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Abstract

This paper presents the method designed for the 2017

ChaLearn LAP Large-scale Gesture Recognition Chal-

lenge. The proposed method converts a video sequence

into multiple body level dynamic images and hand level dy-

namic images as the inputs to Convolutional Neural Net-

works (ConvNets) respectively through bidirectional rank

pooling and adopts Convolutional LSTM Networks (Con-

vLSTM) to learn long-term spatiotemporal features from

short-term spatiotemporal features extracted using a 3D

convolutional neural network (3DCNN) at body and hand

level. Such a heterogeneous network system learns effec-

tively different levels of spatiotemporal features that are

complementary to each other to improve the recognition

accuracy largely. The method has been evaluated on the

2017 isolated and continuous ChaLearn LAP Large-scale

Gesture Recognition Challenge datasets and the results are

ranked among the top performances.

1. Introduction

Gesture recognition from visual information is an active

topic with many potential applications in human computer

interaction [30], human robot interaction, sign recognition

and virtual reality. Due to subtle differences among similar

gestures, complex scene background, different observation

conditions, and noises in acquisition, robust gesture recog-

nition is very challenging [28].

Gesture recognition aims to recognize and understand

meaningful movement of human bodies [1] in which arms

and hands play crucial roles. Only few gestures can be iden-

tified from their spatial or structure information. In fact,

motion cues and structure information simultaneously char-

acterize a unique gesture. How to learn spatiotemporal fea-

tures effectively is always the key in gesture recognition.

With the recent development of deep learning, a few
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Figure 1. Examples of image frames at body level and hand level.

From up to bottom: body level RGB images,hand level RGB im-

ages, body level depth images and hand level depth images.

methods [38, 39, 6, 37, 23, 33, 5] have been developed

for gesture recognition based on ConvNets or RNNs. The

ConvNet based methods use a single dynamic image [12,

2, 11, 13, 10, 41, 40] or a depth motion map [38, 39, 42]

to represent the spatiotemporal information of a video se-

quence, and then the dynamic images and depth motion

maps are fed into ConvNets for final classification. Dy-

namic images are compact, however, temporal information

is inevitably lost to some extent during the conversion of

video into its dynamic images. RNN based methods usually

cascade ConvNets or 3DCNNs with RNN [5, 27, 47]. It

tends to overemphasize the temporal information and over-

look structure information.

Unlike previous methods utilizing a single type of net-

work or cascading multiple types of networks, we inves-

tigate a different architecture based on heterogeneous net-

works. The heterogeneous networks consist of two sepa-

rate recognition components built upon multiple ConvNets

and 3D ConvLSTMs, which are then combined by late fu-

sion. The ConvNets are trained to recognize gestures from

dynamic images, whilst the 3D ConvLSTMs perform ges-

ture recognition from still video frames. The ConvNets are
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Figure 2. Overview of the proposed method.

pre-trained on the ImageNet dataset [32] and the 3D Con-

vLSTMs are same as those described in [47]. This archi-

tecture is able to learn spatiotemporal features for gesture

recognition avoiding to overemphasize either spatial or tem-

poral features. One of the sources of interference to gesture

recognition is background, especially cluttered background.

To address this problem, this paper proposes to apply het-

erogeneous networks on video sequences at two spatial lev-

els, namely, body and hand levels. As shown in Figure 1,

this simple scheme can reduce the influence of background

and clothes and learn spatiotemporal features from global

to fine-grained levels.

The continuous gesture sequences can be segmented into

several isolated gestures based on the quantity of movement

(QOM) [19, 42], so continuous gesture recognition can be

converted to isolated gesture recognition. The proposed

method is evaluated on the 2017 ChaLearn LAP Large-scale

Gesture Recognition Challenge datasets. The results have

shown that its performances on the Isolated and Continuous

Gesture Recognition tasks are ranked among the top.

The rest of this paper is organised as follows. Section

2 reviews the related work on deep learning based gesture

recognition. Section 3 describes the proposed method. Sec-

tion 4 presents the experimental results and the discussions.

The paper is concluded in Section 5.

2. Related Work

Recently, deep learning methods based on the Convo-

lutional Neural Network (ConvNet) and Recurrent Neural

Network (RNN) have achieved remarkable success in ges-

ture recognition [9, 8, 7]. Exiting deep learning based ges-

ture recognition can be divided into four categories. The

first approach applies ConvNet to extract spatial features

from individual frames and fuse the temporal information

later. Karpathy et al. [21] explored four temporal fusion

methods, and proposed that slow fusion can get more global

information in both spatial and temporal dimensions. Ng

et al. [29] explored several temporal pooling methods and

showed that max pooling in the temporal domain leads to

significant improvements.

The second approach is to encode spatial and tempo-

ral features from RGB and stacked optical flow separately.

Simonyan et al. [33] proposed a two-stream ConvNet ar-

chitecture which incorporates spatial and temporal net-

works, and the two streams are fused together at later stage.

Methods extending the two-stream networks were also pro-

posed by integrating improved trajectories [36], motion vec-

tor [44] and Motion History Image [22].

The third approach is to extend convolutional operation

into temporal domain [18, 34]. C3D based methods demon-

strated the state-of-the-art result on the 2016 ChaLearn LAP

Large-scale Isolated Gesture Recognition Challenge. Zhu

et al. [46] embedded pyramidal input and pyramidal fusion

strategies into the C3D model for gesture recognition. Li

et al. [24] applied the C3D model on the RGB and depth

data respectively. Molchanov et al. [27] proposed recurrent

3D convolutional neural networks which integrate C3D and

LSTM for gesture recognition.
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The fourth approach is to encode the video into sin-

gle image that contain the spatiotemporal information and

then apply ConvNet for image-based recognition. Wang

et al. [38, 39] encode depth map sequences into texture

color images using the concepts of Depth Motion Maps

(DMM) and pseudo-coloring. Bilen et al. [2] and Fernando

et al. [12, 13, 10, 11] proposed to adopt rank pooling to

encode the video into one dynamic image and used pre-

training models over ImageNet dataset for fine-tuning, their

methods achieved the promising results on RGB data. Wang

et al. [41] encoded the depth map sequences into three kinds

of dynamic images with rank pooling which can learn the

posture and motion information from three different levels.

The first two approaches learn spatiotemporal features

separately or at different stages. The other two approaches

learn spatiotemoral features simultaneously, but the features

are different. The proposed gesture recognition method in

this paper combine the last two approaches to improve the

performance by using the score fusion. The fusion method

can make full use of the different kinds of features and im-

prove the recognition accuracy largely.

3. Proposed Method

As shown in Figure 2, the proposed method consists

of four components: a faster R-CNN for hand detection,

ConvNets-based classification from dynamic images, 3D

ConvLSTMs based classification from video sequences and

score fusion of the outputs from the ConvNets and 3D Con-

vLSTMs for final gesture recognition. Given an isolated

gesture sequence, the faster R-CNN proposed in [31] de-

tects hand region frame by frame and the hand images are

cropped using the biggest bounding box of hands in the

frames. On the one hand, dynamic images are constructed

for the body and hand parts from the RGB-D sequences and

fed to the ConvNets. On the other hand, the RGB-D se-

quences of the body and hands are input to the 3D ConvL-

STMs. The ConvNets and 3D ConvLSTMs are designed

to learn complementary spatiotemporal features at the two

spatial levels (i.e. body and hand) to imporve the recogni-

tion.

3.1. Faster RCNN based Hand Detection

In order to learn the spatiotemporal features at body level

and hand level respectively, hand detection on both RGB

and depth images is crucial. Hand regions are usually de-

tected by color or multiple cues, but these methods are

sensitive to illumination and background. Inspired by the

promising performance of the region-based convolutional

neural networks (R-CNNs) [15] in object detection, the pro-

posed method in this paper adopt the faster R-CNN [31] to

detect the hand regions.

The Faster R-CNN consists of two modules. The first,

called the Regional Proposal Network (RPN) [26], is a fully

convolutional network for generating object proposals that

will be fed into the second module. The second module is

the Fast R-CNN detector [14] whose purpose is to refine the

proposals. The key idea is to share the same convolutional

layers for the RPN and Fast R-CNN detector up to their own

fully connected layers. Now the image only passes through

the ConvNet once to produce and then refine object propos-

als. The Faster R-CNN is an end to end network that takes

an image as input and outputs a set of rectangular detected

objects with the class probabilities.

After hand region detected frame by frame in a video

sequence, the biggest bounding box of the hand can be de-

tected through the whole sequence. Then the hand level

images can be cropped.

3.2. ConvNetsbased Classification

Firstly, the four sets of dynamic images, Body Level

Dynamic Depth Images (BDDIs), Hand Level Dynamic

Depth Images (HDDIs), Body Level Dynamic RGB Images

(BDRIs) and Hand Level Dynamic RGB Images (HDRIs)

are constructed from an image sequence through bidirec-

tional rank pooling. Each level dynamic image is repre-

sented by two motion images, forward and backward.

3.2.1 Rank Pooling

Given a sequence with k frames, which can represented as

X =< x1, x2, · · · , xt, · · · , xk >. And ϕ(xt) ∈ R
d be a

representation or feature vector extracted from each frame

xt. Let Vt = 1

t

∑t

τ=1
ϕ(xt) be time average of these fea-

tures up to time t. At each time t, a score rt = ωT · Vt is

assigned. In general, later times are associated with larger

scores, so the score satisfies ri > rj ⇔ i > j. The pro-

cess of rank pooling is to find ω∗ that satisfies the following

objective function:

argmin
ω

1

2
‖ω‖

2
+ λ Σ

i>j
εij ,

s.t. ωT · (Vi − Vj) ≥ 1− εij , εij ≥ 0

(1)

The parameters ω∗ represent the information that frame rep-

resentation Vt comes before the frame representation Vt+1,

and can be used as a descriptor of the sequence. εij is the

smallest non-negative number.

3.2.2 Construction of Dynamic Images

In this paper, we apply the rank pooling directly on the pix-

els of video sequence to form dynamic images. Different

from the work [2], the rank pooling is applied in a bidirec-

tional way to convert one video sequence into two dynamic

images. Each dynamic image is fed into a ConvNet. The

resulting dynamic images are illustrated in Figure 3. As

shown, dynamic images effectively capture the structure in-

formation.
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Figure 4. The framework of 3D ConvLSTM. Body level depth images, body level RGB images, hand level depth images and hand level

RGB images are fed into 3D ConvLSTM.

Figure 3. Samples of generated forward and backward BDDIs,

HDDIs, BDRIs and HDRIs for gesture Mudra1/Ardhapataka, the

left images are dynamic images for forward, the right images are

dynamic images. From up to bottom: BDDIs, HDDIs, BDRIs and

HDRIs.

3.3. 3D ConvLSTMs based Classification

The 3D ConvLSTM network is described in detail by

Zhu et al. [47]. As shown in Figure 4, the 3D Con-

vLSTM network is composed of four components: Input

preprocessing, 3D Convolutional Networks, Convolutional

LSTM, Spatial Pyramid Pooling. This method uses uni-

form sampling with temporal jitter based on pyramid input

to down sample each gesture sequence into a fixed length.

The sampling process can be described as follow.

Idxi =
S

L
· (i+ jit/2) (2)

Where Idxi is the index of ith sampled frame, and jit is

a random value sampled form the uniform distribution be-

tween −1 and 1. And the sampling result can be represented

as follow.

US = {Idx1, Idx2, · · · , IdxL} (3)

After this sampling process, the video sequence is fed

into 3DCNN [34] to learn short-term spatiotemporal fea-

tures. Two-level ConvLSTM [43] is adopted to learn long-

term spatiotemporal features from short-term spatiotempo-

ral features. The final output of the high level ConvL-

STM layer is considered as the final long-term spatiotem-

poral features for each gesture. The output of ConvLSTM

has same spatial size as the output of 3D convolutional

networks. The full-connected layers need to have fixed-

size/length input by their definition. So the spatial pyramid

pooling (SPP) [16] is added on the top of ConvLSTM and

connected to the full connected layer. Different from [47],

we feed four sets of still video frames, including body level

depth images, body level RGB images, hand level depth im-

ages and hand level RGB images, into the 3D ConvLSTM

networks. Hand level depth images and hand level RGB

images focus the motions of hands, which help reduce the

influence of background.

3.4. Score Fusion for Classification

Given a pair of RGB and depth video sequences, eight

levels dynamic images are generated and fed into eight in-

dependently trained ConvNets, and the four sets of still

video frames are also fed into the 3D ConvLSTM networks.

For recognition, average-score fusion is used. The score
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vectors outputted by ConvNets and 3D ConLSTMs are av-

eraged in an element-wise way, and the max score in the

resultant vector is assigned as the probability of the test se-

quence. The index of this max score corresponds to the

predicted class label.

4. Experiments

In this section, the ChaLearn Gesture Datasets

(CGD) [35] and evaluation protocols are described. The

experimental results of the proposed method on the datasets

are reported. The final results were obtained by the chal-

lenge organisers running the code on the test datasets.

4.1. Datasets

The full ChaLearn Gesture Dataset (CGD) was recorded

by Microsoft Kinect sensor [45]. It includes color and

depth video sequences provided by the sensor but no hu-

man pose information was acquired. The ChaLearn LAP

IsoGD Dataset and the ChaLearn LAP ConGD Dataset

are derived from ChaLearn Gesture Dataset (CGD). The

ChaLearn LAP IsoGD Dataset includes 47,933 RGB-D ges-

ture video, and each RGB-D video representing one ges-

ture instance. There are 249 types of gestures performed

by 21 different individuals. The detailed information of the

ChaLearn LAP IsoGD dataset is shown in Tabel 1. The

ChaLearn LAP ConGD Dataset includes 47,933 RGB-D

gesture instances in 22,535 RGB-D gesture videos. Each

RGB-D video may represent one or more gestures, and

there are also 249 gestures performed by 21 different in-

dividuals. The detailed information of the ChaLearn LAP

ConGD dataset is shown in Tabel 2.

4.2. Network Training

4.2.1 Network Training for ConvNet

After the construction of BDDIs, HDDIs, BDRIs and

HDRIs, eight ConvNets are trained on the eight channels

individually. In this paper, the ResNet-50 [17] is adopted

as the ConvNet model. We fine-tune the ConvNets on

BDDIs and HDDIs with pre-training models on ILSVRC-

2015 [32], and then fine-tune the ConvNets on BDRIs and

HDRIs with pre-training models on BDDIs and HDDIs sep-

arately. The network weights are learned using mini-batch

stochastic gradient descent with the momentum being set to

0.9 and weight decay being set to 0.0001. All hidden weight

layers use the rectification (RELU) activation function. At

each iteration, a mini-batch of 16 samples is sampling 16

shuffled training samples. All the images are resized to

224× 224. The learning rate for fine-tuning is set to 10−4,

and then it is decreased according to a fixed schedule, which

is kept the same for all training sets. For the ConvNet, the

training undergoes 90K iterations and the learning rate is

dropped to its 0.96 every 40K iterations.

Methods Accuracy

Body Level (ConvNet) 49.14%

Hand Level (ConvNet) 50.36%

Hand Level + Body Level (ConvNet) 53.65%

Body Level (3D ConvLSTM) 51.31%

Hand Level (3D ConvLSTM) 48.32%

Hand Level + Body Level (3D ConvLSTM) 53.09%

Body Level (ConvNet+3D ConvLSTM) 57.85%

Hand Level (ConvNet+3D ConvLSTM) 54.67%

All-Score Fusion 60.81%

Table 3. The result of different schemes on validation set of

ChaLearn LAP IsoGD

4.2.2 Network Training for 3D ConvLSTM

The 3D ConvLSTM is implemented based on the tensor-

flow and Tensorlayer platforms. Four level video sequences

based networks were trained separately. We fine-tuned

the networks on depth modality based on the pre-training

model on SKIG [25] and then fine-tuned the networks on

RGB modality based on the pre-training model of the depth

modality. Batch normalization makes training processes

easier and faster. The initial learning rate is set to 0.1 and

dropped to its 1

10
every 15K iterations. The weight decay

is initialized as 0.004 and decreases to 0.00004 after 40K

iterations. At most 60K iterations are needed for training.

At each iteration, the batch-size is 13, the temporal length

of each clip is 32 frames, and the crop size for each image

is 112.

4.3. Evaluation on ChaLearn LAP IsoGD

For the isolated gesture recognition challenge, the recog-

nition rate r is used as the evaluation criteria. The recogni-

tion rate is calculated as follow.

r =
1

n

n∑

i=1

δ(pl(i), tl(i)) (4)

where n is the number of samples; pl is the predicted label;

tl is the ground truth; δ(j1, j2) = 1, if j1 = j2, otherwise

δ(j1, j2) = 0.

The result of individual levels and different networks on

validation set are listed in Table 3. The following conclu-

sions can be derived: (i) body level and hand level are com-

plementary, as their fusion improves on both; (ii) Score fu-

sion of ConvNet and 3D ConvLSTM greatly improves the

final result.

Table 4 compares the performance of the proposed

method and that of exiting methods on validation set. It can

be seen that the proposed method achieved the state-of-the-

art results compared with both hand-crafted features based

methods and deep learning methods.
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Sets # of Gestures # of RGB Videos # of Depth Videos # of Subjects

Training 35878 35878 35878 17

Validation 5784 5784 5784 2

Testing 6271 6271 6271 2

All 47933 47933 47933 21

Table 1. Information of the ChaLearn LAP IsoGD Dataset

Sets # of Gestures # of RGB Videos # of Depth Videos # of Subjects

Training 30442 14134 14134 17

Validation 8889 4179 4179 2

Testing 8602 4042 4042 2

All 47933 22535 22535 21

Table 2. Information of the ChaLearn LAP ConGD Dataset

Methods Accuracy

MFSK [35] 18.65%

MFSK+DeepID [35] 18.23%

Scene Flow [40] 36.27%

Wang et al. [41] 39.23%

Pyramidal C3D [46] 45.02%

Duan et al. [7] 49.17%

Li et al. [24] 49.2%

C3D+ConvLSTM [47] 51.02%

Proposed Method 60.81%

Table 4. Comparison of proposed method with other method on

the validation set of ChaLearn LAP IsoGD

The results on the ChaLearn LAP Large-scale Isolated

Gesture Recognition Challenge dataset are summarized in

Table 5 [20]. The final ranking is based on the test evalu-

ation phase. We can see that our method is among the top

performances, Our team obtains 65.59% accuracy on the

test dataset and place fourth in the ChaLearn LAP Large-

scale Isolated Gesture Recognition Challenge (Round 2) in

ICCV 2017.

4.4. Evaluation on ChaLearn LAP ConGD

The proposed method has been also applied to continu-

ous gesture recognition. The continuous gesture sequence

was first segmented into several isolated gesture sequences

based on quantity of movement (QOM) [19, 42]. For con-

tinuous gesture recognition, the Jaccard index (the higher

the better) is adopted to measure the performance. The Jac-

card index measures the average relative overlap between

true and predicted sequences of frames for a given gesture.

For a sequence s, let Gs,i and Ps,i be binary indicator vec-

tors for which 1-value correspond to frames in which the ith

gesture label is being performed. The Jaccard Index for ith

Methods Mean Jaccard Index JS

MFSK [35] 0.0918

MFSK+DeepID [35] 0.0902

Wang et al. [42] 0.2403

Chai et al. [4] 0.2655

Camgoz et al. [3] 0.2809

Proposed Method 0.5957

Table 6. Comparison of the proposed method with other methods

on the validation set of ChaLearn LAP ConGD

class is defined for the sequence s as follow.

Js,i =
Gs,i

⋂
Ps,i

Gs,i

⋃
Ps,i

(5)

where Gs,i is the ground truth of the ith gesture label in

sequence s, and Ps,i is the prediction for the ith label in

sequence s.

When Gs,i and Ps,i are empty, Js,i is defined to be 0.

Then for the sequence s with ls true labels, the Jaccard In-

dex Js is calculated as follow.

Js =
1

ls

L∑

i=1

Js,i (6)

where L is the number of gesture labels. For all testing se-

quences S = s1, · · · , sn with n gestures, the mean Jaccard

Index JS is used as the evaluation criteria and calculated as

follow.

JS =
1

n

n∑

j=1

Jsj (7)

Tabel 6 compares the performance of the proposed

method and that of exiting methods on the validation

dataset. It can be seen that the proposed method achieve

the state-of-the-art results.
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Rank by test set Team Recognition Rate r (valid set) Recognition Rate r (test set)

1 ASU 64.40% 67.71%

2 SYSU ISEE 59.70% 67.02%

3 Lostoy 62.02% 65.97%

4 AMRL(ours) 60.81% 65.59%

5 XDETVP 58.00% 60.47%

- baseline [7] 49.17% 67.26%

Table 5. Comparison of the performance of our method with others in ChaLearn LAP Large-scale Isolated Gesture Recognition Challenge

Rank by testing dataset Team Mean Jaccard Index JS (valid set) Mean Jaccard Index JS (test set)

1 ICT NHCI 0.5163 0.6103

2 AMRL(ours) 0.5957 0.5950

3 PaFiFA 0.3646 0.3744

4 Deepgesture 0.3190 0.3164

Table 7. Comparison of the performance of the proposed method with other methods in ChaLearn LAP Large-scale Continuous Gesture

Recognition Challenge

The results of ChaLearn LAP Large-scale Continuous

Gesture Recognition Challenge are listed in Table 7 [20].

The final ranking is based on the test evaluation phase. It

can be seen that our method is among the top performance.

Our mean Jaccard Index is 0.5950 on the test dataset, which

is placed second and very close to the best performance of

the ChaLearn LAP Large-scale Continuous Gesture Recog-

nition Challenge (Round 2) in ICCV 2017. It should be

noticed that the proposed method achieves the best perfor-

mance on the validation dataset.

5. Conclusion

This paper presents an effective method for large-scale

multimodal gesture recognition using heterogeneous net-

works. The proposed method take both advantages of Con-

vNet based on dynamic image method and 3D ConvLSTM

method. The evaluation results demonstrate that our hetero-

geneous networks can learn effectively different levels of

spatiotemporal features and these features are complemen-

tary to each other.
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