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Abstract

In this paper, we explore a new type of automatic emo-

tion recognition task - distinguishing genuine and deceptive

emotions from video clips. For this task, it is not enough

only using static images clipped from the video data, as

there’s only subtle differences between two types of emo-

tions, which makes it even harder for automatic analysis.

To utilize the temporal information, we introduce tempo-

ral attention gated model for this emotion recognition task.

Compared to texture features which describe the whole face

area, the facial landmark sequences may also indicate the

temporal changes of the face, thus we utilize them by encod-

ing feature sequence unsupervisedly.

1. Introduction

Recently, automatic emotion recognition has been a pop-

ular research area in computer vision community. Previous

research mostly focuses on classifying six basic emotion

categories [7], which is not a hard task for human beings

when dealing with acted data. Meanwhile, being able to

recognize deceit and the authenticity of emotional displays

is notoriously difficult for human observers because of the

subtlety or short duration of discriminative facial responses

[20]. The applications are however numerous, from deter-

mining deceiving behavior in police investigations, to mon-

itoring the mental status of patients.

Traditional tasks for emotion recognition benefits from

the labeled image data of six emotion categories. Even for

video data, combing the features of each frame using simple

sequential model or aggregation method can achieve good

results. Thus, how to extract or learn better representations

for image emotion data became very important. While for

our new task, the amount of data we have is not enough

to learn better features. On the contrary, the durations of

moving of facial muscles or action unit (AU)[8] could be

important.

Figure 1. Examples of SASE-FE dataset. The left column is true

or genuine expressions ,while the right column is fake or deceptive

ones. We can see that it’s difficult to recognize the differences for

human, especially through only one frame.

To utilize the temporal information, we introduce tem-

poral attention gated model (TAGM) [21] for this emotion

recognition task. The TAGM model infer the temporal at-

tention score of each time step, and update its hidden states

based on the score. In our case, it would infer the important

frames from the input video data, and form an representa-

tion of the video. Furthermore, we explore the the Long

Short Term Memory networks (LSTM) autoencoder [19],

which could learn to represent the video data unsupervis-

edly. Rather than only using texture features which describe

the whole face area, we believe that the facial landmark se-

quences could reflect the temporal changes more directly.

Thus, we combine the two models with two features as our
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final method. The experiment is conducted on a newly pub-

lished dataset, the SASE-FE database [20]. See Fig.1 for

examples of video frames.

To present the above points, we organize the paper as fol-

lows: In Section 2 we review some related research. Then

we describe the temporal models including the temporal at-

tention gated model and the LSTM autoencoder in Section

3. The experiment settings are presented in Section 4, in-

cluding baseline visual features and comparisons with other

models. The final results and conclusions are given in Sec-

tion 5 and 6.

2. Related Work

There are many works focusing on emotion recogni-

tion. Our work is motivated by the recent dynamic emotion

recognition works and sequence models. We review them

below.

Dynamic Emotion Recognition: Existing research

mostly focused on classifying the six basic emotion

categories[7]. Kahou et al. [15] used convolutional neu-

ral network and deep belief network for dynamic emotion

classification. Liu et al.[17] used Grassmannian Manifold

to get facial expression features, then they combined Rie-

mannian Manifold and deep convolutional neural network

(CNN) in [18]. Yao et al.[26] combined the CNN model

with facial action unit aware features. Fan et al. [10] com-

bines CNN-Recurrent Neural Networks (RNN) model and

3D CNN model and got the state-of-the-art result for fa-

cial expression recognition in videos. Most of the works

focused on exploring visual features for emotion category

classification, and directly using RNN or temporal aggre-

gation methods to represent the temporal information. On

the contrary, we explored using temporal attention model

for new type of task: automatic recognition of deceptive fa-

cial expressions. Our model could learn to focus on more

important frames, and at the same time learn the sequential

relations of each time step.

Temporal Modeling: Some works have investigated se-

quential or temporal models for facial expression and action

unit research. Baltrusaitis et al. [3] developed continuous

conditional random fields for facial action unit detection.

Liu et al. [16] developed spatio-temporal manifold learn-

ing for dynamic facial expression recognition. Recently,

with the popular the representation learning methods, lots

of emotion recognition researches [6, 10, 24] utilize RNN

and its variants. The RNN [22] learn to construct a rep-

resentation for each time step based on a current observa-

tion and the representation of previous time step. To ad-

dress the gradient vanishing problem of plain-RNN when

dealing with long sequences, the Long Short Term Mem-

ory networks (LSTM)[13] and the Gated Recurrent Units

(GRU)[5] were proposed. They are equipped with a gating

mechanism to balance the information flow from the previ-

ous time step and current time step dynamically. LSTM and

GRU model contain more parameters to learn than RNN

ones. Thus, they require more training data, which is not

always available in emotion recognition settings. Inspired

by the attention model, we explore the TAGM [21] model

for emotion recognition task, which employs a gate to filter

out the noisy time steps and preserve the salient ones.

Also, we explore an LSTM autoencoder [19] which is

an unsupervised model and can utilize unlabeled data. The

texture feature may face the problem of cross dataset issues,

as it is more sensitive to the facial images. As to facial

landmarks which are highly abstracted feature, it may be

useful to learn more general representation using extra data.

In this way, the LSTM autoencoder could be helpful.

3. Temporal Modeling

Instead of using the usual recurrent neural network

model for emotion recognition, we explore the use of two

temporal models: temporal attention gated model (TAGM)

and autoencoder LSTM (eLSTM). The TAGM is a com-

bination of temporal attention model and gated recurrent

neural network, and has shown good results in spoken digit

recognition, text-based sentiment analysis and visual event

recognition [21]. The eLSTM can encode different length

sequences features into a fixed length vector without super-

vision. Thus the eLSTM is good at utilizing unlabeled or

weak-labeled data [19].

3.1. Temporal Attention Gated Model

Figure 2. The components of TAGM model. The upper part is the

recurrent attention-gated unit and the lower part is the temporal

attention module.

We utilize the Temporal Attention-Gated Model
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(TAGM) [21] which is able to capture the temporal in-

formation by using fewer parameters. The TAGM has a

temporal attention module and a recurrent attention-gated

unit. The temporal attention module is employed to

measure the relevance of each time step of a sequence to

the final decision. The goal of the recurrent attention-gated

units is to learn a hidden sequence representation which

integrates the temporal attention scores. See Fig.2 for the

architecture of the TAGM model we use.

To model the influence of each time step, we infer the

attention score at using an RNN:

at = σ(m · ha
t + ba) (1)

Here m is the weight vector of the RNN hidden states

and ba is the bias term. A sigmoid function is employed

as the activation function σ at the top layer of the attention

module in Equation 1 to constrain the attention weight to lie

between [0, 1]. ha
t is the hidden representations of the RNN

model:

ha
t = g(Wrxt + Urh

a
t−1

+ br) (2)

The ReLU functions are used as the activation functions

g. The inferred attention weights at serve as the attention

gate for the following Recurrent Attention-Gated Units to

control the involved information flow.

In order to integrate the attention scores in the recur-

rent network units, TAGM uses an attention gate to con-

trol how much information is incorporated from the input

of the current time step based on the salience and rele-

vance to the final task. Formally, given an input sequence

x1,...,T = x1, ..., xT of length T in which xt ∈ R
D denotes

the observation at the t-th time step, the attention score at

time step t is denoted as at , which is a scalar value that in-

dicates the salience of current time step to the final decision.

The recurring process where the hidden state ht at time step

t is modeled as a convex summation:

ht = (1− at) · ht−1 + at · h
′

t (3)

Here, ht−1 is the previous hidden state and h′

t is the can-

didate hidden state value which fully incorporates the input

information xt in the current time step:

h′

t = g(W · ht−1 + U · xt + b) (4)

Here W and U are respectively the linear transformation

parameters for previous and current time steps while b is

the bias term. The rectified linear unit (ReLU) is used as

the activation function g. Equation 3 uses attention score at
to control the tradeoff between incorporating and skipping

new information. High attention value will push the model

to focus more on the current hidden state h′

t and input fea-

ture xt , while low attention value would make the model ig-

nore the current input feature and inherit more information

from previous time steps. The learned hidden representa-

tion Rt at the last time step hT of the sequence is further

fed into the final classifier, or used as the final feature of

TAGM model.

3.2. LSTM AutoEncoder

Figure 3. eLSTM model with facial landmarks. The model try to

reconstruct the input landmark sequences in the reversed order.

The amount of video data is relatively limited compared

to image data. Thus, we introduce LSTM autoencoder (eL-

STM) [19] as an unsupervised way of learning the temporal

representation. In Fig.3 we show the time-unfolded encoder

and decoder parts of eLSTM.

The goal of eLSTM is to encode the input visual feature

sequence, s = st : t = 1, 2, ..., for example the locations of

facial landmarks in our experiments. The sequences may

have variable lengths in time. eLSTM observes the entire

feature sequence s, and encodes it to a feature vector rs . To

learn the encoder, a decoder LSTM tries to reconstruct the

normalized input visual features in the reverse order. The

reconstruction error is then estimated in terms of the mean-

squared error, and used to jointly learn both the encoder and

decoder LSTMs. The reversed output reconstruction bene-

fits from low range correlations which make the optimiza-

tion problem easier. The input to the encoder at each time

step t, is the output of the decoder at time step t−1, i.e. st1.

3.3. Combined model

In our experiments, we find that TAGM model and eL-

STM model show different discriminative ability on differ-

ent emotion categories. To utilize the diversity, we com-

bine the two models together, as shown in Fig.4. The hid-

den states of TAGM and eLSTM are concatenated as a final

representation of the image sequence. On top of the joint

representation, we use a sigmoid classifier
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Figure 4. The architecture of final model, which combines the TAGM and eLSTM models. t is the current timestep. RHOG is the

hidden state of HOG + TAGM model while RGEO is the hidden state of Facial landmarks + eLSTM model. The joint representation

RHOG +RGEO is then used for the final prediction.

4. Experiments

4.1. Settings

Datasets: We conduct the experiments on the ChaLearn

Fake-vs-True emotion challenge [14] dataset SASE-FE[20].

The emotion challenge dataset contains video set of 50 sub-

jects. For each subject, there are 12 videos representing

6 basic emotions (angry, happy, sad, disgust, contempt,

surprise) for genuine and deceptive expressions. Each

video was recorded with a high-resolution camera with 100

frames per second and is about 3-4 seconds. In order for the

subjects to express these emotions, they were shown videos

which are meant to induce these emotions and were acted

accordingly. In each video, subjects started from a neutral

emotion and the length of this neutral emotion is not prede-

fined.

For this task, as the SASE-FE test set is not publicly

available, we randomly use 80% of its train set for train-

ing, and use the left 20% for hold-out validation. Then, we

test the model performances on the challenge validation set.

The performances is judged by the average binary classifi-

cation accuracies across all 6 emotion categories.

Implementation: We extracted all the face images using

the OpenFace [4] library. We performed a similarity trans-

form to align all images to a common reference frame using

tracked facial landmarks, with a resolution of 112×112. For

each video of image sequences, we select 10 frames close

to the rear with an interval of 20 frames.

We use RNN, LSTM and GRU as baseline temporal

models. For them and TAGM model, we set the hidden

state dimension to 16 and use a 0.25 dropping rate drop-out

method for the output representation. For eLSTM, we set

the temporal and layerwise drop-out rate to 0.5. All sequen-

tial models were trained using the AdaDelta [27] gradient

descent with the initial learning rate of 1.0. Early stopping

regularization on the held-out train set was used to avoid

over-fitting during the training. We follow the mini-batch

training mode, batches of which are set to 16 samples. Sep-

arate models are trained for each emotion categories. All

implementations were based on the tensorflow library [1].

We also use linear support vector machine (SVM) and

multilayer perceptron (MLP) as baseline models. The vi-

sual features of each timestep are concatenated and feed to

SVM or MLP. The MLP has two fully connected layer, with

1024 and 2 dimensions respectively.

4.2. Visual Representations

2D Facial Landmarks: The geometric feature is based

on the theory of emotion action unit defined by Ekman [9].

With it, Valstar et al. [25] successfully detected AU detec-

tion and then achieved a better result than some complex

descriptors. We use the 2D geometric feature from Open-
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Face [4] library, which describe the geometric realtions of

all the facial landmark points. The geometry feature of a

video is by taking the mean feature values of every frame.

HOG: We use the histogram of oriented gradients de-

scriptor (HOG) as the basic visual features. HOG feature is

widely used in emotion and facial action unit as it is capable

of describing the local object appearance and shape within

an image. [2]

To detect oriented edges, HOG feature utilizes the image

gradient. The facial image is divided into 11×11 cells, and

for the pixels within each cell, a histogram of gradient direc-

tions is compiled according to the computed gradient G and

θ. The descriptor is the concatenation of these histograms.

For improved accuracy, the local histograms are contrast-

normalized by calculating a measure of the intensity across

a block (2×2 cells), and then using this value to normal-

ize all cells within the block. This normalization results

in better invariance to changes in illumination and shadow-

ing. Following the setting of Baltrusaitis et al.[2], we also

perform person-specific normalization for HOG feature by

subtracting the mean HOG feature of the same person.

CNN: The convolutional networks (CNN) have been

very popular among computer vision community. To ex-

plore the use of CNN in this task, we utilize two CNN mod-

els: the facial expression recognition model [23] trained

from FER-2013 dataset [11], and the facial action unit (AU)

detection model [12] trained from the BP4D dataset [28].

For CNN feature, we downsampled the images to 48× 48.

The first convolutional layer of expression-CNN filters

the 48 × 48 input patch with 64 kernels of size 5 × 5.

The second convolutional layer takes as input the response-

normalized and max-pooled output of the first convolutional

layer and filters it with 64 kernels of size 3 × 3 × 64. The

third, fourth, and fifth convolutional layers are connected to

one another without any intervening pooling or normaliza-

tion layers. The third convolutional layer has 128 kernels of

size 3×3×64 connected to the (normalized, pooled) outputs

of the second convolutional layer. The fourth and fifth con-

volutional layers both have 128 kernels of size 3× 3× 128.

The fully connected (FC) layers have 1024 neurons each.

The rectified linear unit activations are applied to the output

of every convolutional or fully connected layer.

The first convolutional layer of AU-CNN model has a

kernel size of 5× 5× 64, followed by a max-pooling layer

of kernel size 3 3 with a stride of 2 in each dimension.

The following convolutional layers have the kernel size of

5×5×64 and 4×4×128 respectively. Finally, the output of

the third convolutional layer is fed into the last hidden layer

of the network, a fully connected linear layer with 3072 neu-

rons. Dropout technique is applied to this fully connected

layer, with a dropout probability of 0.2. The output of this

layer is connected to the output layer that has a dimension

of 11, which represents the occurrence of 11 AUs labeled

in[28].

4.3. Comparison methods

We compare our work with some recently developed

methods concerning emotion recognition. The comparison

is conducted focusing on following aspects: 1) Comparison

between visual features: we compare different types of vi-

sual features by testing the classification accuracies using

TAGM model. 2) Comparison between temporal models:

we compare the results of different types of temporal mod-

els using the best feature from previous experiment 3) Com-

parison between cross-emotion and single-emotion training.

As the amount of data is limited, we want to explore if we

can use data from other emotions to enhancing the training

progress. 4) Comparison of model combination: this is to

test if the combination of different features and models can

help improving the classification result.

5. Results and Discussion

5.1. Visual features

Table 1. Visual features with TAGM model results, note than HOG

outperforms the CNN models

Features Accuracies

Expression-CNN 0.517

AU-CNN 0.517

Facial Landmarks 0.600

HOG 0.633

In Table 1, we list the classification accuracies of sev-

eral types of visual representation features, including CNN,

AU, Facial Landmarks and HOG. We can note that HOG

performs better than CNN, which is reasonable cause the

CNN model is fine-tuned from emotion classification model

trained on FER dataset. As to AU feature, AU detection

is still a difficult task compared to facial landmark detec-

tion, so it makes sense that AU feature got the lowest result.

Meanwhile, facial landmarks also show a promising result.

5.2. Temporal modeling

In Table 3, we list the classification accuracies of HOG

feature with different temporal models. We can see that

TAGM model outperforms all the other models. Note that

RNN works better than GRU and LSTM, as we only se-

lect 10 time-steps from a video. An interesting result is that

an SVM with concatenated time step features also performs

better than LSTM, which show that SVM is still promising

when the amount of data is limited.

5.3. Cross-emotion training

In Table 4, we list the results of cross-emotion or per-

emotion model. We choose to use HOG with TAGM model,
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Table 2. Recognition accuracies of each specific emotion categories. The proposed combination model works well on most emotions, while

the others only work well on some emotions.

Features Angry Contempt Disgusted Happy Sad Surprised Mean

HOG + TAGM 0.90 0.50 0.60 0.60 0.60 0.60 0.63

Facial Landmarks + eLSTM 0.60 0.50 0.60 0.50 0.70 0.70 0.60

HOG-Landmarks + TAGM 0.50 0.60 0.50 0.70 0.30 0.60 0.53

Proposed Model 0.70 0.50 0.80 0.80 0.70 0.60 0.68

Table 3. Temporal models with HOG feature results

Model Accuracies

MLP 0.550

LSTM 0.550

GRU 0.550

RNN 0.567

SVM 0.600

TAGM 0.633

Table 4. Cross emotion result of HOG + TAGM, model trained for

specific emotion works better

Model Accuracies

TAGM per category 0.633

TAGM cross category 0.500

TAGM pretrained cross category 0.617

which is the best among the previous experiments (The

model is trained per emotion category). From the results,

we can see that it is hard to use one single model to distin-

guish fake emotions among all six categories (TAGM cross

category). Even using other 5 emotions for pre-training

(TAGM pretrained cross category) would decrease the clas-

sification ability.

5.4. Combining Model

In Table 2, we list the results of model combination. We

try to combine two types of features at different levels. First

we try to concatenate HOG and geometric features and feed

it to TAGM model. Result show that this type of combi-

nation does not help. Then, we try concatenate the hidden

states of HOG+TAGM and geometic+eLSTM, and use the

combined hidden states for binary sigmoid classification.

The result shows that this combined model outperforms the

TAGM and eLSTM, on most specific emotion categories

and the whole validation set. Thus, we submitted this com-

bined model for final testing of the ChaLearn Fake-vs-true

emotion challenge, and got an accuracy of 61.7% on the test

set [14].

6. Conclusion

The paper explores a new type of automatic emotion

recognition task - distinguishing fake and true emotions

from video clips. We introduce temporal attention model

for this emotion recognition task to recognize the impor-

tance of each frame. We utilize facial geometric features

by encoding feature sequence unsupervisedly. Combining

the facial texture and geometric feature, we gain promising

testing result.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016.

4
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