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Abstract

Frame-level visual features are generally aggregated in

time with the techniques such as LSTM, Fisher Vectors,

NetVLAD etc. to produce a robust video-level representa-

tion. We here introduce a learnable aggregation technique

whose primary objective is to retain short-time temporal

structure between frame-level features and their spatial in-

terdependencies in the representation. Also, it can be easily

adapted to the cases where there have very scarce train-

ing samples. We evaluate the method on a real-fake expres-

sion prediction dataset to demonstrate its superiority. Our

method obtains 65% score on the test dataset in the official

MAP evaluation and there is only one misclassified decision

with the best reported result in the Chalearn Challenge (i.e.

66.7%) . Lastly, we believe that this method can be extended

to different problems such as action/event recognition in fu-

ture.

1. Introduction

Nowadays, video is an essential multimedia resource

that has critical applications on several domains including

surveillance, entertainment, social networking and event

prediction. Even though their high popularity and informa-

tion capacity, it is really hard to understand and monitor the

visual content of a video by computers. In recent years, the

success on deep learning (especially on end-to-end feature

learning) accelerates the progress and the research efforts

on video understanding.

In literature, common techniques are generally based on

the aggregation of frame-level deep features computed on a

pretrained convolutional neural network (CNN) model [30,

6, 4, 5, 2]. However, even if the techniques modeling

only the spatial interdependencies of deep features attain

superior performances for large-scale data, they are not

Figure 1. Some visual examples for genuine (first image) and de-

ceptive (second image) expressions.

able to capture the temporal structure between these fea-

tures [30, 2]. Similarly, pooling techniques based on tempo-

ral models [4, 10] are inclined to overfit to the training data

and irrelevant results can be obtained for unseen examples.

Recently, [17] shows that random frame sampling yields

similar results for the temporal models compared to dense

frame sequences. This is a critical observation for which

temporal models have some difficulties to learn/generalize

complex spatio-temporal structures between actions from

coarse frame-level features.

For facial emotions, real-fake expression prediction on a

video is slightly different from frame-level emotion classifi-

cation: 1) Temporal interrelations between face parts should

be considered, since temporal consistency is highly criti-

cal to categorize human expressions [26]. 2) Emotional

changes in eyes and mount movements can be distinct to

separate real expressions from fake ones [11].

In this paper, we introduce a learnable aggregation

method that is able to capture the short-time spatio-

temporal structure between deep visual features simultane-

ously. This is particularly important for real-fake expression
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Figure 2. Flow of relaxed spatio-temporal feature aggregation method. Initially, frame-level deep features are extracted and aggregated

from multiple-frames (red). Later, temporal structure is captured by RNN. Particularly, this architecture is more suitable for the cases

where there have very scarse training samples.

prediction, since learning micro-emotional interdependen-

cies from face parts as well as their sequential structure can

be essential to distinguish the real-fake expressions as we

mentioned. To advance the performance, we use high-level

convolution features (conv5) of CNN that are finetuned for

emotion detection [18].

Another contribution is that this model can be easily

adapted to the cases where there have very scarce training

samples. This can be achieved by only replacing the train-

able pooling parts in the architecture with compact ones or

vice versa.

2. Related Work

We review video representation and facial expression

prediction under two different subsections since there are

interrelated for real-fake expression prediction as follows.

Video Representation: Initial attempts to encode visual

content of a video are broadly formulated with hand-crafted

features. These features are extracted from either local

patches [23, 25] and/or local trajectories [29] by exploiting

regional gradient features. Later, they are aggregated over

frames with various pooling techniques to obtain a single

compact representation [21, 12]. Recently, feature extrac-

tion and aggregation steps are adapted to learnable mod-

ules. Frame-level [30, 4], spatio-temporal-level [27, 13]

and motion-level [24] convolutions are extensively studied

to extract robust features from videos. Moreover, train-

able pooling techniques are introduced [6, 2] to boost

discriminative representation learning rather than unsuper-

vised feature-space clustering [21, 12].

Facial Expression Prediction: Same trend can be observed

in facial expression prediction similar to video representa-

tion. At first, hand-crafted and geometrical features are used

to predict emotions from images/videos [8, 20]. Later, deep

learning techniques are applied to obtain more robust vi-

sual descriptions [3, 18, 9, 7]. However, the limited num-

ber of training samples is a major concern on this domain.

Thus, studies are usually concentrated on transfer learning

and data augmentation to extract reliable deep features by

adapting pretrained models to the problem [3, 18]. Also,

video-level representation can be obtained by considering

simple feature distribution characteristics in time (i.e. mean

and variance) [9] as well as by common pooling techniques.

Even if there are vast numbers of studies on facial emo-

tion detection, the prediction of real-fake expression is lim-

ited and most of which are for still images [16]. Also, they

are usually based on hand-crafted features. Therefore, re-

viewing the literature from the perspective of cognitive sci-

ence might be more informative in order to understand and

propose a proper technique for real-fake expression pre-

diction. In particular, [11, 26] show that small emotional

changes in eyes and mount movements can be used to in-

terpret an expression as genuine (real) or deceptive (fake)

from the sequence of faces. This indicates that both spatial

interdependencies of face parts and their sequential struc-

ture should be considered in the final model.

3. Overall Architecture Used for Real-Fake Ex-

pression Prediction

The overall architecture consists of two main modules,

namely feature extraction and classification. In the first

module, we initially extract robust micro-emotional visual

representations for each individual emotion type. For this

purpose, we propose a learnable method which exploits a

pooling technique [5] and a temporal model [10] rather than

using raw emotion features [3, 18] or feature pooling tech-

niques [2] only to represent a video. Later, these short-

time micro-emotional features are aggregated in time and
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mapped to a single representation for each video. Finally,

video-level representations are trained with a linear kernel

Support Vector Machine (SVM)1 for two class prediction

problem (i.e. real or fake).

Feature Extraction: We initially compute high-level

emotional features (conv5) by using the pretrained CNN

model [18] on the faces2 extracted from every video frame.

In particular, we use the outputs of ReLU activations of

conv5 layers as deep features to impose sparsity on them.

Moreover, we observed that the pretrained CNN model

still has an undesired bias for similar faces. For this pur-

pose, we separately normalize the deep features (conv5)

for each person by subtracting the average of his/her fa-

cial emotions during video rather than overall dataset mean.

This step ultimately alleviates the oscillation and centers the

data to zero mean for learning phase.

Later, our relaxed spatio-temporal aggregation method

(we will explain the details of the method in Section 4)

takes these deep features as input. Since the real-fake ex-

pression dataset has a limited number of samples, we se-

lect dense and short-time temporal intervals from videos to

augment data (i.e. the length of each interval is set to 150
ms) in order to learn micro-emotional representations. Af-

ter learning optimum parameter sets from the training data,

spatio-temporal representations are computed from dense

and overlapping intervals, and they are aggregated with [5]

to obtain a single video-level representation.

Lastly, we apply power normalization (i.e. σ = 0.5) to

each element of the spatio-temporal representation as de-

scribed in [5, 21]. This eventually decreases the sparsity

of the final representation and meaningful classification re-

sults can be achieved with the classifiers based on inner-

product [21].

Classification: For classification module, Support Vector

Machine (SVM) with a linear kernel is utilized. C value is

fixed to 1 for all emotion types which yields the best over-

all accuracy on the validation dataset. Note that in the final

evaluation, each emotion type is considered separately and

individual real/fake decisions are computed by each classi-

fier.

4. Relaxed Spatio-Temporal Deep Feature Ag-

gregation

In this section, we will explain the relaxed spatio-

temporal aggregation method introduced in the paper.

Briefly, our method can be summarized as the composition

of two feature pooling stages and a temporal model, and

Fig. 2 illustrates the flow of the method.

1LibSVM library. https://www.csie.ntu.edu.tw/

˜cjlin/libsvm/
2Dlib library is used for face detection. http://dlib.net/

First, local deep features are aggregated from short frame

grids. Later, a learnable temporal model is utilized to obtain

the temporal structure information. Lastly, the outputs of

the method are encoded to achieve a compact video-level

representation.

Our method differs from the literature [27, 4, 13] with

its complete feature pooling assumption (i.e. efficient and

effective). Similarly, in [27], local features are encoded on

small spatio-temporal grids and temporal structure is cap-

tured by a fully connected layer. But, these models need

large-scale data to train a reliable model and to find an op-

timum solution for the problem. On the other hand, our

method can still attain moderate performance by merely

encoding deep features extracted from a pretrained model

while capturing short-time temporal structure. Moreover, it

allows to refine the parameters of the CNN model by back-

propagating error through the network for more correlated

visual deep features in the problem.

Capturing Interdependencies between Deep Features

from Multiple Frames: Exploiting local feature depen-

dencies with others is an important visual clue to identify

the event, action and object from visual data. For instance,

building a model that can recognize bird parts from a scene

such as ’beak’, ’tail’ and ’wing’ can yield a high confidence

for the bird classification problem or even for fine-grained

category estimation [22, 5]. Therefore, encoding local inter-

dependencies between deep features is essential to obtain

a robust content representation. In our model, this step is

extended over multiple frames to extract more reliable rela-

tional descriptions.

For this purpose, individual local deep features

(x1
t
,x2

t
, ...,xM

t
, ...,x1

t+T
,x2

t+T
, ...,xM

t+T
) are aggregated

from a regular frame grid in time (i.e. from multiple-

frames). This step estimates a frame grid representation yk

that captures the spatial interdependencies between features

for a short interval. Here, M and T denote the number of

features per frame and the temporal frame length of a grid.

Since multiple frames are exploited to find a relaxed

short-time representation, it intuitively leaves an error mar-

gin for the temporal structure estimation and leads to a more

stable temporal representation. More precisely, instead of

using individual frame information in a temporal model as

in [4], our method leverages a pooling scheme before a tem-

poral model to capture the interdependencies of deep fea-

tures on multiple video frame (Note that [29] uses the simi-

lar assumption as the sum of trajectory features in time and

the authors claim that it improves the accuracy). Thus, this

decreases the tendency of temporal models to overfit to the

training data.

In the feature pooling step, one of the aforementioned

methods can be used such as NetVlad [2] or Compact Bi-

linear Pooling (CBP) [5]. In particular, we used CBP in this

study due to a small number of training samples.
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Capturing Short-Time Temporal Structure: In order to

model the temporal structure, we encode the grid represen-

tations with a learnable temporal model. For this purpose,

RNN architecture is utilized. This ultimately captures the

relaxed temporal structure over the computed representa-

tions among grids.

As mentioned, this architecture (i.e. fusion of re-

laxed deep feature pooling on multiple-frames and tempo-

ral structure) provides several advantages: 1) compared to

frame-level feature pooling techniques, it can preserve the

partial temporal structure between deep features in the rep-

resentation. 2) due to the relaxed multi-frame feature pool-

ing mechanism, the drawback of parameter overfitting can

be mitigated for RNN architectures. 3) on the contrary to

spatio-temporal convolutional methods, it can yield better

accuracy in the cases where insufficient samples exist.

Formally, the temporal model takes K number of grid

representations (y1,y2, ...,yK) as input. Since RNN is

used, it sequentially processes current input yk and RNN

cell state ck−1 as a function of f to predict the output of

cell ok and the next cell state ck as below:

ok, ck = f(yk, ck−1) (1)

Here, the final output of RNN architecture, oK , is used as

the representation of the temporal interval.

Eventually, this method produces a representation within

K ×T frame interval. For a video-level representation, this

model should be applied to whole video by uniformly or

randomly selecting intervals. Lastly, these spatio-temporal

representations should be encoded for the final video-level

representation.

Estimation of Video-Level Representation: The spatio-

temporal representations can be mapped to a compact video

representation in different ways by using averaging/max-

pooling and feature pooling schemes. The straightforward

solution is to encode them with a compact pooling tech-

nique. Similarly, NetVlad and CBP can be used, in gen-

eral, which are suitable for back-propagation to the deeper

layers. Again, CBP is employed to reduce the number of

trainable parameters in our model for real-fake expression

prediction.

Lastly, in case of sufficient data and a hardware config-

uration, video-level representation and spatio-temporal fea-

ture aggregation steps can be trained all together. However,

due to the high network complexity and lack of data, these

steps are considered/learned separately in this study.

5. Implementation Details

All trainable parameters in the model are optimized with

a gradient-based stochastic Adam solver [15]. Mini-batch

size and learning rate are set to 64 and 0.001 respectively.

The learning rate is decreased exponentially with the factor

Model MAP

CBP 53.33 %

PCA+CBP 46.66 %

NetVLAD 56.66 %

PCA+NetVLAD 55.00 %

RNN+CBP 61.66 %

PCA+RNN+CBP 58.33 %

CBP+RNN+CBP (our) 68.33 %

PCA+CBP+RNN+CBP (our) 63.33 %

CBP+RNN+NetVLAD (our) 65.00 %

PCA+CBP+RNN+NetVLAD (our) 61.66 %

Table 1. Evaluation of individual methods in different sequential

combinations.

of 0.1 for every 40K iteration. Also, we set β1 value in [15]

to 0.7 to reduce the oscillations in learning phase. Number

of iterations varies from 50K to 200K depending on the loss

changes between the training and validation sets for each

emotion type.

Our implementation uses both Caffe [14] and Tensor-

flow [1] frameworks. For CBP, we adapt the open source

implementation3 into our code. Also, NetVlad is taken from

the implementation4. Models are trained and evaluated on a

single NVIDIA Tesla K40 GPU card.

Parameter Configuration: Parameter configurations of the

proposed setup are given in accordance with empirical in-

ference. T and K are set to 3 and 5, respectively. Therefore,

the spatio-temporal method encapsulates 150 ms frame in-

terval to extract a compact representation. Similar optimum

parameter setup can be observed in [29] for action recogni-

tion problem. Also, [11] shows that 150 ms frame interval

is reasonable to assess micro-level emotional changes for

real-fake expression prediction.

Moreover, M is 36 (i.e. 6×6), since each cropped face is

fed into the precomputed CNN model as a 224×224 spatial

resolution image.

6. Experiments

Real-Fake Expression Dataset: The dataset consists of

600 videos [19, 28]. Their lengths vary between 3-4 sec-

onds and 50 different subjects perform 6 universal facial

emotion types (anger, happiness, surprise, disgust, content-

ment, sadness) with genuine (real) and deceptive (fake) ex-

pressions. Moreover, the dataset is collected at high fps, i.e.

100fps. Fig. 1 illustrates both genuine and deceptive facial

expressions of people for each emotion type.

3https://github.com/ronghanghu/tensorflow_

compact_bilinear_pooling
4https://github.com/antoine77340/LOUPE
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Emotion NetVLAD CBP+RNN+CBP (our)

Anger 50.00 % 80.00 %

Happiness 60.00 % 70.00 %

Surprise 70.00 % 60.00 %

Disgust 50.00 % 70.00 %

Contentment 60.00 % 60.00 %

Sadness 50.00 % 70.00 %

Average 56.66 % 68.33 %

Table 2. Impact of spatio-temporal aggregation for individual emo-

tion types. MAP scores are reported on the validation set.

This dataset is divided into training, validation and test

sets as 480, 60 and 60 videos respectively. Since we do not

have access to the test labels, all results (except the official

test accuracy at the end of this section) are reported on the

validation set. Mean Average Presion (MAP) metric is used

to evaluate the performances.

Model Evaluation: In the experiments, we first evaluate the

performances of individual methods in different sequential

combinations. For instance, in Table 1, CBP+RNN+CBP

indicates that after the extraction of deep features from

faces, CBP is initially utilized to aggregate the features

from multiple-frames. Later, RNN is used to capture short-

temporal structure and lastly, CBP encodes the final video-

level representation.

To make a fair comparison, the dimension of the final

video-level representation is fixed to 512 for all methods.

Furthermore, cluster size for NetVlad is set to 32 to balance

the complexity and accuracy.

From the results, we can observe that considering spatio-

temporal interdependencies of deep features improves the

accuracy compared to the methods merely exploiting fea-

ture pooling. Moreover, the use of PCA-like dimension

reduction on deep features affects the accuracy adversely.

Main reason can be explained as since dataset is very lim-

ited, estimated models can overfit to the training data. Sim-

ilarly, using NetVlad in the video-level representation with

RNN yields lower accuracy compared to CBP due to a small

number of training data.

Although exploiting the coarse frame-level features with

RNN (i.e. RNN+CBP) still improves the accuracy over the

feature pooling techniques (i.e. CBP or NetVlad), it obtains

inadequate results compared to the spatio-temporal methods

that use relaxed multi-frame feature aggregation before the

temporal structure estimation (i.e. CBP+RNN+CBP).

Impact of Spatio-Temporal Aggregation: In this part, we

discuss individual emotional type accuracies for NetVLAD

and our relaxed spatio-temporal method (i.e. the combina-

tion of CBP+RNN+CBP). In Table 2, the performances of

each individual emotion are reported for these two meth-

ods. From these results, for some emotional types such as

’surprise’ and ’contentment’, capturing only feature interde-

pendencies yields the same/better performances compared

to the spatio-temporal model. Interestingly, when we in-

vestigate these training videos visually, we can observe that

spatial emotional variations on face parts can be sufficiently

distinct to categorize a person expression as real-fake, rather

than exploiting the temporal structure/consistency (Note

that we have no experience on this field).

On the other hand, the spatio-temporal method outper-

forms the feature aggregation technique (NetVlad) espe-

cially on ’anger’, ’happiness’, ’disgust’ and ’sadness’ due

to the fact that exaggerated emotional changes on face parts

are one of the useful patterns for the problem as we men-

tioned early. Note that our method can learn these patterns

from data by itself.

Official Test Performance: In Table 3, the official training,

validation and test MAP performances for our method on

real-fake expression prediction challenge are given. Since

training data is small for the problem, overall training per-

formance is quite high compared to the validation and test

sets. That’s why, SVM is a suitable option in the classifi-

cation phase due to its generalization capacity from a small

number of data.

7. Conclusion

In this study, we introduce a relaxed and learnable spatio-

temporal feature aggregation method. Basically, it is able to

capture the temporal structure between deep features and

their spatial interdependencies. We explained the advan-

tages on the feature aggregation step in detail. To demon-

strate the effectiveness of the method, we tackled the real-

fake emotion prediction problem. Our method achieves

65% MAP score on the test dataset and there is only one

misclassified decision with the best result in the Chalearn

Challenge. In future, we plan to apply our method on ac-

tion/event recognition which has relatively larger training

data to show its performance on different problems.

Emotion Train Val. Test

Anger 96.25 % 80.00 % -

Happiness 96.25 % 70.00 % -

Surprise 92.50 % 60.00 % -

Disgust 96.25 % 70.00 % -

Contentment 92.50 % 60.00 % -

Sadness 93.75 % 70.00 % -

Average 94.58 % 68.33 % 65.00 %

Table 3. Official MAP scores for our method (i.e.

CBP+RNN+CBP) on real-fake expression prediction dataset.
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