: Pruning trajectories using scene flow as criteria

effectively changes the distribution of trajectories, focusing

on regions which properly correspond to real motion.

instead of pixels which are used for optical flow. In real 3D

world distance between two objects in meters does not de-

pend on the relative position to the camera. Hence, scene

flow is invariant to the distance of objects to the camera.

The procedure for trajectory construction is the same as

the original algorithm. In the first step, when a trajectory

has achieved a length of L = 15, it is classified as valid

trajectory, rejected otherwise. The original DT used thresh-

olds on the length and the amount of motion of the trajectory

measured in pixels provided by optical flow. In MMDT, we

sample scene flow along the trajectories. We filter invalid

trajectories by the information achieved by scene flow in

meters. The effect of pruning dense trajectories by scene

flow is depicted in Figure 3. We can observe two main po-

tential advantages. The first one is that length and motion is

measured in real 3D world units (meters), achieving invari-

ance to the position of the subject relative to the camera.

Secondly, scene flow has an additional dimension, which

allows the measurement of motion through Z-axis. As a

consequence, it is expected that the quality and distribution

of trajectories improve. Another idea could be using scene

flow instead of optical flow to form trajectories. However,

although scene flow can be more discriminate, scene flow is

sensitive to the noisy characteristic of depth maps, and thus,

it may produce a less accurate description of motion.

Descriptors. Following the philosophy of descriptors

computation from the spatio-temporal cells and concatena-

tion of the resulting histograms, we propose to use HON

descriptor by taking advantage of the new source of infor-

mation; i.e., depth maps. As it can be seen in Figure 2, HON
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descriptor is added at the last stage of DT algorithm.

For HON computation [36], each normal is represented

by two angles θ and φ. The surfaces seen by the camera

will always have normals facing the camera as well, that is:

0 < θ < π and −
π

2
< φ < π

2
. To construct the histogram,

for simplicity, a 2D histogram is used instead of a sphere

tessellation histogram. Then, for each angle, 5 bins are con-

sidered, each of them separated π/4 radians, which leads to

a total of 25 bins for each sub-histogram. The final descrip-

tor is the concatenation of these sub-histograms along the

12 spatio-temporal cells, resulting in 300 dimensions.

3.3. Deep Learning Models

In this work we use 2DCNN [8] with scene flow along-

side RGB and optical flow. Methods based on 2D models

use to randomly sample video frames, and then obtain class

score predictions per sampled frame. Score averaging is

commonly considered to classify actions. Here, we first ex-

tract keyframes by video summarization and then apply 2D

models on the selected frames.

3.3.1 Video Summarization

Many deep methods mostly select a fixed number of frames

with equal temporal spacing between them. Thus, some rel-

evant information in unselected frames might be lost. In or-

der to mitigate this problem we use video summarization. It

allows to 1) select relevant visual information to discrimi-

nate actions while 2) keeping the size of the data small.

Video summarization allows for the extraction of few

video frames (keyframes) so that they jointly try to max-

imaze the information contained in the original video.

Keyframes can be useful in deep learning applications in-

volving large amount of video data. In our case, we use

Sequential Distortion Minimization (SeDiM) [37].

SeDiM selects frames so that the distortion between the

original video and the video synopsis is minimized. Al-

though SeDiM does not guarantee global minima of dis-

tortion, it provides a simple yet computationally feasible

and discriminative way to extract keyframes. Summariza-

tion examples are shown in Figure 4.

3.3.2 2DCNN

Simonyan et al. [8] presented a two-stream CNN which in-

corporates both spatial and temporal networks. Spatial net-

work operates on individual video frames, effectively per-

forming action recognition from still images. For the spatial

network they used a pre-trained network on ImageNet [38].

Unlike spatial convnet, the input of the temporal model are

volumes of stacking optical flow fields between several con-

secutive frames (224 × 224 × 2F , where F is the number

of stacking frames). Since the input of this model explicitly

describes the motion, the network does not need to estimate

Figure 4: Obtained SeDiM K = 5 keyframes for different

Montalbano RGB samples. First row shows an example for

one sample belonging to ’vattene’ gesture, second row for

’seipazzo’ and third row for ’messidaccordo’.

motion implicitly. The original architecture consists of five

convolutional layers, each of them followed by a pooling

layer and three fully connected layers. Like [32], we use the

same network for both spatial and temporal net except from

the input layer, while the original two-stream ConvNets ig-

nores the second local response normalized (LRN).

In this research we introduce multimodal 2DCNN

(MM2DCNN) by using scene flow as the input data to

2DCNN along with RGB and optical flow. Scene flow for

each pixel has three dimension of (x, y, z) along three real

world axis. We consider these three dimension as three in-

put channels for 2DCNN. Therefore, we use the same archi-

tecture for scene flow as RGB data. For both RGB and opti-

cal flow streams, the network is finetuned from pre-trained

models on UCF-101 dataset. Scene flow of each datasets is

finetuned from the pre-tained model of its own RGB model.

3.4. Combining handcrafted and deep features

The fusion of both handcrafted features and deep

learning-based ones has been studied by several researchers

[32, 39]. Handcrafted spatio-temporal features contain dis-

criminative motion information while deep models can ac-

curately describe appearance. In this research, we also

evaluate if the combination of outputs from different hand-

crafted and deep-based methods can improve final recogni-

tion performance. We extract outputs from the two main

methods as a confidence matrix CM(n, c) ∈ R
N×C , where

N is the number of samples and C is the number of classes.

Element CM(n, c) is the class membership probability of

sample n to belong to class n. For the combination of

MMDT and MM2DCNN, we use a weighted score averag-

ing strategy of the confidence matrices of two methods. In

this case, the final CM is calculated by a weighted some of

two ones (CM = α×CMMMDT+(β)×CMMM2DCNN ).

The weight α and β are experimentally set for each dataset.

4. Experimental results

In this section, we evaluate the proposed MMDT and

MM2DCNN and combination of descriptors from different
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modalities on two public benchmark datasets: MSR Daily

Activity [40] and Montalbano II [41, 22, 42]. Final fused

results are also compared with the state-of-the-art methods

of action recognition from RGB-D data.

4.1. Datasets

4.1.1 MSR Daily Activity 3D

This dataset consists of sixteen actions captured with Mi-

crosoft Kinect [40]. Each sample is composed of RGB

video and a sequence of depth images. It consists of: drink,

eat, read book, write on paper, use laptop, play game, call

cellphone, use vacuum cleaner, cheer up, sit still, walking,

sit down, toss paper, lay down on sofa, stand up and play

guitar. Each action is performed twice by 10 different sub-

jects, leading to 20 samples per action and a total of 320
samples. For experimental result, we use subject with num-

bers 1, 3, 5, 7, 9 for training and the rest for testing. One

sample of this dataset is shown in the top row of Figure 5.

Figure 5: Samples from MSR Daily 3D Activity (top row)

and Montalbano II (bottom row).

4.1.2 Montalbano II

This dataset is composed of 940 sample videos of subjects

performing 20 different Italian gestures [41, 22]. Videos

had been recorded with Kinect device, therefore, both RGB

and depth data are available. Each video consist of sev-

eral gestures, as this dataset is used for gesture detection as

well. Nevertheless, all the videos had been previously split

into single gesture samples. This leads to a total of 12, 575
samples. This dataset is already divided in three subsets,

train, validation and test. One sample of this dataset can be

seen in the middle row of Figure 5.

4.2. Results

Here, we compare DT and proposed MMDT consid-

ering the different descriptors for the different modalities.

We also compare performance of different modalities over

keyframes and fusion results. For final classification we uti-

lize a weighted sum of the class scores per each modality.

4.2.1 MMDT

After extracting each descriptor from each modality, PCA is

applied. The output size of PCA is 32. A codebook of size

32 is constructed for each descriptor separately. Then, each

descriptor is assigned to a vocabulary word using Fisher

Vector (FV) encoding. Finally we use SVM with RGB

kernel to classify actions. The accuracy achieved by two

methods with different modalities on MSR Daily dataset is

shown in Table 1. The best accuracy for DT is obtained

by the combination of HOG, HOF and MBH. On the other

hand, best accuracy of MMDT is obtained by the fusion of

HON and MBH. On the other hand, proposed MMDT tra-

jectories achieve better performance results than DT.

Table 1: DT and MMDT accuracy on MSRDaily Act. 3D.

Descriptors DT MMDT

HOG (RGB) 43.125 45.625

HON (Depth) - 72.5

HOF + MBH (Opt. flow) 62.5 70

Best 63.125 78.13

Table 2 shows the result of MMDT on Montalbano

dataset. The combination of HOG, HOF, and MBH obtains

the best accuracy for DT and MMDT. Although pruning DT

with scene flow does not improve the results in this case, us-

ing HON instead of HOG results in better accuracy.

Table 2: DT and MMDT accuracy on Montalbano II.

Descriptors DT MMDT

HOG (RGB) 67.3 67.3

HON (Depth) - 77.67

HOF + MBH (Opt. flow) 82.0 82.0

Best 83.5 85.66

4.2.2 MM2DCNN

In order to test how video summarization can affect the

classification when considering different modalities without

trajectories but at frame level, we have extracted k = 14
keyframe sequences from both RGB and depth videos for

each dataset. Each experiment consists of testing each of

the summarization sequences on a different model. Doing

so, we intent to spot weather using keyframes can improve

results compared to randomly selected frames or not.

Besides, we are also interested in analyzing if depth-

based video summarization is able to hold similar results

to RGB. In this regard, we include a hybrid-like summa-

rization we refer to as RGB-D synopsis. RGB-D synopsis

is an ordered concatenation of RGB k = 7 and depth k = 7
keyframe sequences to test how depth and RGB can con-

tribute when combined.

Every 2DCNN has been fine-tunned from spa-

tial/temporal UCF101 caffe models, using RGB, optical
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flow and scene flow frames. Tables 3 and 4 include final

accuracies for every CNN model and summarization

modality. RGB and Depth columns refer to k = 14
summarization sequences for RGB and Depth videos

separately, while the RGB-D column specify results for the

hybrid combination. Finally, randomized-frame selection

accuracy is also included for the sake of comparison.

Table 3 shows the evaluation of MM2DCNN on MSR

Daily dataset. In general the result is not good for MSR

Daily dataset. The most important problem related to MSR

Daily for a deep model is the low number of samples.

Among the different modalities, Scene flow has the best ac-

curacy. We can also see that the keyframe selection strategy

on depth data gets better result. Background in MSR Daily

Compared to other dataset, background in MSR Daily is

more clutter in RGB frames. Since the distance of the clut-

ter background is more than the Kinect range of view, this

dataset has cleaner depth images with less noise than its

RGB ones. Thus the scene flow frames are more accurate.

We can also see that the accuracy of scene flow is better than

optical flow thanks to considering real 3D information.

Table 3: Accuracy for SeDiM on MSR Daily Activity 3D.

Model RGB Depth RGB-D Random

RGB 53.91 53.12 53.91 53.12

Opt. flow 55.47 57.81 55.47 55.70

Scene flow 67.19 68.75 66.41 64.84

Late Fusion 70.08 71.65 70.08 69.29

Figure 6 shows three examples from MSR Daily dataset

in which each sample is classified correctly only by one

modality and by the late fusion. The action in top row is

”eat”. While it is classified as ”read a book” by optical flow

and scene flow given the similar motion among these two

classes, RGB can take benefit of appearance to discriminate

the action. Middle row shows one sample that is classified

correctly only by scene flow as ”stand up”. In this action

the subject starts walking and approaching to the camera

after standing up. Scene flow properly discriminates the ac-

tion thanks to its invariance to camera distance in contrast to

RGB and optical flow, which classify the action as ”walk”.

Action in bottom row is ”read a book”. The movements

of human body in this action are very slow. Optical flow

shows to be more discriminative for slow motion, properly

discriminating this action while the rest of modalities clas-

sify this action as ”write on a paper”.

Table 4 shows the performance of 2DCNN on Montal-

bano dataset. The accuracy of RGB data is the best achieved

one. Compared to MSR Daily, background of samples in

Montalbano dataset is simpler. Moreover, this dataset is

larger than MSR Daily, and there are more samples to fine-

tune the network. Therefore, weights can be better learnt.

For this dataset, RGB modalities work better than others.

Figure 6: Examples from MSR Daily. Each column shows

one modality. Each rows shows the classification result of

each modality. Red: Wrong classification, Green: Correct

classification.

Depth data of Montalbano are noisier than MSR Daily.

Hence, its scene flow is also noisy. However, it is worth

mentioning that scene flow gives better accuracy than opti-

cal flow (like MSR Daily). Different strategies of keyframe

selection result in almost the same accuracy.

Table 4: Accuracy for SeDiM on Montalbano II.

Model RGB Depth RGB-D Random

RGB 96.03 97.06 95.72 97.06

Opt. flow 61.06 59.74 60.67 64.24

Scene flow 69.90 69.68 69.02 70.93

Late Fusion 96.28 96.25 96.16 97.06

For both datasets, different tested strategies of selecting

keyframes (i.e., from different modalities) does not signifi-

cantly affect the result. The reason of it might be related to

the fact that the general human body shape and its changes

during time are almost the same in both RGB and depth

data. As for the late fusion, we use different weights for dif-

ferent modalities of [1, 0.2, 0.3] for RGB, optical flow and

scene flow, respectively. It can be seen that late fusion can

improve the results for most of keyframe strategies.

4.2.3 Combination of MMDT and MM2DCNN

We also combined MMDT and MM2DCNN by applying a

second late fusion strategy for both datasets. Table 5 shows

the result of the second late fusion. It can be seen that the

accuracy is improved for both datasets. Deep learning meth-

ods can encode appearance features than handcrafted one,
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while handcrafted features can achieve good result on mo-

tion features. By combining these two kinds of features we

can benefit from both methods. By this combination we

achieve the state of the art result on Montalbano II and a

comparable result with the state of the art method on MSR

Daily dataset. For Montalbano II dataset, the per gesture ac-

curacy for all gestures are more than 0.90. Figure 7 shows

the confusion matrix of MSR Daily. Some actions with the

same appearance and motion features are mistaken, such as

”read a book” and ”write on a paper”. In these actions the

position of human body and its motion are the same.

Table 5: Second late fusion of MMDT and MM2DCNN.

Dataset Accuracy

MSR Daily 82.50

Montalbano II 97.44

Figure 7: Confusion matrix of MSR Daily Activity 3D.

Table 6 lists the accuracy of the existing methods on

MSR Daily Dataset. MMDT achieves better accuracy than

MM2DCNN. It can be seen that the accuracy of MMDT is

comparable with the best state of the art accuracy [40].

Table 6: Performance comparison on MSRDaily Act. 3D.

Method Accuracy

EigenJoints[43] 58.10

MovingPose[44] 73.80

HON4D [15] 80.00

SSTKDes [16] 85.00

ActionLet [40] 85.75

MMDT 82.50

MM2DCNN 71.65

Although Montalbano II dataset was designed for seg-

mentation, it has been recently re-used by some researchers

just for classification. Table 2 lists a number of methods

on this dataset. Other papers published precision for this

dataset. The precision achieved by our method is 97.52,

defining current state of the art results.

Table 7: Performance comparison on Montalbano II.

Method Accuracy/Precision

Fernando et al. [45] 75.3

Pigou et al. [46] 94.49

MMDT 85.66

MM2DCNN 97.44 (97.52 Precision)

In Table 6, it can be seen that MMDT works bet-

ter than MM2DCNN for MSR Daily, while the result

of MM2DCNN is better than MMDT for Montalbano II

dataset in Table 7. It is due to the fact that, Montalbano

II is large dataset, and deep models with works better with

larger data. On the other hand, handcrafted features can

model motion information for smaller dataset.

5. Discussion

In this work we proposed two methods, i.e., MMDT and

MM2DCNN for multimodal RGB-D action recognition. By

taking into account depth data and scene flow, we showed

performance improvements in comparison to only consid-

ering RGB data, achieving state of the art results on two

public RGB-D action datasets.

For MMDT, we showed that considering scene flow to

prune DT trajectories can result in performance improve-

ments with respect trajectories computed from RGB. For

MM2DCNN we considered different multimodal descrip-

tors to be trained within a 2DCNN. Among these two meth-

ods, MMDT (like other handcrafted methods) was able to

produce better results for the smaller dataset (MSR Daily)

since deep models need large amounts of data for a better

generalization. Among the features used in this research,

2DCNN on RGB data of Montalbano II resulted in better

accuracy. This model was fine-tuned from a pre-trained net-

work on UCF-101 dataset [8], previously fine-tuned on Im-

ageNet [38]. In addition, gestures in Montalbano II datasets

have simple (static and near homogeneous) background.

We have also tested fine-tuning one modality from other

modalities. It is worth mentioning that it works better

than training from scratch. For instance, by training scene

flow from scratch the per frame accuracy of one epoch was

around 20% while the per frame accuracy of fine-tuning the

same network from pre-trained RGB model was around 60

%.
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