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Abstract

In this paper, an efficient spotting-recognition framework

is proposed to tackle the large scale continuous gesture

recognition problem with the RGB-D data input. Concrete-

ly, continuous gestures are firstly segmented into isolated

gestures based on the accurate hand positions obtained by

two streams Faster R-CNN hand detector. In the subsequen-

t recognition stage, firstly, towards the gesture representa-

tion, a specific hand-oriented spatiotemporal (ST) feature is

extracted for each isolated gesture video by 3D convolution-

al network (C3D). In this feature, only the hand regions and

face location are considered, which can effectively block

the negative influence of the distractors, such as the back-

ground, cloth and the body and so on. Next, the extracted

features from calibrated RGB and depth channels are fused

to boost the representative power and the final classifica-

tion is achieved by using the simple linear SVM. Extensive

experiments are conducted on the validation and testing set-

s of the Continuous Gesture Datasets (ConGD) to validate

the effectiveness of the proposed recognition framework.

Our method achieves the promising performance with the

mean Jaccard Index of 0.6103 and outperforms other re-

sults in the ChaLearn LAP Large-scale Continuous Gesture

Recognition Challenge.

1. Introduction

In recent years, gesture recognition has gained a great

deal of attention because of its great potential applications,

such as sign language translation, human computer interac-

tions, robotics, virtual reality and so on. However, it still

remains challenging due to its complexity of the gesture ac-

tivities from the large scale body motion to tiny finger mo-

tion and also various of hand postures.

The continuous evolution of gesture recognition tech-

nique is accompanied by the development of the data cap-

ture sensors. From the literatures, three kinds of visual da-

ta capture sensors are used for gesture recognition, which

are data glove, video camera and depth camera. In the ear-

ly stage, researchers utilize data glove equipped with 3D

trackers and accelerator sensors to collect the various in-

formation of hand shape and position [24, 13]. Although

the data gloves can provide accurate hand data, it is very

expensive and inconvenient for the user, which limits the

wide use of the data glove in our daily life. Therefore, some

researchers replace data glove with normal video cameras

to make the process of collecting hand data more conve-

nient. Wang et al. [26] collect hand data with web cameras

and develop sign retrieval system with a vocabulary of 1113

signs. However, it is difficult for pure video based method

to obtain accurate hand tracking and segmentation due to

the complicated illuminations and backgrounds. With the

emergency of novel sensors, depth information is obtained

easily. Microsoft Kinect [30] frees signer from data glove

by providing accurate depth information as well as color

images simultaneously. Intrinsically, depth and color infor-

mation characterizes the change of limbs’ distance and the

static appearance of limbs respectively. The multi-channel

data form more powerful gesture representation than single

modality. Therefore, more and more researchers focus on

how to use the RGB-D data to boost the performance of

gesture recognition and several RGB-D gesture databases

are released. Among them, ChaLearn LAP RGB-D Con-

tinuous Gesture Dataset (ConGD) is a large dataset with

clear testing protocols and a challenge is organized based

on it [23, 5].

In this paper, a spotting-recognition framework is pro-

posed to solve the continuous gesture recognition problem

with the RGB-D data input. Given a continuous gesture se-

quence, the contained isolated gestures are segmented first

with the precise hand detection. Then for each isolated ges-

ture, the specific spatiotemporal feature toward gesture rep-

resentation is extracted by C3D model, which only consid-

ers the hand regions and face location in each image frames.
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Compared with the feature from the whole image input, this

hand-oriented feature alleviates the non-meaningful distrac-

tor regions, such as the background, clothing and body and

so on. Besides the hand regions, the face region is also con-

sidered as a reference location to characterize the relative

motion pattern of the hands. Finally, the fused feature from

RGB and depth channels is fed into linear SVM classifier to

get the gesture label.

The contribution of our work mainly lies in the follow-

ing three aspects. Firstly, a novel two streams Faster R-

CNN (2S Faster R-CNN) hand detector is developed to get

accurate hand regions by integrating RGB and depth inputs.

Secondly, the hand-oriented C3D feature effectively charac-

terizes gestures, including the hand postures and the motion

trajectories. Finally, the whole spotting-recognition frame-

work is validated in the Continuous Gesture Datasets (Con-

GD) and shows promising performance.

The remainder of this paper is organized as follows: Sec-

tion 2 briefly reviews the related work on continuous gesture

recognition. Section 3 introduces our proposed method on

continuous gesture recognition problem. The experimental

results and discussion are presented in Section 4 and Sec-

tion 5 concludes the paper.

2. Related Work

Generally speaking, continuous gesture recognition is

more challenging than isolated gesture recognition for the

vague boundaries of the contained isolated gestures in the

unsegmented sequences. Therefore, the temporal segmen-

tation is one of the primary problems in continuous gesture

recognition task.

There are broadly two kinds of solutions for temporal

segmentation. One is to tackle the segmentation and recog-

nition problems simultaneously. The other is to detect the

boundaries directly to realize the segmentation. In the first

category, the dynamic programming [2] and viterbi decod-

ing [17] were commonly used to segment continuous ges-

ture sequences. Celebi et al. [2] proposed a weighted dy-

namic time warping (DTW) for gesture recognition, which

time-warps an oberverd motion sequence of weighted body

joints to pre-stored gesture sequences. In addition, Pit-

sikalis et al. [17] extracted time boundary information in

sign language via the statistical sub-unit construction and

decoding. With the rapid development of deep learning,

Koller et al. [12] proposed a multilayer bi-directional Long

Short Term Memory (BLSTM) that was trained end-to-end

with a deep Convolutional Neural Network (CNN). The

joint model was embedded into a Hidden Markov Model

(HMM) for iterative refinement and final continuous ges-

ture recognition. As for the second category, the main s-

trategy is to tackle the temporal segmentation and recog-

nition in separated steps, i.e. the segmented gestures will

be fed into recognition module and output the recognition

results. Such approaches are usually based on the hypoth-

esis that the certain boundaries can be determined by some

rules in continuous gesture sequence. Movement Epenthe-

sis (ME) is a transition period between two adjacent signs.

Gao et al. [6] realized ME detection for gesture segmenta-

tion. Instead of the explicitly ME modeling, Yang et al. [28]

proposed an adaptive threshold method to filter out the ME

periods. With the assumption that significant motion will

occur when a true gesture begins, Molchanov et al. [15] em-

ployed the radar sensor to collect velocity of movement and

segment dynamic gestures. Similarly, Jiang et al. [9] pro-

posed a method based on quantity of movement (QOM) by

assuming the same start pose among different gestures. In

a summary, the second category of methods will work well

if the transition is explicit. The key advantage is to simplify

continuous gesture recognition problem into isolated ges-

ture recognition. In this paper, we also adopt the scheme to

realize the temporal segmentation with the hand positions

as illustrated in Chai et al [3].

Apart from temporal segmentation, the feature of gesture

also plays an important role in continuous gesture recogni-

tion. In early works, the traditional handcrafted features

like Local Binary Pattern (LBP) and Histogram of Oriented

Gradients (HOG) are widely used to characterize the shape

of hand or body [11, 27]. Then spatiotemporal domain are

taken into count to design more effective features for video

data. For example, Wan et al. [22] extended the scale invari-

ant feature transform (SIFT) into three dimensions and pro-

posed three-dimensional sparse motion scale invariant fea-

ture transform for activity recognition from RGB-D videos.

Wang et al. [25] proposed the Grassmann Covariance Ma-

trix (GCM) to model the gesture videos, in which repre-

sentation, covariance matrix was used to calculate the dis-

tance between gesture samples in the Grassmannian Man-

ifold. Recently, convolutional neural network has made a

great breakthrough on computer vision related tasks for its

powerful feature extraction ability, such as image classifi-

cation, object detection and semantic segmentation. Thus

many researchers used CNN features instead of the hand-

crafted features for better performance. Simonyan et al. [19]

proposed a two-stream convolutional network architecture

which incorporated spatial and temporal networks. Their

two-stream network took static image and optical flow as

input to capture the complementary information on appear-

ance from static frames and motion between frames. Then,

the extracted temporal and spatial features were fused as fi-

nal feature for action classification. Tran et al. [21] extended

2D convolution into 3D convolution, which was capable of

learning both the spatial and the temporal aspect of videos.

The 3D convolutional networks were also exploited in the

gesture recognition area [14, 16]. Considering on the good

performance, we further propose a hand-oriented C3D fea-

tures in this paper for effective gesture representation.
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Figure 1. The pipeline of our continuous gesture recognition framework.

3. Methodology

In this section, we will describe the spotting-recognition

framework for large scale continuous gesture recognition.

Figure 1 shows the pipeline of our whole framework.

Simply speaking, our method is mainly composed of the

following four modules. First is a key preprocessing step,

i.e. hand detection with two streams Faster R-CNN. Sec-

ond is the temporal segmentation based on the hand posi-

tions. Third is the feature generation module, including the

hand-oriented spatiotemporal (ST) feature extraction with

C3D model for each segmented gestures and the following

feature fusion. Finally is the gesture classification module

with simple linear SVM classifier.

3.1. Hand Detection with Two Streams Faster R­
CNN

Hand detection is very crucial for our temporal segmen-

tation, and also for the subsequent recognition module. In

order to effectively utilize the visual information provided

by different channels, i.e. RGB and depth, we propose a

two streams Faster R-CNN detection method. This section

mainly describes the detection framework. Its entire testing

process is shown in Fig. 2.

Although RGB and depth videos are obtained concur-

rently, they maybe not well registered. Therefore, the origi-

nal depth pixels are first aligned to the corresponding color

coordinate space by the mapping relationship between the

color and the depth coordinate spaces. Camera calibration

technique is used in this procedure [1]. Figure 3 shows an

example of coordinate alignment. Once the alignment is

done, the features corresponding to RGB and aligned depth

images can be extracted by a fully convolutional network

respectively. These two extracted feature maps are con-

Figure 2. Hand detection pipeline of two-streams Faster R-CNN.

catenated and considered as the final feature representation.

Then region proposal network (RPN) [18] is used to gen-

erate high quality regions of interest (ROI). After that, the

classification and bounding box regression will be done for

each ROI as in Fast R-CNN [7]. Finally, the non-maximum

suppression is performed independently for each class using

the algorithm and settings from [7].

Figure 3. An example of coordinate alignment between RGB and

depth channels.
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3.2. Temporal Segmentation

Through our observation, we find the fact that the subject

raises hands up when beginning to sign a gesture and puts

hands down after performing one gesture in the Continuous

Gesture Dataset (ConGD). In addition, accurate hand posi-

tions can be obtained by our proposed two streams Faster

R-CNN. Therefore, we use hand positions to realize the

temporal segmentation of the continuous gesture sequences.

Firstly, we get a stable hand position from the initial several

frames. Then by adding with an empirical value, a height

threshold is fixed to determine the gesture boundaries. If

one hand is first higher than the height threshold, it indi-

cates the subject begins to sign a new gesture. If both hands

are lower than the height threshold, it indicates the signed

gesture is ending. Figure 4 shows an example of the tempo-

ral segmentation result for a continuous gesture sequence.

3.3. Feature Generation

3.3.1 Hand-oriented Spatiotemporal Feature Extrac-

tion

It is no doubt that feature extraction is a crucial step in pat-

tern recognition. As for the specific gesture recognition, the

feature should characterize both appearance and motion pat-

tern of the hands. To grasp the powerful feature of gestures,

more attention should be paid to hand regions. Therefore,

in each image frame, we keep the hand regions and block

other regions based on the detected hand positions, which

can effectively alleviate the distractor regions, such as back-

ground, clothing, body and so on. Considering on the dif-

ferent location of the signer in the image, the relative hand

motion should be better. Thus the face is also detected and

the location is encoded in the feature extraction. CNN fea-

tures have been proved more effective than traditional hand-

crafted features, such as HOG. While normal 2D convolu-

tional kernels only target spatial correlative information in

an image, we employ 3D convolutional kernels, which can

exploit temporal pattern besides spatial information, while

eliminating the need for secondary temporal modeling tech-

niques. Therefore, C3D model [21] is utilized to extract the

hand-oriented spatiotemporal information based on contin-

uous video input with only hand regions and face location

maintained in each frame. As illustrated in Fig. 1, C3D

feature extractor is a part of C3D model. The whole archi-

tecture of the C3D consists of 8 convolutional layers (with

64, 128, 256, 256, 512, 512, 512, 512 filters), 5 pooling lay-

ers, 2 fully connected layers of size 4096 and final softmax

layer to output predicted label. All the kernels of 3D con-

volutional layers are of size 3 × 3 × 3, the stride of the 3D

convolutional layers are all of size 1×1×1, and each convo-

lutional layer is followed by a rectified linear unit (ReLU).

All pooling kernels are of size 2× 2× 2 except for the first

pooling layer is 1× 2× 2, of which the kernel is 1× 2× 2

Figure 4. An example of the temporal segmentation result for a

continuous gesture sequence.

to keep more temporal information in the early stage of the

network.

C3D is set up with the video frames which are resized

into 128×171. We also use jittering by using random crops

with a size of 112×112, which can be considered data aug-

mentation. The network in original C3D model [21] takes

16-frames clips as input. However, Li et al. [14] found that

most isolated gesture videos in ConGD are with 29 − 39
frames by statistics. And they took 32 frames clips as input

because more frames help with increasing the information

of inputs and making it easier to track the detail path of

gestures. Therefore, the strategy, 32 frames input, is also

employed in this paper.

Segmented videos with more than 32 frames are sampled

with the dynamic ratio according to their frame number,

while videos with less than 32 frames are extended by in-

terpolation. In order to train the C3D effectively with Con-

GD, which only has 249 categories of gestures and 14314

continuous gesture videos, C3D model is first pre-trained

on Sports-1M dataset, which is the largest video classifica-

tion benchmark with 1.1 million sports videos in 487 cate-

gories. After that, two C3D models are fine-tuned by pro-

cessed RGB and depth videos respectively, which only con-

tain hand regions and face location. Finally, removing the

last softmax and fully connected layer, we obtain C3D fea-

ture extractor. The feature of fc6, with 4096 dimensions,

is the generated hand-oriented spatiotemporal feature. Fig-

ure 5 illustrates the whole procedure of the feature genera-

tion.
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Figure 5. The process of feature generation.

3.3.2 Feature Fusion

As illustrated in Fig. 5, for each segmented gesture, we

have the processed RGB and depth videos, in which on-

ly the hand regions and face location maintained. In or-

der to deeply exploit the complementary multi-channel da-

ta, we fuse them to improve the final recognition perfor-

mance. There are two fusion schemes. One is to directly

fuse processed RGB and depth videos. The other is to fuse

the extracted hand spatiotemporal features. The processed

RGB and depth videos are not registered precisely because

of the coarse calibration. In addition, the sum of the RGB

and depth channel is 6. The original C3D input channel is

3. If the first fusion scheme is adopted, parameters of the

first pre-trained C3D layer can not be employed. Therefore,

in this paper, the fusion in feature level is adopted. The fea-

ture vectors of RGB and depth channels are concatenated

and the fusion process is formulated as follows:

fc6rgb = L2norm (C3D(vprgb)) (1)

fc6depth = L2norm (C3D(vpdepth)) (2)

F = fc6rgb ⊕ fc6depth (3)

where vprgb and vpdepth denote processed RGB and depth

gesture videos, L2norm is L2-normalization, fc6rgb and

fc6depth denote the fc6 feature of C3D model according to

corresponding rgb and depth channels, ⊕ is the concatena-

tion operator, F is the final fused feature. The whole feature

generation procedure can be summarized into the follow-

ing three steps. Firstly, two fine-tuned C3D models take the

processed RGB and depth videos as input and output fc6

features respectively. After that, fc6 features is followed by

an L2-normalization. Finally, fc6 features corresponding to

RGB and depth channels are integrated by simple concate-

nation.

3.4. Classification

Given a continuous gesture sequence, it is processed by

four steps, which are hand detection, temporal segmenta-

tion, feature generation and classification. Finally, its cor-

responding sequence label will be predicted.

To well train the classifier, a training set Ω is prepared

first, which contains plenty of continuous gesture samples

and the corresponding class label. For example, a sequence

with 120 frames consists of three gestures labels [2, 4, 8] and

with begin and end frame index [1 30; 31 66; 67 120]. First,

A continuous gesture sequence is segmented into isolated

gestures according to the given segmentation information.

Then, These isolated gestures are used to fine-tune C3D.

After that, we get hand-oriented spatiotemporal features as

described in section 3.3. At last, the fused features are used

to train a linear SVM classifier.

The testing procedure is similar with the key steps in

training process. Given a continuous gesture sequence

with unknown segmentation, the temporal segmentation is

achieved with the detected hand positions by 2S Faster R-

CNN. Next for each isolated gesture, the hand-oriented spa-

tiotemporal features are extracted and fused, which is sent

to the well trained SVM classifier and then output the cor-

responding labels.

3.5. Implementation Details

In the hand-oriented spatiotemporal feature extraction

procedure, the fine-tuned C3D model is trained using the

mini-batch stochastic gradient descent with the momentum

of 0.9 and the weight decay of 0.00005. In each time of it-

eration, a mini-batch of 10 shuffled video clips are sent into

the network. The initial learning rate is set as 0.0001, and it

decreases at the ratio of 0.9 after every 5000 iterations. The

training process stops after 100000 iterations. In addition,

the penalty parameter C of the error term in linear SVM is

set as 0.1 empirically. As for programming platform, both

two streams Faster R-CNN hand detection and C3D are im-

plemented in Caffe [8].

4. Experimental Results

In this section, we demonstrate the effectiveness of our

method by groups of experiments on the Large-scale Con-

tinuous Gesture Recognition Dataset of the ChaLearn LAP

challenge 2017 (ChaLearn LAP ConGD Dataset). First,

ConGD and its evaluation protocol are briefly introduced.

Second, we verify the effectiveness of 2S Faster R-CNN.

Third, the quantitative analysis on our temporal segmenta-

tion is given. Then, widely experiments are conducted to

verify the effectiveness of our hand-oriented spatiotempo-
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Sets
# of

Provided

# of

Gestures

# of

RGB Videos

# of

Depth Videos

# of

Performers
Label Provided

Temporal Segmention

Provided

Training 249 30442 14314 14314 17 Yes Yes

Validation 249 8889 4179 4179 2 Yes Yes

Testing 249 8602 4042 4042 2 No No

Table 1. Information of the ChaLearn LAP ConGD Dataset

Figure 6. Some examples of the visualized hand detection results

ral feature and also the fusion strategy. Finally, we give the

comparison with other state-of-the-art methods.

4.1. Dataset and Evaluation Protocol

Totally, ConGD dataset includes 47933 RGB-D gestures

from 22535 RGB-D continuous gesture videos. The data is

performed by 21 different signers and split into three mutu-

ally exclusive subsets, i.e. the training, validation and test-

ing sets. The detailed information of the database is shown

in Table 1. In order to measure the performance of differ-

ent methods, the mean Jaccard Index (mJI) [23] is adopt-

ed as the evaluation criteria for the recognition algorithms.

This score measures the average relative overlap between

predicted and ground-truth labels for all given continuous

video sequences.

Sets
# of RGB

Images

# of Hand

Regions

Training 50842 83022

Testing 3155 5006

Table 2. Information of our collected Hand Dataset

4.2. Evaluation on 2S Faster R­CNN

In this section, we will evaluate the 2S Faster R-CNN

on the hand detection task. In this experiment, first we col-

lect some image frames from the training data of ConGD.

The hand regions in these images are labeled manually. The

hand detection dataset is divided randomly into training and

testing sets, whose detailed information is shown in Table 2.

Figure 7. The comparison of the hand detection results

To evaluate the performance of our hand detection algo-

rithm, mean Average Precision (mAP) is employed as the

criterion. Here we compared the proposed method with

three baseline models, which are ”RGB Faster R-CNN-
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ZF”, ”Depth Faster R-CNN-ZF” and ”RGB-D Faster R-

CNN-ZF”. They correspond to the Faster R-CNN methods

with the input of only RGB, depth and concatenated RG-

B and depth data respectively. In these implementations,

the ZF [29] model is used to extract CNN feature. For 2S

Faster R-CNN, ZF model is first trained by using the train-

ing data of our collected Hand Dataset (recorded briefly as

”2S Faster R-CNN-ZF”) and fine-tuned with Imagenet [4]

(recorded briefly as ”2S Faster R-CNN-ZF*”) respective-

ly. To boost the performance, we further use the VGG [20]

model instead of ZF model, and the experiment is denot-

ed as ”2S Faster R-CNN-VGG*”. The above mentioned

six groups of models are all trained using the mini-batch s-

tochastic gradient descent. The initial learning rate is set as

0.001, and it decreases at the ratio of 0.1 after every 70000

iterations. The training process stops after 350000 itera-

tions.

The comparison of the hand detection results are shown

in Fig. 7. The hand detection result of ”2S Faster R-CNN-

ZF” outperforms ”RGB Faster R-CNN-ZF”, ”depth Faster

R-CNN-ZF” and ”RGB-D Faster R-CNN-ZF”, which ver-

ifies the effectiveness of our proposed 2S Faster R-CNN.

In addition, the fine-tuned models can improve the perfor-

mance slightly as illustrated by the results of ”2S Faster R-

CNN-ZF” and ”2S Faster R-CNN-ZF*”. Finally, the perfor-

mance of ”2S Faster R-CNN-VGG*” is significantly supe-

rior to ”2S Faster R-CNN-ZF*”, which maybe because that

VGG model can extract more powerful CNN feature than

ZF. Therefore, ”2S Faster R-CNN-VGG*” is used as our

hand detector. Figure 6 gives some examples of the visual-

ized hand detection results. We can see that hand detection

result seems not good enough in depth channel, which is

mainly caused by the coarse alignment.

4.3. Evaluation on Temporal Segmentation

Temporal segmentation plays a great role in continuous

gesture recognition. So in this section, we will give the

quantitative evaluation of our segmentation strategy and al-

so the comparison with quantity of movement (QOM) [9],

which is a widely used method for gesture segmentation.

QOM tries to determine the gesture boundaries with the po-

tential hand region information, which is derived by motion

detection with depth input. While our segmentation is real-

ized based on our detected hand introduced in section 3.2.

To quantitatively measure the segmentation perfor-

mance, we define a spotting score to denote the proportion

of correct segmented frames. For the kth sequence , let

gk,i = [si, ei] and pk,i = [si, ei] where si and ei denote

the start and end frames for the ith segmented fragment in

the continuous sequence, gk,i and pk,i are the ith segmented

fragment in true and predicted sequences respectively. The

detail process of spotting score computation is described in

Algorithm 1.

Algorithm 1 Compute Spotting Score

Input: true segment sequence set G = {g1, g2, . . . , gn},
predicted segment sequence set P = {p1, p2, . . . , pn} ,
the number of true segmented gestures in kth sequence Lg

k,

the number of predicted segmented gestures in kth sequence

Lp
k, where k = 1, 2, . . . , n.

Output: spotting score S.

1: S ← 0
2: count← 0 ⊲ record the number of segmented isolated

gestures from continuous gestures.

3: for k = 1 to n do

4: for i = 1 to Lg
k do

5: count← count+ 1
6: ski ← 0 ⊲ ski store

the max intersection-over-union (IOU) among gk,i and

pk,j , j = 1, 2, . . . , Lp
k.

7: dicki ← 0
8: for j = 1 to Lp

k do

9: IOU ←
gk,i∩pk,j

gk,i∪pk,j

10: if IOU > ski then

11: ski ← IOU
12: dicki ← j

13: for i = 1 to Lg
k do

14: Stack sta ⊲ declare a stack sta
15: maxs ← 0
16: for j = i + 1 to Lg

k do

17: if dicki == dicji and skj ! = 0 then

18: PUSH(sta, j)

19: maxs = max(maxs, s
k
j )

20: if EMPTY(sta) == true then ⊲ indicate there is

not same IOU in a predicted segment if sta is empty.

21: S ← S + ski
22: else ⊲ get the maximus IOU and set others as 0.

23: S ← S +maxs

24: while EMPTY(sta) == false do

25: sameIdx← TOP (sta)
26: POP (sta)
27: sksameIdx ← 0

28: S ← S/count
29: return S

Since the ground-truth segmentation results on testing

set are unavailable, we conduct the experiment on validation

set. There are totally 4179 continuous sequences and 8889

gestures on the validation set. The spotting scores of our

segmentation and QOM are 0.8910 and 0.7732 respective-

ly. It is obvious that our segmentation is superior to QOM

for the stable and accurate hand positions. While the QOM

is easily to be influenced by the complex illumination and

other non-dominant motions, such as the arm movement et

al.
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Figure 8. The performance of different features

4.4. Evaluation on Hand­oriented Spatiotemporal
Feature

In this section, we will give the thorough evaluation on

our hand-oriented feature. It has been mentioned above, in

the proposed feature, the face location is taken as a com-

plementary to the hand regions. Thus we give the compar-

ison on the hand-oriented feature between only hand input

(HO H) and hand plus face input(HO H+F). We carry out

the experiments in the color (shorten as C ), depth (shorten

as D) and fusion (shorten as F) channels respectively. In ad-

dition, we perform the recognition experiments by using the

C3D feature extracted from the whole image frames, which

is denoted as WI. The experiments are also conducted on

the color and depth modals separately, which are denoted

as WI C and WI D respectively. All the experimental re-

sults are shown in Fig. 8.

From the results, it can be seen that the specific designed

hand-oriented feature is significantly superior to the original

C3D feature with whole image input. While in our proposed

hand-oriented feature, the encoding of face location can s-

lightly improve the performance compared with only hand

regions input.

4.5. Evaluation on Different Channels

In above section, we show the experimental results on

separated channel. While in this section, we will evaluate

the recognition performance with fused features.

In gesture recognition, different channel features reveal

different aspects of signs. For example, feature in RGB

channel mainly characterizes the detailed texture and fea-

ture in depth channel mainly focuses on the geometric shape

in the whole. Intuitively, these two kinds of features com-

plement each other. Figure 8 gives the experimental results

with single channel fused features.

From this figure, we can see that the fusions obtain the

performance gains of 5 to 9 percentage points in mean

Jaccard Index. These improvement show that the fusion

scheme is extremely effective compared with any single

channel feature.

Rank Team Score

1 ICT NHCI 0.6103

2 AMRL 0.5950

3 PaFiFa 0.3744

4 Deepgesture 0.3164

Table 3. Performance comparison with other methods on testing

set of ConGD

4.6. Comparison with Other Methods

In this section, we show the performance comparison

with other methods on the ChaLearn LAP Large-scale Con-

tinuous Gesture Recognition Challenges. All results are run

by the organizer on the testing set of ConGD, and only the

data from the training set are used for algorithm training.

Table 3 lists the mean Jaccard Index score of first four teams

and our group won the first place [10].

5. Conclusion

This paper presents an effective spotting-recognition

framework for large-scale continuous gesture recognition.

Targeting on the gesture analysis task, first we need to de-

termine the hand regions by a two-streams Faster R-CNN

method. With the accurate hand positions, the input contin-

uous gesture sequence can be segmented into several iso-

lated gestures effectively. To generate more representative

feature, a hand-oriented spatiotemporal feature is proposed,

which characterizes the hand postures and motion trajecto-

ries for each gesture by 3D convolutional network. To boost

the performance, the features in color and depth channels

are fused further. Extensive experiments are conducted and

show the impressive performance of our method. We also

won the first place in the ChaLearn LAP large scale contin-

uous gesture recognition challenge.
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