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Abstract

Humans use facial expressions successfully for convey-
ing their emotional states. However, replicating such suc-
cess in the human-computer interaction domain is an active
research problem. In this paper, we propose deep convo-
lutional neural network (DCNN) for joint learning of ro-
bust facial expression features from fused RGB and depth
map latent representations. We posit that learning jointly
from both modalities result in a more robust classifier for
facial expression recognition (FER) as opposed to learning
from either of the modalities independently. Particularly,
we construct a learning pipeline that allows us to learn sev-
eral hierarchical levels of feature representations and then
perform the fusion of RGB and depth map latent represen-
tations for joint learning of facial expressions. Our exper-
imental results on the BU-3DFE dataset validate the pro-
posed fusion approach, as a model learned from the joint
modalities outperforms models learned from either of the
modalities.

1. Introduction

Facial expressions have been used successfully and ef-
fectively by humans for communicating their emotional
states. The six basic facial expressions include anger, dis-
gust, fear, happiness, sadness and surprise. Our excellent
ability to correctly read-off facial expressions from people
usually lead to a host of corresponding responses. For ex-
ample, when a teacher read-offs an expression of surprise
on the faces of students during a lecture, he may decide to
restate his point in a more comprehensible way for the stu-
dents. In general, other areas where facial expression recog-

nition play critical roles for improving communication and
responses include counselling, interrogation, reward games,
etc.

Interestingly, tasking computers to perform facial ex-
pression recognition (FER) is an active research problem in
the human-computer interaction domain [1f]. A major mo-
tivation for this is to allow a computer adapt its response
based on the facial expression of the user; this consequently
fosters better human-computer interaction. However, rec-
ognizing facial expressions of subjects with reasonably high
accuracy is not an easily achievable task for computers.
Several works have studied FER and proposed different ap-
proaches for improving the performance of FER systems.
Many of these works rely on learning facial expression fea-
tures via appearance, fiducial landmarks or detecting action
units first, and then subsequent classification [2]][3]. For
feature based FER systems, learning highly discriminative
and robust facial expression is very critical. This approach
is challenging as the features that discriminate the different
facial expression are quite subtle [4]; the usually more abun-
dant features pertaining to the identity of the subject could
easily dominate the discriminative features for the different
facial expressions.

In recent times, deep learning has become very useful for
many computer vision applications [5][l6]. One of the main
motivation behind deep learning is that learning several hi-
erarchical levels of feature abstractions fosters the disen-
tanglement of the different aspects in the training dataset,
as the different levels in the model can represent different
aspects in the training dataset [[7][8]. Moreover, deep neu-
ral networks are powerful function approximators, with the
capacity for learning complex and highly varying functions

[9].
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In this paper, we approach FER via appearance based
representation using deep learning and the fusion of RGB
and depth map latent representations. Our motivation for
the proposed approached lies in learning jointly from depth
map and RGB modalities. Since, we propose an appearance
based modelling of FER, we employ deep convolutional
neural network (DCNN) for learning the subtle features that
discriminate the six basic different facial expressions. Par-
ticularly, we posit that learning jointly from depth map and
RGB modalities improves the robustness of discriminative
features learned for FER as against learning singly from ei-
ther of the two modalities. We take inspiration from the
demerits of employing either of the two modalities sepa-
rately for learning facial expression features that are highly
discriminative. RGB data can effectively capture very rich
information about facial expressions; however, RGB data
are quite susceptible to severe corruption due to illumina-
tion variations. In fact, RGB data may be rendered consid-
erably ineffective for learning very discriminative features.
Conversely, depth map data are modestly tolerant of illu-
mination changes and therefore features learned from such
data are more stable and robust. In addition, depth map data
carry important information describing geometric relations
in an image. However, in well setup and stable environmen-
tal settings, depth map data may be less rich in information
as compared to RGB data. The contributions of this paper
are as follows:

1. We posit that learning jointly from depth map and
RGB modalities result in a more robust classifier for
FER as against learning singly from either of the two
modalities. Our extensive experiments and results on
the BU-3DFE dataset validates our position.

2. We construct and describe a pipeline based on trans-
fer learning and deep convolutional neural network
(DCNN) that are later used to learn and fuse several hi-
erarchical levels of feature representations from RGB
data and depth map.

3. We provide a comparison between our method and
state-of-the-art approaches on BU-3DFE dataset. Par-
ticularly, the result of our fusion approach is better than
many state-of-the-art results.

The rest of this paper is organized as follows. Section 2
discusses related works along with their merits and demer-
its for FER. Section 3 describes the necessary background
and the problem formulation followed by the proposed ap-
proach, in Section 4. In section 5, we give the details of
experiments and results along with discussions. In section
6, we conclude the paper by highlighting our key findings.

2. Literature review

Several studies have been carried out on facial expres-
sion recognition (FER). Many of these works essentially
rely on two stages of information processing: (1) fea-
tures extraction [10]](2) classification of extracted features
[L1][12]. Occasionally, there is a feature selection stage as
an intermediate stage between the feature extraction stage
and classification [[13]. Additionally, FER systems can be
developed based on geometric [[14] or appearance [15] fea-
tures modelling. For geometric based FER modelling, [16]
relied on Haar-based features and the Viola-Jones’ algo-
rithm for detecting the eye regions; the work emphasized
the challenges of accurately detecting the eyes and other
facial regions from which features for FER are extracted;
for classification a total of 26 geometric features where ex-
tracted and fed into a self-organizing map for classifica-
tion. In [17], estimation of principal curvature was em-
ployed for labelling the vertices of 3D facial surface indi-
vidual models. The work [[17] then segmented facial sur-
faces into expressive regions and applied histogram statis-
tics on the segmented regions. Finally, the features obtained
from the histogram statistics were used to train a linear dis-
criminant classifier for FER. In [18]], a FER system was
proposed based on the combination of Bayesian Belief Net
(BBN) and statistical facial features model. The work de-
scribed an approach where manual landmarking for facial
features extraction is eliminated. Another interesting work
[19] proposed using 2D and 3D features for FER. The work
employed incremental Parallel Cascade of Linear Regres-
sion (iParCLR) for simultaneously localizing fiducial land-
marks from 2D and 3D scans. For extracting features from
the 2D scans, a novel Histogram of Second Order Gradi-
ents (HSOG) and first-order gradient based SIFT descriptor
were used. For extracting features from the 3D scans, His-
togram of mesh Gradients (meshHOG) and Histogram of
mesh Shape index were used. Subsequently, the features
obtained from both 2D and 3D scans were used to train a
support vector machine (SVM); further improvement in re-
sult was reported by fusing 2D and 3D modalities. In [20]],
an elaborate FER system was proposed composing low pass
filtering, eye, nose, lip corner and eyebrow corner detec-
tion; features were extracted from detected regions of inter-
ests using local binary pattern (LBP) encoding. Later, sup-
port vector machine (SVM) based classifier is trained on a
feature space estimated with Principal Component Analy-
sis (PCA) from LBP encoding. One obvious demerit of the
geometric based modelling is the elaborate arrangement for
the detection of regions of interest in face images.

Alternatively, other works pursue appearance based
modelling for FER. Here, arrangement for elaborate de-
tection of regions of interest in face images is eliminated;
instead, through highly robust learning schemes, facial ex-
pression features are learned (or extracted) from face im-
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ages with no or minimal processing. For example, [21] pro-
posed a boosted deep belief network for performing feature
learning, selection and classification all together as a uni-
fied framework. In another work [22], a deep neural net-
work was employed for FER, and they report state-of-the-
art results on extended Cohn-Kanade (CK+) dataset and the
Toronto Face Dataset (TFD). More interestingly, they show
that the features learned by the deep network are akin to fa-
cial action units (FAUs) for facial expressions.

Another approach for FER which have been studied in
several works relies on the detection of specific FAUs based
on the facial action coding system (FACS) [23]. In [24],
FAUs were explored for composing new expressions which
they referred to as compound expressions, while [25] pro-
posed a FER system based on the detection of some specific
FAUS in face images.

3. Problem formulation

Learning robust discriminative features is critical to the
performance of appearance based approaches for FER.
However, learning robust discriminative features directly
from raw data is not at all trivial. Deep neural networks
have large representation capacity allowing the learning of
complex target functions, and therefore seems a natural
choice for modelling such a daunting task. For example,
[26] employed an ensemble of deep neural networks based
on transfer learning; firstly, they trained their models on a
much larger dataset (i.e. 2013 facial Expression Recogni-
tion (FER) Challenge dataset), then fine-tuned the models
on the target dataset-Static Facial Expressions in the Wild
(SFEW) dataset.

However, training DCNNs require massive datasets as
deep models typically compose lots of parameters; with
small datasets, deep models have the tendency to quickly
over-fit [27]. One solution which has been explored in many
works that employed deep models for small datasets [27]]
[28]] is transfer learning, where the features learned by a
deep model on a generic and very large dataset are trans-
ferred to another task. Here, the hope is that the features
learned by the pre-trained model are considerably general
enough for other tasks; this is especially the case when the
dataset on which the model has been pre-trained consider-
ably shares similarity with the target dataset. Otherwise,
one cannot guarantee the performance of feature transfer
when the target dataset is quite different from the one on
which the model has been pre-trained; in this case, the suit-
ability of feature transfer can only be determined via ex-
perimentation [27]. Since, the dataset used in this work is
relatively small, we experiment with transfer learning to de-
termine the scenario (i.e. data modality) where it is useful
for improving feature learning.

Considering the aforementioned strengths of depth map
and RGB data, we formulate an approach for extracting

more interesting features for facial expression recognition.
Namely, the proposed approach is aimed at solving the fol-
lowing problems:

e Feature learning from a small dataset in cases where
transfer learning is not effective (the depth map case).

e More effective learning of facial expression features
from both depth map and RBG modalities via the fu-
sion of their latent representations.

4. Proposed facial expression framework

In this section, we relate how the proposed approach ad-
dresses the problems that we propose to solve as mentioned
in section 3. We give the details of the dataset used in
this paper, data pre-processing, proposed learning pipeline,
model architectures, and considerations for the different
pipeline constructions. The highlights of the proposed fa-
cial expression recognition framework and the problems
that are tackled are as follows:

e We can leverage both depth map and RGB modali-
ties for extracting more robust discriminative features
for FER. The aim is that the individual strength of the
modalities can be used compliment each other via the
fusion of extracted latent representations.

e We consider the usefulness of hierarchical feature rep-
resentations to construct a pipeline that allows us to
learn several levels of latent representations and per-
form fusion of latent representations of RGB and depth
map modalities; such a pipeline should allow the dif-
ferent levels learn different and interesting aspects of
the training data.

e We rely on the state-of-the-art pre-trained models (i.e.
ResNet50 [29] and VGG19 [30]) where they are help-
ful for learning several levels of latent representation;
otherwise, we train our model from scratch and rely
on other training schemes such as batch normalization
[31] to improve optimization and generalization.

4.1. Dataset

For validating the proposed approach in this paper, we
use the BU-3DFE dataset [17] that is composed of 100 sub-
jects (56 female and 44 males) with a total of 2500 textured
3D scans along with corresponding 2D (RGB) data. Fur-
thermore, each subject perform the six basic facial expres-
sions at 4 different intensity levels; see Figure.1 [32].

4.2. Data pre-processing

The BU-3DFE dataset offers both 3D and 2D (RGB)
data for all expressions contained therein. Since, the con-
ventional DCNN can be employed directly only for struc-
tured data such as images, we obtain depth map images
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Figure 2. BU-3DFE depth map pre-processing

from the 3D data and then perform registration using the
corresponding RGB images via maximization of mutual in-
formation. The registration of depth map images is meant
to improve the joint learning of facial features from both
depth map and RGB data; this is straightforward since we
want the DCNN to strictly capture the same aspect of the
facial images during training. For example, Fig.2(a) shows
the superposition of the obtained and unregistered depth
map over the grayscale transform of the RGB data for an
expression; Fig.2(b) shows the superposition of the regis-
tered depth map over the grayscale transform of the RGB
data for the same expression; Fig.2(c) shows the registered
depth map. Furthermore, we employ an algorithm that cap-
tures the face images in bounding boxes, eliminating the re-
dundant background data; this should make learning facial
expression features more concise.

4.3. Learning pipeline

Since, we propose to show that learning jointly from
depth map and RGB data allows us to learn more robust fea-
tures with higher discriminative power than learning singly
from either of the two modalities, we construct three dif-
ferent pipelines to validate the argument presented in this
paper. We refer to the three different pipelines as PL-depth
map, PL-RGB and PL-fusion; where, PL-depth map, PL-
RGB and PL-fusion denote the constructed pipelines for
depth map data, RGB data and their fusion, respectively.
For the depth map and RGB data, we experiment with trans-
fer learning using ResNet50 [29] and VGG19 [30] models
that were pre-trained on the imagenet dataset. The three
pipelines are discussed below.

Depth map data
Conv layer: 10 FM

Conv layer: 50 FM

Figure 3. Learning pipeline for depth map modality: PL-fusion

4.3.1 PL-depth map

We experiment with transfer learning using ResNet50 and
VGG19 for the pre-processed depth map images. However,
we observe that employing the pre-trained models for the
depth map data resulted into poor performance. Our expla-
nation is that the features learned by the pre-trained models
are considerably unuseful for the depth map images. This is
not surprising, as the target data is quite dissimilar to the one
that the pre-trained models were trained on; the target data,
depth maps, are range images while the data (i.e. imagenet
dataset) used for pre-training are natural colour images.

Therefore, we opt for training a DCNN from scratch
on the depth map images. Firstly, we resize the depth
map images from the original size of 512x512 pixels to
64 x 64 pixels to reduce training time and computational re-
quirement. We then construct a deep model with 5 con-
volution layers and 3 max pooling layers. The architec-
ture of the DCNN is as follows: {input:depth map}-{conv
layer:10 FM}-{conv layer:20 FM }-{max pool:2x2}-{conv
layer:30 FM}-{conv layer:40 FM}-{max pool:2x2}-{conv
layer:50 FM}—{max pool:4x4}-{FC:300 units}-{FC:300
units }-{softmax:6 units}; where, FM and FC denotes fea-
ture maps and fully connected layers, respectively; all con-
volution operations use filters of size 6x6. The constructed
pipeline is shown in Fig.3.

43.2 PL-RGB

For the RGB data, we find that the pre-trained networks
ResNet50 and VGG19 work well, hence we do not con-
struct models that are trained from scratch as carried out for
the depth map data. We take the pre-trained models, remove
the fully connected layers including the softmax and stack
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Figure 4. Learning pipeline for RGB modality: PL-RGB

two newly initialized fully connected layers and a 6-way
softmax layer for training to classify the six basic facial ex-
pressions. The full architecture of the PL-RGB pipeline is
as follows: {input:RGB data}-{pre-trained model}-{FC1}-
{FC2}-{softmax:6 units}; where, ‘pre-trained model’ is ei-
ther ResNet50 or VGG19; for ResNet50, FC1 and FC2 have
1000 and 700 units respectively; while for VGG19, FC1 and
FC2 have 500 units each. The constructed pipeline is shown
in Fig.4. Furthermore, for the ease of referral, we tag the
pipeline with pre-trained ResNet50 as PL-RGB-ResNet50,
and the other pipeline with pre-trained VGG19 as PL-RGB-
VGGI9.

4.3.3 PL-fusion

Here, we construct a pipeline for the joint learning of la-
tent representations obtained from the depth map and RGB
modalities. We take the following considerations in con-

RGB data Depth map data
Conv layer: 10 FM
Pre-trained
model Conv layer: 20 FM

Max pool: 2x2

Fully connected

Fully connected

Conv layer: 30 FM

i
i

Conv layer: 40 FM
Max pool: 2x2
Conv layer: 50 FM

Max pool: 2x2

Modality fusion

Fully connected
Fully connected

Softmax: 6 units

I

Figure 5. Depth map and RGB latent representation fusion
pipeline: PL-fusion

structing the pipeline to achieve two important goals: (1)
learning several hierarchical representations for both data
modalities (2) fusing the separately learned high level repre-
sentations and then learning jointly from the new and much
richer representations. The constructed pipeline is shown
in Fig.5. The depth map and RGB pipelines before the fu-
sion of latent representations have the same construction as
though they operate singly; this scenario can be seen as a
form of late fusion. Note that for the fusion of depth map
and RGB modalities, we concatenate the latent representa-
tions obtained from both depth map and RGB data, and then
learn two new levels of latent representations before feeding
into a 6-way softmax classifier layer.

5. Experiments
5.1. Pipeline training

For all the pre-training scenarios reported in this paper,
we perform global average pooling at the last layer to re-
duce spatial dimensionality of data before feeding into the
fully connected layers. Since we employ batch normaliza-
tion [31] for improving generalization and optimization, we
initialize all the newly added layers via He initialization
[33] to improve convergence rates of models during train-
ing. Our observation aligns with [31] on the use of dropout
and batch normalization together for training; in our exper-
iments, using dropout along with batch normalization did
not bring any improvement in learning. Hence, we did not
employ dropout for all newly added layers reported in this
paper. Since, our pipelines are based on several stacks of
feature representations, all the pipelines in this paper use
hidden units with the rectified linear function for activation;
again, this is aimed at tackling units saturation and improv-
ing gradients condition for fast convergence during training.
Furthermore, we employ mini-batch gradient descent opti-
mization for training all models. Particularly, we rely on the
adaptive moment estimation (adam) technique as in [18] for
mini-batch gradient descent optimization so that we can be
less careful about the set learning rate for model training.
Nevertheless, we set the learning rate for all models in this
paper to a considerably small value of 0.003, and training
all the different pipelines for a maximum of 1000 epochs.

5.2. Experimental setup

As mentioned earlier, we follow the common protocol
as in [17][34][L8][35] and many other works for choosing
training and testing data. We randomly select 60 subjects
from the BU-3DFE dataset; from these selected subjects,
we randomly select 54 subjects for building the training data
and the remaining 6 subjects for building the test data; this
is akin to a 10-fold cross validation training scheme. In ad-
dition, we use only the third and fourth intensity levels of
facial expressions. Again, in conformity with the training
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and model evaluation protocol found in [17][34][18][35]
and many other works, we fix the randomly selected 60 sub-
jects, and perform for a total of 200 experiments for the ran-
dom selection of 54 subjects as training data and remaining
6 subjects as test data similar to a 10-fold cross-validation
scheme; this is meant to reduce sampling bias on training
and testing data for model training and evaluation. All the
experiments and results given in this paper are based on this
training and testing protocol.

However, we note that some other works [34] among
others follow a different training and evaluation protocol
where the selected 60 subjects are not fixed, but are ran-
domly selected for each experiment. In this paper, we do not
consider such a training and evaluation experimental setup.

5.3. Results and discussion

We report in Table 1 the results of the experiments per-
formed for the different learning pipelines discussed in sec-
tion 4. We observe that the depth map and RGB modali-
ties achieve promising results when they are used separately
for FER. When the depth maps only are used for training a
DCNN from scratch (i.e. PL-depth map) as described in
section 4.3.1, we obtain a test accuracy of 84.72%. Also,
when the RGB data are used for obtaining features from
pre-trained models, we obtain a test accuracy of 82.92% for
ResNet50 and 81.25% for VGG19. Interestingly, combin-
ing both depth map and RGB modalities, we are able to
reach a test accuracy of 87.08% using pre-trained ResNet50
for the RGB data (i.e. PL-fusion-ResNet50 in Table 2) and
89.31% using pre-trained VGG19 for the RGB data (i.e.
PL-fusion-VGG19 in Table 2); for both fusion experiments,
DCNNSs are trained from scratch on the depth map data.

We include in Table 1 the results of parallel experiments
obtained using pre-trained models ResNet50 and VGG19
on depth maps; these are the first two results given in Table
1 with asterisk. Particularly, we observe poor performance
in this scenario as features do not seem transferable from the
imagenet pre-trained models to depth maps. When we rely
on features obtained from the pre-trained ResNet50 for the
depth map data, we obtain a poor test accuracy of 61.11%;
using the pre-trained VGGI19 in this setting, a much worse
test accuracy of 28.06% is obtained. Here, we note that the

Approach Test
acc. (%)

Depth map+pre-trained ResNet50™ 61.11
Depth map+pre-trained VGG19* 28.06
Depth map: PL-depth map 84.72
RGB+ pre-trained ResNet50: PL-RGB-ResNet50  82.92
RGB+ pre-trained VGG19: PL-RGB-VGG19 81.25
Depth map+RGB: PL-fusion-ResNet50 87.08
Depth map+RGB: PL-fusion-VGG19 89.31

Table 1. Experimental results for the different pipelines

Approach Test
acc. (%)
3D geometric shape model+LDA [17] 83.60
Bayesian Belief net+statistical facial features [35]  82.30
Distance+slopes+SVM [19]] 87.10
2D+3D features fusion+SVM [36]] 86.32
Geometric scattering representation+SVM [37]] 84.80

Geometric+photometric attributes+VGG19 [38]] 84.87
Depth map+RGB: PL-fusion-ResNet50 (ours) 87.08
Depth map+RGB: PL-fusion-VGG19 (ours) 89.31

Table 2. Our best experimental result via depth map and RGB fu-
sion along with state-of-the-art results for comparison

results are not at all surprising as there is a large dissim-
ilarity between the imagenet data on which the ResNet50
and VGG19 were pre-trained and the target data in this pa-
per which are depth maps; features obtained from the pre-
trained models in this setting are far from the optimal repre-
sentations of the target data. In fact, we note that [27] also
acknowledged that the transferability of features decreases
with the increase in disparity between the base task (i.e. pre-
training data) and target task (i.e. target data). Hence, we
did not consider these models useful enough for construct-
ing any of the pipelines described in this paper; rather, we
chose to train a DCNN from scratch on the depth map data.
Table 2 shows the results (i.e. test accuracy in %) for the dif-
ferent pipelines constructed in this paper, along with state-
of-the-art results reported in other works that used a sim-
ilar training and testing protocol to ours on the BU-3DFE
dataset. Firstly, we observe that our result based on modal-
ity fusion, outperforms many state-of-the-art results on the
BU-3DFE dataset as reported in Table 2. For example, [38]
employed deep representation, explored geometric and pho-
tometric attributes for obtaining 6 different types of 2D fa-
cial maps, after which it relied on three pre-trained VGG-
Nets for obtaining feature representations from the facial
maps; the outputs of the VGG-Nets were then used for train-
ing several SVMs. Finally, [38] performed score fusion
based on the trained SVMs for FER. We note that despite
the elaborate framework proposed in [38]], our less complex
pipeline based on modality fusion at latent representation
level significantly outperforms their reported result; see Ta-
ble 2.

Furthermore, we observe that [39] reported a test accu-
racy of 92% based on the combination of 2D and 3D fea-
tures trained on DCNNs from scratch. However, [39] did
not follow any of the well known protocols for training and
evaluation on the BU-3DFE dataset; that is, using a set of
randomly selected 60 subjects that are either fixed or notin a
10-fold cross validation scheme for training and evaluation.
Instead, they consider the whole 100 subjects for training
and evaluation, using 90 subjects for training and the re-
maining 10 subjects for testing. In addition, [39] failed to
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report that they carried out cross validation in their experi-
mental setup; this naturally raises two concerns: (1) a larger
dataset has been used for training the proposed model (2)
sampling bias for the training and testing data in view of
the reported result. However, using the fusion approach
that we propose in this paper and the well established train-
ing and evaluation protocol for the BU-3DFE dataset (i.e. a
smaller training data), we reach a competitive test accuracy
of 89.31%.

6. Conclusion

Facial expression recognition is an important domain in
human-computer interaction. Endowing computers with the
ability to analyse the facial expressions of users should im-
provement their utility; as such, a computer can adapt its
response given the facial expression of the user. In this
paper, motivated by the individual strengths of depth map
and RGB data for representation information, we propose a
facial expression recognition pipeline for joint learning of
more robust features. We posit that learning jointly from
both depth map and RGB modalities would result in learn-
ing more discriminative features as against singly learning
from either modalities. We construct three different learn-
ing pipelines for learning the BU-3DFE dataset; experi-
mental results validate the effectiveness of the fusion ap-
proach over learning facial expression features separately
from depth map or RGB data.
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