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Abstract

Humans use facial expressions successfully for convey-

ing their emotional states. However, replicating such suc-

cess in the human-computer interaction domain is an active

research problem. In this paper, we propose deep convo-

lutional neural network (DCNN) for joint learning of ro-

bust facial expression features from fused RGB and depth

map latent representations. We posit that learning jointly

from both modalities result in a more robust classifier for

facial expression recognition (FER) as opposed to learning

from either of the modalities independently. Particularly,

we construct a learning pipeline that allows us to learn sev-

eral hierarchical levels of feature representations and then

perform the fusion of RGB and depth map latent represen-

tations for joint learning of facial expressions. Our exper-

imental results on the BU-3DFE dataset validate the pro-

posed fusion approach, as a model learned from the joint

modalities outperforms models learned from either of the

modalities.

1. Introduction

Facial expressions have been used successfully and ef-

fectively by humans for communicating their emotional

states. The six basic facial expressions include anger, dis-

gust, fear, happiness, sadness and surprise. Our excellent

ability to correctly read-off facial expressions from people

usually lead to a host of corresponding responses. For ex-

ample, when a teacher read-offs an expression of surprise

on the faces of students during a lecture, he may decide to

restate his point in a more comprehensible way for the stu-

dents. In general, other areas where facial expression recog-

nition play critical roles for improving communication and

responses include counselling, interrogation, reward games,

etc.

Interestingly, tasking computers to perform facial ex-

pression recognition (FER) is an active research problem in

the human-computer interaction domain [1]. A major mo-

tivation for this is to allow a computer adapt its response

based on the facial expression of the user; this consequently

fosters better human-computer interaction. However, rec-

ognizing facial expressions of subjects with reasonably high

accuracy is not an easily achievable task for computers.

Several works have studied FER and proposed different ap-

proaches for improving the performance of FER systems.

Many of these works rely on learning facial expression fea-

tures via appearance, fiducial landmarks or detecting action

units first, and then subsequent classification [2][3]. For

feature based FER systems, learning highly discriminative

and robust facial expression is very critical. This approach

is challenging as the features that discriminate the different

facial expression are quite subtle [4]; the usually more abun-

dant features pertaining to the identity of the subject could

easily dominate the discriminative features for the different

facial expressions.

In recent times, deep learning has become very useful for

many computer vision applications [5][6]. One of the main

motivation behind deep learning is that learning several hi-

erarchical levels of feature abstractions fosters the disen-

tanglement of the different aspects in the training dataset,

as the different levels in the model can represent different

aspects in the training dataset [7][8]. Moreover, deep neu-

ral networks are powerful function approximators, with the

capacity for learning complex and highly varying functions

[9].
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In this paper, we approach FER via appearance based

representation using deep learning and the fusion of RGB

and depth map latent representations. Our motivation for

the proposed approached lies in learning jointly from depth

map and RGB modalities. Since, we propose an appearance

based modelling of FER, we employ deep convolutional

neural network (DCNN) for learning the subtle features that

discriminate the six basic different facial expressions. Par-

ticularly, we posit that learning jointly from depth map and

RGB modalities improves the robustness of discriminative

features learned for FER as against learning singly from ei-

ther of the two modalities. We take inspiration from the

demerits of employing either of the two modalities sepa-

rately for learning facial expression features that are highly

discriminative. RGB data can effectively capture very rich

information about facial expressions; however, RGB data

are quite susceptible to severe corruption due to illumina-

tion variations. In fact, RGB data may be rendered consid-

erably ineffective for learning very discriminative features.

Conversely, depth map data are modestly tolerant of illu-

mination changes and therefore features learned from such

data are more stable and robust. In addition, depth map data

carry important information describing geometric relations

in an image. However, in well setup and stable environmen-

tal settings, depth map data may be less rich in information

as compared to RGB data. The contributions of this paper

are as follows:

1. We posit that learning jointly from depth map and

RGB modalities result in a more robust classifier for

FER as against learning singly from either of the two

modalities. Our extensive experiments and results on

the BU-3DFE dataset validates our position.

2. We construct and describe a pipeline based on trans-

fer learning and deep convolutional neural network

(DCNN) that are later used to learn and fuse several hi-

erarchical levels of feature representations from RGB

data and depth map.

3. We provide a comparison between our method and

state-of-the-art approaches on BU-3DFE dataset. Par-

ticularly, the result of our fusion approach is better than

many state-of-the-art results.

The rest of this paper is organized as follows. Section 2

discusses related works along with their merits and demer-

its for FER. Section 3 describes the necessary background

and the problem formulation followed by the proposed ap-

proach, in Section 4. In section 5, we give the details of

experiments and results along with discussions. In section

6, we conclude the paper by highlighting our key findings.

2. Literature review

Several studies have been carried out on facial expres-

sion recognition (FER). Many of these works essentially

rely on two stages of information processing: (1) fea-

tures extraction [10](2) classification of extracted features

[11][12]. Occasionally, there is a feature selection stage as

an intermediate stage between the feature extraction stage

and classification [13]. Additionally, FER systems can be

developed based on geometric [14] or appearance [15] fea-

tures modelling. For geometric based FER modelling, [16]

relied on Haar-based features and the Viola-Jones’ algo-

rithm for detecting the eye regions; the work emphasized

the challenges of accurately detecting the eyes and other

facial regions from which features for FER are extracted;

for classification a total of 26 geometric features where ex-

tracted and fed into a self-organizing map for classifica-

tion. In [17], estimation of principal curvature was em-

ployed for labelling the vertices of 3D facial surface indi-

vidual models. The work [17] then segmented facial sur-

faces into expressive regions and applied histogram statis-

tics on the segmented regions. Finally, the features obtained

from the histogram statistics were used to train a linear dis-

criminant classifier for FER. In [18], a FER system was

proposed based on the combination of Bayesian Belief Net

(BBN) and statistical facial features model. The work de-

scribed an approach where manual landmarking for facial

features extraction is eliminated. Another interesting work

[19] proposed using 2D and 3D features for FER. The work

employed incremental Parallel Cascade of Linear Regres-

sion (iParCLR) for simultaneously localizing fiducial land-

marks from 2D and 3D scans. For extracting features from

the 2D scans, a novel Histogram of Second Order Gradi-

ents (HSOG) and first-order gradient based SIFT descriptor

were used. For extracting features from the 3D scans, His-

togram of mesh Gradients (meshHOG) and Histogram of

mesh Shape index were used. Subsequently, the features

obtained from both 2D and 3D scans were used to train a

support vector machine (SVM); further improvement in re-

sult was reported by fusing 2D and 3D modalities. In [20],

an elaborate FER system was proposed composing low pass

filtering, eye, nose, lip corner and eyebrow corner detec-

tion; features were extracted from detected regions of inter-

ests using local binary pattern (LBP) encoding. Later, sup-

port vector machine (SVM) based classifier is trained on a

feature space estimated with Principal Component Analy-

sis (PCA) from LBP encoding. One obvious demerit of the

geometric based modelling is the elaborate arrangement for

the detection of regions of interest in face images.

Alternatively, other works pursue appearance based

modelling for FER. Here, arrangement for elaborate de-

tection of regions of interest in face images is eliminated;

instead, through highly robust learning schemes, facial ex-

pression features are learned (or extracted) from face im-
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ages with no or minimal processing. For example, [21] pro-

posed a boosted deep belief network for performing feature

learning, selection and classification all together as a uni-

fied framework. In another work [22], a deep neural net-

work was employed for FER, and they report state-of-the-

art results on extended Cohn-Kanade (CK+) dataset and the

Toronto Face Dataset (TFD). More interestingly, they show

that the features learned by the deep network are akin to fa-

cial action units (FAUs) for facial expressions.

Another approach for FER which have been studied in

several works relies on the detection of specific FAUs based

on the facial action coding system (FACS) [23]. In [24],

FAUs were explored for composing new expressions which

they referred to as compound expressions, while [25] pro-

posed a FER system based on the detection of some specific

FAUS in face images.

3. Problem formulation

Learning robust discriminative features is critical to the

performance of appearance based approaches for FER.

However, learning robust discriminative features directly

from raw data is not at all trivial. Deep neural networks

have large representation capacity allowing the learning of

complex target functions, and therefore seems a natural

choice for modelling such a daunting task. For example,

[26] employed an ensemble of deep neural networks based

on transfer learning; firstly, they trained their models on a

much larger dataset (i.e. 2013 facial Expression Recogni-

tion (FER) Challenge dataset), then fine-tuned the models

on the target dataset-Static Facial Expressions in the Wild

(SFEW) dataset.

However, training DCNNs require massive datasets as

deep models typically compose lots of parameters; with

small datasets, deep models have the tendency to quickly

over-fit [27]. One solution which has been explored in many

works that employed deep models for small datasets [27]

[28] is transfer learning, where the features learned by a

deep model on a generic and very large dataset are trans-

ferred to another task. Here, the hope is that the features

learned by the pre-trained model are considerably general

enough for other tasks; this is especially the case when the

dataset on which the model has been pre-trained consider-

ably shares similarity with the target dataset. Otherwise,

one cannot guarantee the performance of feature transfer

when the target dataset is quite different from the one on

which the model has been pre-trained; in this case, the suit-

ability of feature transfer can only be determined via ex-

perimentation [27]. Since, the dataset used in this work is

relatively small, we experiment with transfer learning to de-

termine the scenario (i.e. data modality) where it is useful

for improving feature learning.

Considering the aforementioned strengths of depth map

and RGB data, we formulate an approach for extracting

more interesting features for facial expression recognition.

Namely, the proposed approach is aimed at solving the fol-

lowing problems:

• Feature learning from a small dataset in cases where

transfer learning is not effective (the depth map case).

• More effective learning of facial expression features

from both depth map and RBG modalities via the fu-

sion of their latent representations.

4. Proposed facial expression framework

In this section, we relate how the proposed approach ad-

dresses the problems that we propose to solve as mentioned

in section 3. We give the details of the dataset used in

this paper, data pre-processing, proposed learning pipeline,

model architectures, and considerations for the different

pipeline constructions. The highlights of the proposed fa-

cial expression recognition framework and the problems

that are tackled are as follows:

• We can leverage both depth map and RGB modali-

ties for extracting more robust discriminative features

for FER. The aim is that the individual strength of the

modalities can be used compliment each other via the

fusion of extracted latent representations.

• We consider the usefulness of hierarchical feature rep-

resentations to construct a pipeline that allows us to

learn several levels of latent representations and per-

form fusion of latent representations of RGB and depth

map modalities; such a pipeline should allow the dif-

ferent levels learn different and interesting aspects of

the training data.

• We rely on the state-of-the-art pre-trained models (i.e.

ResNet50 [29] and VGG19 [30]) where they are help-

ful for learning several levels of latent representation;

otherwise, we train our model from scratch and rely

on other training schemes such as batch normalization

[31] to improve optimization and generalization.

4.1. Dataset

For validating the proposed approach in this paper, we

use the BU-3DFE dataset [17] that is composed of 100 sub-

jects (56 female and 44 males) with a total of 2500 textured

3D scans along with corresponding 2D (RGB) data. Fur-

thermore, each subject perform the six basic facial expres-

sions at 4 different intensity levels; see Figure.1 [32].

4.2. Data pre­processing

The BU-3DFE dataset offers both 3D and 2D (RGB)

data for all expressions contained therein. Since, the con-

ventional DCNN can be employed directly only for struc-

tured data such as images, we obtain depth map images
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Figure 1. BU-3DFE dataset facial expressions [32]

Figure 2. BU-3DFE depth map pre-processing

from the 3D data and then perform registration using the

corresponding RGB images via maximization of mutual in-

formation. The registration of depth map images is meant

to improve the joint learning of facial features from both

depth map and RGB data; this is straightforward since we

want the DCNN to strictly capture the same aspect of the

facial images during training. For example, Fig.2(a) shows

the superposition of the obtained and unregistered depth

map over the grayscale transform of the RGB data for an

expression; Fig.2(b) shows the superposition of the regis-

tered depth map over the grayscale transform of the RGB

data for the same expression; Fig.2(c) shows the registered

depth map. Furthermore, we employ an algorithm that cap-

tures the face images in bounding boxes, eliminating the re-

dundant background data; this should make learning facial

expression features more concise.

4.3. Learning pipeline

Since, we propose to show that learning jointly from

depth map and RGB data allows us to learn more robust fea-

tures with higher discriminative power than learning singly

from either of the two modalities, we construct three dif-

ferent pipelines to validate the argument presented in this

paper. We refer to the three different pipelines as PL-depth

map, PL-RGB and PL-fusion; where, PL-depth map, PL-

RGB and PL-fusion denote the constructed pipelines for

depth map data, RGB data and their fusion, respectively.

For the depth map and RGB data, we experiment with trans-

fer learning using ResNet50 [29] and VGG19 [30] models

that were pre-trained on the imagenet dataset. The three

pipelines are discussed below.

Figure 3. Learning pipeline for depth map modality: PL-fusion

4.3.1 PL-depth map

We experiment with transfer learning using ResNet50 and

VGG19 for the pre-processed depth map images. However,

we observe that employing the pre-trained models for the

depth map data resulted into poor performance. Our expla-

nation is that the features learned by the pre-trained models

are considerably unuseful for the depth map images. This is

not surprising, as the target data is quite dissimilar to the one

that the pre-trained models were trained on; the target data,

depth maps, are range images while the data (i.e. imagenet

dataset) used for pre-training are natural colour images.

Therefore, we opt for training a DCNN from scratch

on the depth map images. Firstly, we resize the depth

map images from the original size of 512×512 pixels to

64×64 pixels to reduce training time and computational re-

quirement. We then construct a deep model with 5 con-

volution layers and 3 max pooling layers. The architec-

ture of the DCNN is as follows: {input:depth map}-{conv

layer:10 FM}-{conv layer:20 FM}-{max pool:2×2}-{conv

layer:30 FM}-{conv layer:40 FM}-{max pool:2×2}-{conv

layer:50 FM}–{max pool:4×4}-{FC:300 units}-{FC:300

units}-{softmax:6 units}; where, FM and FC denotes fea-

ture maps and fully connected layers, respectively; all con-

volution operations use filters of size 6×6. The constructed

pipeline is shown in Fig.3.

4.3.2 PL-RGB

For the RGB data, we find that the pre-trained networks

ResNet50 and VGG19 work well, hence we do not con-

struct models that are trained from scratch as carried out for

the depth map data. We take the pre-trained models, remove

the fully connected layers including the softmax and stack
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Figure 4. Learning pipeline for RGB modality: PL-RGB

two newly initialized fully connected layers and a 6-way

softmax layer for training to classify the six basic facial ex-

pressions. The full architecture of the PL-RGB pipeline is

as follows: {input:RGB data}-{pre-trained model}-{FC1}-

{FC2}-{softmax:6 units}; where, ‘pre-trained model’ is ei-

ther ResNet50 or VGG19; for ResNet50, FC1 and FC2 have

1000 and 700 units respectively; while for VGG19, FC1 and

FC2 have 500 units each. The constructed pipeline is shown

in Fig.4. Furthermore, for the ease of referral, we tag the

pipeline with pre-trained ResNet50 as PL-RGB-ResNet50,

and the other pipeline with pre-trained VGG19 as PL-RGB-

VGG19.

4.3.3 PL-fusion

Here, we construct a pipeline for the joint learning of la-

tent representations obtained from the depth map and RGB

modalities. We take the following considerations in con-

Figure 5. Depth map and RGB latent representation fusion

pipeline: PL-fusion

structing the pipeline to achieve two important goals: (1)

learning several hierarchical representations for both data

modalities (2) fusing the separately learned high level repre-

sentations and then learning jointly from the new and much

richer representations. The constructed pipeline is shown

in Fig.5. The depth map and RGB pipelines before the fu-

sion of latent representations have the same construction as

though they operate singly; this scenario can be seen as a

form of late fusion. Note that for the fusion of depth map

and RGB modalities, we concatenate the latent representa-

tions obtained from both depth map and RGB data, and then

learn two new levels of latent representations before feeding

into a 6-way softmax classifier layer.

5. Experiments

5.1. Pipeline training

For all the pre-training scenarios reported in this paper,

we perform global average pooling at the last layer to re-

duce spatial dimensionality of data before feeding into the

fully connected layers. Since we employ batch normaliza-

tion [31] for improving generalization and optimization, we

initialize all the newly added layers via He initialization

[33] to improve convergence rates of models during train-

ing. Our observation aligns with [31] on the use of dropout

and batch normalization together for training; in our exper-

iments, using dropout along with batch normalization did

not bring any improvement in learning. Hence, we did not

employ dropout for all newly added layers reported in this

paper. Since, our pipelines are based on several stacks of

feature representations, all the pipelines in this paper use

hidden units with the rectified linear function for activation;

again, this is aimed at tackling units saturation and improv-

ing gradients condition for fast convergence during training.

Furthermore, we employ mini-batch gradient descent opti-

mization for training all models. Particularly, we rely on the

adaptive moment estimation (adam) technique as in [18] for

mini-batch gradient descent optimization so that we can be

less careful about the set learning rate for model training.

Nevertheless, we set the learning rate for all models in this

paper to a considerably small value of 0.003, and training

all the different pipelines for a maximum of 1000 epochs.

5.2. Experimental setup

As mentioned earlier, we follow the common protocol

as in [17][34][18][35] and many other works for choosing

training and testing data. We randomly select 60 subjects

from the BU-3DFE dataset; from these selected subjects,

we randomly select 54 subjects for building the training data

and the remaining 6 subjects for building the test data; this

is akin to a 10-fold cross validation training scheme. In ad-

dition, we use only the third and fourth intensity levels of

facial expressions. Again, in conformity with the training

3165



and model evaluation protocol found in [17][34][18][35]

and many other works, we fix the randomly selected 60 sub-

jects, and perform for a total of 200 experiments for the ran-

dom selection of 54 subjects as training data and remaining

6 subjects as test data similar to a 10-fold cross-validation

scheme; this is meant to reduce sampling bias on training

and testing data for model training and evaluation. All the

experiments and results given in this paper are based on this

training and testing protocol.

However, we note that some other works [34] among

others follow a different training and evaluation protocol

where the selected 60 subjects are not fixed, but are ran-

domly selected for each experiment. In this paper, we do not

consider such a training and evaluation experimental setup.

5.3. Results and discussion

We report in Table 1 the results of the experiments per-

formed for the different learning pipelines discussed in sec-

tion 4. We observe that the depth map and RGB modali-

ties achieve promising results when they are used separately

for FER. When the depth maps only are used for training a

DCNN from scratch (i.e. PL-depth map) as described in

section 4.3.1, we obtain a test accuracy of 84.72%. Also,

when the RGB data are used for obtaining features from

pre-trained models, we obtain a test accuracy of 82.92% for

ResNet50 and 81.25% for VGG19. Interestingly, combin-

ing both depth map and RGB modalities, we are able to

reach a test accuracy of 87.08% using pre-trained ResNet50

for the RGB data (i.e. PL-fusion-ResNet50 in Table 2) and

89.31% using pre-trained VGG19 for the RGB data (i.e.

PL-fusion-VGG19 in Table 2); for both fusion experiments,

DCNNs are trained from scratch on the depth map data.

We include in Table 1 the results of parallel experiments

obtained using pre-trained models ResNet50 and VGG19

on depth maps; these are the first two results given in Table

1 with asterisk. Particularly, we observe poor performance

in this scenario as features do not seem transferable from the

imagenet pre-trained models to depth maps. When we rely

on features obtained from the pre-trained ResNet50 for the

depth map data, we obtain a poor test accuracy of 61.11%;

using the pre-trained VGG19 in this setting, a much worse

test accuracy of 28.06% is obtained. Here, we note that the

Approach Test
acc. (%)

Depth map+pre-trained ResNet50∗ 61.11
Depth map+pre-trained VGG19∗ 28.06
Depth map: PL-depth map 84.72
RGB+ pre-trained ResNet50: PL-RGB-ResNet50 82.92
RGB+ pre-trained VGG19: PL-RGB-VGG19 81.25
Depth map+RGB: PL-fusion-ResNet50 87.08
Depth map+RGB: PL-fusion-VGG19 89.31

Table 1. Experimental results for the different pipelines

Approach Test
acc. (%)

3D geometric shape model+LDA [17] 83.60
Bayesian Belief net+statistical facial features [35] 82.30
Distance+slopes+SVM [19] 87.10
2D+3D features fusion+SVM [36] 86.32
Geometric scattering representation+SVM [37] 84.80
Geometric+photometric attributes+VGG19 [38] 84.87
Depth map+RGB: PL-fusion-ResNet50 (ours) 87.08
Depth map+RGB: PL-fusion-VGG19 (ours) 89.31

Table 2. Our best experimental result via depth map and RGB fu-

sion along with state-of-the-art results for comparison

results are not at all surprising as there is a large dissim-

ilarity between the imagenet data on which the ResNet50

and VGG19 were pre-trained and the target data in this pa-

per which are depth maps; features obtained from the pre-

trained models in this setting are far from the optimal repre-

sentations of the target data. In fact, we note that [27] also

acknowledged that the transferability of features decreases

with the increase in disparity between the base task (i.e. pre-

training data) and target task (i.e. target data). Hence, we

did not consider these models useful enough for construct-

ing any of the pipelines described in this paper; rather, we

chose to train a DCNN from scratch on the depth map data.

Table 2 shows the results (i.e. test accuracy in %) for the dif-

ferent pipelines constructed in this paper, along with state-

of-the-art results reported in other works that used a sim-

ilar training and testing protocol to ours on the BU-3DFE

dataset. Firstly, we observe that our result based on modal-

ity fusion, outperforms many state-of-the-art results on the

BU-3DFE dataset as reported in Table 2. For example, [38]

employed deep representation, explored geometric and pho-

tometric attributes for obtaining 6 different types of 2D fa-

cial maps, after which it relied on three pre-trained VGG-

Nets for obtaining feature representations from the facial

maps; the outputs of the VGG-Nets were then used for train-

ing several SVMs. Finally, [38] performed score fusion

based on the trained SVMs for FER. We note that despite

the elaborate framework proposed in [38], our less complex

pipeline based on modality fusion at latent representation

level significantly outperforms their reported result; see Ta-

ble 2.

Furthermore, we observe that [39] reported a test accu-

racy of 92% based on the combination of 2D and 3D fea-

tures trained on DCNNs from scratch. However, [39] did

not follow any of the well known protocols for training and

evaluation on the BU-3DFE dataset; that is, using a set of

randomly selected 60 subjects that are either fixed or not in a

10-fold cross validation scheme for training and evaluation.

Instead, they consider the whole 100 subjects for training

and evaluation, using 90 subjects for training and the re-

maining 10 subjects for testing. In addition, [39] failed to
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report that they carried out cross validation in their experi-

mental setup; this naturally raises two concerns: (1) a larger

dataset has been used for training the proposed model (2)

sampling bias for the training and testing data in view of

the reported result. However, using the fusion approach

that we propose in this paper and the well established train-

ing and evaluation protocol for the BU-3DFE dataset (i.e. a

smaller training data), we reach a competitive test accuracy

of 89.31%.

6. Conclusion

Facial expression recognition is an important domain in

human-computer interaction. Endowing computers with the

ability to analyse the facial expressions of users should im-

provement their utility; as such, a computer can adapt its

response given the facial expression of the user. In this

paper, motivated by the individual strengths of depth map

and RGB data for representation information, we propose a

facial expression recognition pipeline for joint learning of

more robust features. We posit that learning jointly from

both depth map and RGB modalities would result in learn-

ing more discriminative features as against singly learning

from either modalities. We construct three different learn-

ing pipelines for learning the BU-3DFE dataset; experi-

mental results validate the effectiveness of the fusion ap-

proach over learning facial expression features separately

from depth map or RGB data.
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