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Abstract

Existing logo detection methods usually consider a small

number of logo classes and limited images per class with a

strong assumption of requiring tedious object bounding box

annotations, therefore not scalable to real-world applica-

tions. In this work, we tackle these challenges by exploring

the webly data learning principle without the need for ex-

haustive manual labelling. Specifically, we propose a novel

incremental learning approach, called Scalable Logo Self-

Training (SLST), capable of automatically self-discovering

informative training images from noisy web data for pro-

gressively improving model capability. Moreover, we intro-

duce a very large (1,867,177 images of 194 logo classes)

logo dataset “WebLogo-2M”1 by an automatic web data

collection and processing method. Extensive comparative

evaluations demonstrate the superiority of the proposed

SLST method over state-of-the-art strongly and weakly su-

pervised detection models and contemporary webly data

learning alternatives.

1. Introduction

Automated logo detection from “in-the-wild” (uncon-

strained) images benefits a wide range of applications in

many domains, e.g. brand trend prediction for commer-

cial research and vehicle logo recognition for intelligent

transportation [27, 26, 21]. This is inherently a challenging

task due to the presence of many logos in diverse context

with uncontrolled illumination, low-resolution, and back-

ground clutter (Fig. 1). Existing methods typically consider

a small number of logo images and classes under the as-

sumption of having large sized training data annotated at

the logo object instance level, i.e. object bounding boxes

[14, 15, 27, 25, 26, 1, 17, 21]. Whilst this controlled setting

allows a straightforward adoption of state-of-the-art detec-

tion models [24, 8], it is unscalable to real-world logo detec-

tion tasks when a much larger number of logo classes are of

interest but limited by (1) the extremely high cost for con-

1The WebLogo-2M dataset is available at http://www.eecs.

qmul.ac.uk/˜hs308/WebLogo-2M.html

Figure 1: Illustration of logo detection challenges: significant logo vari-

ation in object size, illumination, background clutter, and occlusion.

structing therefore unavailability of large scale logo dataset

with exhaustive logo instance bounding box labelling [29];

and (2) lacking incremental model learning to progressively

update and expand the model to increasingly more training

data without such fine-grained labelling. Existing models

are mostly one-pass trained and blindly generalised to new

test data.

In this work, we consider scalable logo detection in very

large collections of unconstrained images without exhaus-

tive fine-grained object instance level labelling for model

training. Given that all existing datasets only have small

numbers of logo classes, one possible strategy is to learning

from a small set of labelled training classes and adopting the

model to other novel (test) logo classes, that is, Zero-Shot

Learning (ZSL) [33, 16, 7]. This class-to-class model trans-

fer and generalisation in ZSL is achieved by knowledge

sharing through an intermediate semantic representation for

all classes, such as mid-level attributes [16] or a class em-

bedding space of word vectors [7]. However, they are lim-

ited if at all shared attributes or other forms of semantic

representations among logos due to their unique charac-

teristics. A lack of large scale logo datasets (Table 1), in

both class numbers and image instance numbers per class,

limit severely learning scalable logo models. This study ex-

plores the webly data learning principle for addressing both

large scale dataset construction and incremental logo model

learning without exhaustive manual labelling of increasing

data expansion. We call this setting scalable logo detection.

Our contributions in this work are three-fold: (1) We
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Table 1: Statistics and characteristics of existing logo detection datasets.

Dataset Logos Images Supervision Noisy Construction Scalability Availability

BelgaLogos [14] 37 10,000 Object-Level ✗ Manually Weak ✓

FlickrLogos-27 [15] 27 1,080 Object-Level ✗ Manually Weak ✓

FlickrLogos-32 [27] 32 8,240 Object-Level ✗ Manually Weak ✓

TopLogo-10 [32] 10 700 Object-Level ✗ Manually Weak ✓

LOGO-NET [12] 160 73,414 Object-Level ✗ Manually Weak ✗

WebLogo-2M (Ours) 194 1,867,177 Image-Level ✓ Automatically Strong ✓(Soon)

investigate the scalable logo detection problem, charac-

terised by modelling a large quantity of logo classes with-

out exhaustive bounding box labelling. This is signifi-

cantly under-studied in the literature. (2) We propose a

novel incremental learning approach to scalable logo detec-

tion by exploiting multi-class detection with synthetic con-

text augmentation. We call our method as Scalable Logo

Self-Training (SLST), since it automatically discovers po-

tential positive logo images from noisy web data to pro-

gressively improve the model generalisation in an iterative

self-learning manner. (3) We introduce a large logo detec-

tion dataset with 194 logo classes and 1,867,177 images,

called WebLogo-2M, by automatically sampling webly logo

images from the social media Twitter. Importantly, this

scheme allows to further expand easily our dataset with new

logo classes, and therefore offering a scalable solution for

dataset construction. Extensive comparative experiments

demonstrate the superiority of the proposed SLST method

over not only state-of-the-art strongly (Faster R-CNN [24],

SSD [19]) and weakly (WSL [4]) supervised detection mod-

els but also webly learning methods (WLOD [2]), on the

newly introduced WebLogo-2M dataset .

2. Related Works

Logo Detection Early logo detection methods are estab-

lished on hand-crafted visual features (e.g. SIFT and HOG)

and conventional classification models (e.g. SVM) [17, 25,

26, 1, 15]. In these methods, only small logo datasets are

evaluated with a limited number of both logo images and

classes modelled. A few deep methods [13, 12, 32] have

been recently proposed by exploiting the state-of-the-art ob-

ject detection models such as R-CNN [9, 24, 8]. This in turn

inspires large data construction [12]. However, all these ex-

isting models are not scalable to real world deployments due

to two stringent requirements: (1) Accurately labelled train-

ing data per logo class; (2) Strong object-level bounding

box annotations. This is because, both requirements give

rise to time-consuming training data collection and annota-

tion, which is not scalable to a realistically large number of

logo classes given limited human labelling effort. In con-

trast, our method eliminates both needs by allowing the de-

tection model learning from image-level weakly annotated

and noisy images automatically collected from the social

media (webly). As such, we enable automated introduc-

tion of any quantity of new logos for both dataset construc-

tion/expansion and model updating without the need for ex-

haustive manual labelling.

Logo Datasets A number of logo benchmark datasets exist

(Table 1). Most existing datasets are constructed manually

and typically small in both image number and logo category

thus insufficient for deep learning. Recently, Hoi et al. [12]

attempt to address this small logo dataset problem by cre-

ating a large LOGO-NET dataset. However, this dataset is

not publicly accessible. To address this scalability problem,

we propose to collect logo images automatically from the

social media. This brings two unique benefits: (1) Weak

image level labels can be obtained for free; (2) We can eas-

ily upgrade the dataset by expanding the logo category set

and collecting new logo images without human labelling

therefore scalable to any quantity of logo images and logo

categories. To our knowledge, this is the first attempt to

construct a large scale logo dataset by exploiting inherently

noisy web data.

Self-Training Self-training is a special type of incremen-

tal learning wherein the new training data are labelled by

the model itself – predicting logo positions and class labels

in weakly labelled or unlabelled images before converting

the most confident predictions into the training data [20].

A similar approach to our model is the detection model by

Rosenberg et al. [28]. This model also explores the self-

training mechanism. However, this method needs a num-

ber of per class strongly and accurately labelled training

data at the object instance level to initialise their detection

model. Moreover, it assumes all unlabelled images belong

to the target object categories. These two assumptions limit

severely model effectiveness and scalability given webly

collected training data without any object bounding box la-

belling whilst with a high ratio of noisy irrelevant images.

3. WebLogo-2M Logo Detection Dataset

We present a scalable method to automatically construct

a large logo detection dataset, called WebLogo-2M, with

1,867,177 webly images from 194 logo classes (Table 2).
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Table 2: Statistics of the WebLogo-2M dataset. Numbers in

parentheses: the minimum/median/maximum per class.

Logos Raw Images Filtered Images Noise Rate (%)

194 4,047,129 1,867,177 Varying

- - (5/2583/141,480) (25.0/90.2/99.8)

3.1. Logo Image Collection and Filtering

Logo Selection A total of 194 logo classes from 13 differ-

ent categories are selected in the WebLogo-2M dataset (Fig.

4). They are popular logos and brands in our daily life, in-

cluding the 32 logo classes of FlickrLogo-32 [27] and the

10 logo classes of TopLogo-10 [32]. Specifically, the logo

class selection was guided by an extensive review of so-

cial media reports regarding to the brand popularity 234 and

market-value56.

Image Source Selection We selected the social media web-

site Twitter as the data source of WebLogo-2M. Twitter of-

fers well structured multi-media data stream sources and

more critically, unlimited data access permission therefore

facilitating the collection of large scale logo images7.

Image Collection We collected 4,047,129 webly logo im-

ages. Specifically, through the Twitter API, one can auto-

matically retrieve images from tweets by matching query

keywords against tweets in real time. In our case, we query

the logo brand names so that images in tweets containing

the query words can be extracted. The retrieved images are

then labelled with the corresponding logo name at the image

level, i.e. weakly labelled.

Logo Image Filtering We obtained a total of 1,867,177 im-

ages after conducting a two-steps auto-filtering: (1) Noise

Removal: We removed images of small width and/or height

(e.g. less than 100 pixels), statistically we observed that

such images are mostly without any logo objects (noisy).

(2) Duplicate Removal: We identified and discarded exact-

duplicates (i.e. multiple copies of the same image). Specif-

ically, given an reference image, we removed those with

identical width and height. This image spacial size based

scheme is not only computationally cheaper than the ap-

pearance based alternative [22], but also very effective. For

example, we manually examined the de-duplicating process

on 50 randomly selected reference images and found that

over 90% of the images are true duplicates.

2http://www.ranker.com/crowdranked-list/ranking-the-best-logos-in-the-world
3http://zankrank.com/Ranqings/?currentRanqing=logos
4http://uk.complex.com/style/2013/03/the-50-most-iconic-brand-logos-of-all-

time
5http://www.forbes.com/powerful-brands/list/#tab:rank
6http://brandirectory.com/league tables/table/apparel-50-2016
7We also attempted at Google and Bing search engines, and three other

social media (Facebook, Instagram, and Flickr). However, all of them are

rather restricted in data access and limiting incremental big data collec-

tion, e.g. Instagram allows only 500 times of image downloading per hour

through the official web API.

3.2. Properties of WebLogo2M

Compared to existing logo detection databases [14, 27,

12, 32], this webly logo image dataset presents three unique

properties inherent to large scale data exploration for learn-

ing scalable logo models:

(I) Weak Annotation All WebLogo-2M images are weakly

labelled at the image level by the query keywords. These

labels are obtained automatically in data collection without

human fine-grained labelling. This is much more scalable

than manually annotating accurate individual logo bound-

ing boxes, particularly when the number of both logo im-

ages and classes are very large.

(II) Noisy (False Positives) Images collected from online

web sources are inherently noisy, e.g. often no logo objects

appearing in the images therefore providing plenty of natu-

ral false positive samples. For estimating a degree of nois-

iness, we sampled randomly 1,000 web images per class

for all 194 classes and manually examined whether they are

true or false logo images8. As shown in Fig. 2, the true logo

image ratio varies significantly among 194 logos, e.g. 75%

for “Rittersport” vs. 0.2% for “3M”. On average, true logo

images take only 21.26% vs. the remaining as false posi-

tives. Such noisy images pose extremely high challenges to

model learning, even though there are plenty of data scal-

able to very large size in both class numbers and samples

per class.

Figure 2: True logo image ratios (%). This was estimated

from 1,000 random logo images per class over 194 classes.

(III) Class Imbalance The WebLogo-2M dataset presents

a natural logo object occurrence imbalance in daily pub-

lic scenes. Specifically, logo images collected from web

streams exhibit a power-law distribution (Fig. 3). This

property is often artificially eliminated in most existing logo

datasets by careful manual filtering, which not only causes

extra labelling effort but also renders the model learning

challenges unrealistic. In contrast, we preserve the inher-

ent class imbalance nature in the data for fully automated

dataset construction and retaining more realistic data for

model learning, which requires minimising model learning

bias towards densely-sampled classes [10].

8 In the case of sparse logo classes with less than 1,000 webly collected

images, we examined all available images.
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Figure 4: A glimpse of the WebLogo-2M dataset. (a) Example webly (Twitter) logo images randomly selected from the class “Adidas” with logo instances

manually labelled by green bounding boxes only for facilitating viewing. Most images contain no “Adidas” object, i.e. false positives, suggesting a high

noise degree in webly collected data. (b) Clean images of 194 logo classes automatically collected from the Google Image Search, used in synthetic training

images generation and augmentation. (c) One example true positive webly (Twitter) image per logo class, totally 194 images, showing the rich and diverse

context in unconstrained images where typical logo objects reside in reality.

Further Remark Since the proposed dataset construction

method is completely automated, new logo classes can be

easily added without human labelling. This permits good

scalability to enlarging the dataset cumulatively, in con-

trast to existing methods [29, 12, 18, 5, 14, 27, 12, 32]

that require exhaustive human labelling therefore hamper-

ing further dataset updating and enlarging. This automa-

tion is particularly important for creating object detection

datasets with expensive needs for labelling explicitly ob-

ject bounding boxes, than building cheaper image-level

class annotation datasets [11]. While being more scalable,

this WebLogo-2M dataset also provides more realistic chal-

lenges for model learning given weaker label information,

noisy image data, unknown scene context, and significant
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Figure 3: Imbalanced logo image class distribution,

ranging from 3 images (“Soundrop”) to 141,412 images

(“Youtube”), i.e. 47,137 imbalance ratio.

class imbalance.

3.3. Benchmarking Training and Test Data

We define a benchmarking logo detection setting here.

In the scalable webly learning context, we deploy the whole

WebLogo-2M dataset (1,867,177 images) as the training

data. For performance evaluation, a set of images with

fine-grained object-level annotation groundtruth is required.

To that end, we construct an independent test set of 6,019

logo images with logo bounding box labels by (1) assem-

bling 2,870 labelled images from the FlickrLogo-32 [27]

and TopLogo [32] datasets and (2) manually labelling 3,149

images independently collected from the Twitter. Note that,

the only purpose of labelling this test set is for performance

evaluations of different detection methods, independent of

WebLogo-2M construction.

4. Self-Training A Multi-Class Logo Detector

We aim to automatically train a multi-class logo detec-

tion model incrementally from noisy and weakly labelled

web images. Different from existing methods building a

detector in a one-pass “batch” procedure, we propose to in-

crementally enhance the model capability “sequentially”, in

the spirit of self-training [20]. This is due to the unavailabil-

ity of sufficient accurate fine-grained training images per

class. In other words, the model must self-select trustwor-

thy images from the noisy webly labelled data (WebLogo-

2M) to progressively develop and refine itself. This is a

catch-22 problem: The lack of sufficient good-quality train-

ing data leads to a suboptimal model which in turn produces

error-prone predictions. This may cause model drift – the

errors in model prediction will be propagated through the

iterations therefore have the potential to corrupt the model

knowledge structure. Also, the inherent data imbalance

over different logo classes may make model learning biased

towards only a few number of majority classes, therefore

leading to significantly weaker capability in detecting mi-

nority classes. Moreover, the two problems above are in-

trinsically interdependent with one possibly negatively af-

fecting the other. It is non-trivial to solve these challenges

without exhaustive fine-grained human annotations.

Rational of Model Design In this work, we present a scal-

able logo detection learning solution capable of addressing

the aforementioned two issues in a self-training framework.

The intuition is: Web knowledge provides ambiguous but

still useful coarse image level logo annotations, whilst self-

training offers a scalable learning means to explore itera-

tively such weak information. We call our method Scalable

Logo Self-Training (SLST). In SLST, we select strongly-

supervised rather than weakly-supervised baseline models

to initialise the self-training process for two reasons: (1)

The performance of weakly-supervised models are much

inferior than that of strongly supervised counterparts [3];

(2) The noisy webly weak labels may further hamper the

effectiveness of weakly supervised learning. A schematic

overview of the entire SLST process is depicted in Fig. 5.

4.1. Model Bootstrap

To start SLST, we first need to provide a reasonably dis-

criminative logo detection baseline model with sufficient

bootstrapping training data discovery. In our implementa-

tion, we choose the Faster R-CNN [24] due to its good per-

formance on detecting varying-size objects [32]. Other al-

ternatives e.g. SSD [19] and YOLO [23] can be readily inte-

grated. The choice of this baseline model is independent of

the proposed SLST method. Faster R-CNN needs strongly

supervised learning from object-level bounding box anno-

tations to gain detection discrimination, which however is

not available in our scalable webly learning setting.

To overcome this problem, we propose to exploit the idea

of synthesising fine-grained training logo images, therefore

maintaining model learning scalability for accommodating

large quantity of logo classes. In particular, this is achieved

by generating synthetic training images as in [32]: Over-

laying logo icon images at random locations of non-logo

background images so that bounding box annotations can

be automatically and completely generated. The logo icon

images are automatically collected from the Google Image

Search by querying the corresponding logo class name (Fig.

4 (b)). The background images can be chosen flexibly, e.g.

the non-logo images in the FlickrLogo-32 dataset [27] or

others retrieved by irrelevant query words from web search

engines. To enhance appearance variations in synthetic lo-

gos, colour and geometric transformation can be applied

[32].

Training Details We synthesised 100 training images per

logo class, in total 19,400 images. For learning the Faster

R-CNN, we set the learning rate 0.0001, and the learning

iterations 6, 000 to 14, 000 depending on the training data

size at each iteration. Following [32], we pre-trained the

detector on ImageNet object classification images [29] for

model warmup.
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Figure 5: Overview of the Scalable Logo Self-Training (SLST) method. (1) Model initialisation by using synthetic logo training images (Sec. 4.1). (2)

Incrementally self-mining positive logo images from noisy web data pool (Sec. 4.2). (3) Balance training data by synthetic context augmentation on mined

data (Sec. 4.3). (4) Using both mined web images and context-enhanced synthetic images for model updating (Sec. 4.4). This process is repeated iteratively

for progressive training data mining and model update.

4.2. Incremental SelfMining Noisy Web Images

After the logo detector is discriminatively bootstrapped,

we proceed to improve its detection capability by incre-

mentally self-mining potentially positive logo images from

weakly labelled WebLogo-2M data. To identify the most

compatible training images, we define a selection function

using the detection score of up-to-date model:

S(Mt,x, y) = Sdet(y|Mt,x) (1)

where Mt denotes the t-th step detector model, and x de-

notes a logo image with the web image-level label y ∈
Y = {1, 2, · · · ,m} with m the total logo class number.

Sdet(y|Mt,x) ∈ [0, 1], indicates the maximal detection

score of x on the logo class y by model Mt. For positive

logo image selection, we need a high threshold detection

confidence (0.9 in our experiments) [35] for strictly con-

trolling the impact of model detection errors in degrading

the incremental learning benefits. This new training data

discovery process is summarised in Alg. 1.

4.3. CrossClass Synthetic Context Augmentation

Inspired by the benefits of context enhancement in logo

detection [32], we propose the idea of cross-class context

augmentation for not only fully exploring the contextual

richness of WebLogo-2M data but also addressing the in-

trinsic imbalanced logo class problem where model learn-

ing is likely biased towards well-labelled classes (the major-

ity classes) resulting in poor performance against sparsely-

labelled classes (the minority classes) [10].

Specifically, we ensure that at least Ncls images will be

newly introduced into the training data pool in each self-

discovery iteration. Suppose N i

web web images are self-

discovered for the logo class i (Alg. 1), we generate N i

syn

synthetic images where

N i

syn = max(0, Ncls −N i

web). (2)

Algorithm 1 Incremental Self-Mining Noisy Web Images

Input: Current model Mt−1, Unexplored data Dt−1, Self-

discovered logo training data Tt−1 (T0 = ∅);

Output: Updated self-discovered training data Tt, Updated

unlabelled data pool Dt;

Initialisation:

Tt = Tt−1;

Dt = Dt−1;

for image i in Dt−1

Apply Mt−1 to get the detection results;

Evaluate i as a potential positive logo image;

if Meeting selection criterion (Eq. (1))

Tt = Tt ∪ {i};

Dt = Dt \ {i};

end if

end for

Return Tt and Dt.

Therefore, we only perform synthetic data augmentation for

those classes with only <Ncls real web images mined in the

current iteration. We set Ncls = 500 considering that too

many synthetic images may bring in negative effects due

to the imperfect logo appearance rendering against back-

ground. Importantly, we choose the self-mined logo images

of other classes (j 6= i) as the background images for partic-

ularly enriching the contextual diversity for improving logo

class i (Fig. 6). We utilise the SCL synthesising method

[32] as in model bootstrap (Sec. 4.1).

4.4. Model Update

Once we have self-mined and context enriched synthetic

training data, we incrementally update the detection model

by fine-tuning batch-wise training. Model generalisation is
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Figure 6: Example images by synthetic context augmenta-

tion. Red box: model detection; Green box: synthetic logo.

to be improved when the new training data quality is suf-

ficient in terms of both true positives percentage and the

context richness.

5. Experiments

Competitors We compared the proposed SLST model with

five state-of-the-art alternative detection approaches: (1)

Faster R-CNN [24]: A competitive region proposal driven

object detection model which is characterised by jointly

learning region proposal generation and object classifica-

tion in a single deep model In our scalable webly learn-

ing context, the Faster R-CNN is optimised with synthetic

training data generated by the SCL [32] method, exactly the

same as our SLST model. (2) SSD [19]: A state-of-the-

art regression optimisation based object detection model.

We similarly learn this strongly supervised model with syn-

thetic logo instance bounding box labels as Faster R-CNN

above. (3) Weakly Supervised object Localisation (WSL)

[4]: A state-of-the-art weakly supervised detection model

allowing to be trained with image-level logo label annota-

tions in a multi-instance learning framework. Therefore, we

can directly utilise the webly labelled WebLogo-2M images

to train the WSL detection model. Note that, noisy logo la-

bels inherent to web data may pose additional challenges

in addition to high complexity in logo appearance and con-

text. (4) Webly Learning Object Detection (WLOD) [2]: A

state-of-the-art weakly supervised object detection method

where clean Google images are used to train exemplar clas-

sifiers which is deployed to classify region proposals by

EdgeBox [36]. In our implementation, we further improved

the classification component by exploiting an VGG-16 [31]

model trained by the ImageNet-1K & Pascal VOC data as a

stronger feature extractor and the L2 distance as the match-

ing metric. We adopted the nearest neighbour classifica-

tion model with Google logo images (Fig. 4(b)) as the la-

belled training data. (5) WLOD+SCL: a variant of WLOD

[2] with context enriched training data by exploiting SCL

[32] to synthesise various context for Google logo images.

Performance Metrics For the quantitative performance

measure of logo detection, we utilised the Average Preci-

sion (AP) for each individual logo class, and the mean Aver-

age Precision (mAP) for all classes [6]. A detection is con-

sidered corrected when the Intersection over Union (IoU)

between the predicted and groundtruth exceeds 50%.

Table 3: Logo detection performance comparison.

Model mAP (%)

Faster R-CNN [24] 14.59

SSD [19] 9.02

WSL [4] 4.28

WLOD [2] 17.35

WLOD[2] + SCL[32] 7.72

SLST 34.37

5.1. Comparative Evaluations

We compared the logo detection performance on the

WebLogo-2M benchmarking test data in Table 3. It is ev-

ident that the proposed SLST model significantly outper-

forms all other alternative methods, e.g. surpassing the best

baseline WLOD by 17.02% (34.37%-17.35%) in mAP. We

also have the following observations: (1) The weakly super-

vised learning based model WSL produces the worst result,

due to the joint effects of complex logo appearance variation

against unconstrained context and high proportions of false

positive logo images (Fig. 2). (2) WLOD method performs

reasonably well suggesting that the knowledge learned from

auxiliary data sources (ImageNet and Pascal VOC) is trans-

ferable to some degree, confirming the similar findings as

in [30, 34]. (3) By utilising synthetic training images with

rich context and background, fully supervised model Faster

R-CNN is able to achieve the 3rd best results among all com-

petitors. This suggests that context augmentation is critical

for object detection model optimisation, and the combina-

tion of strongly supervised learning model + auto training

data synthesising is a preferred strategy over weakly super-

vised learning in webly learning setting. The regression de-

tection model SSD yields lower performance. One plausi-

ble reason is the inherent weaker capability of non-proposal

detection model in locating small objects such as in-the-

wild logo instances (Fig. 1). (4) Interestingly, WLOD +

SCL produces a weaker result (7.72%) compared to WLOD

(17.35%) suggesting that joint supervised learning is crit-

ical to exploit context enriched data augmentation, other-

wise introducing distracting effects resulting in degraded

matching. For visual comparison, qualitative evaluations

for SLST and WLOD are shown in Fig. 7.

5.2. Further Analysis and Discussions

Effects of Incremental Model Self-Training We evalu-

ated the effects of incremental learning on self-discovered

training data and context enriched synthetic images by ex-

amining the SLST model performance at individual itera-

tions. Table 4 shows that the SLST model improves consis-

tently over iterations of self-training 9, with the starting data

mining bringing in the maximal mAP gain 8.00% (22.59%-

9We stopped after four rounds of self-training since the obtained per-

formance gain is not significant.
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Figure 7: Quantitative evaluations of the (a) WLOD and (b)

SLST models. Red box: detected. Green box: ground truth.

WLOD fails to detect visually ambiguous (1st column) and

small-sized (2nd column) logo instances, while only fires

partially on the salient one (3rd column). The SLST model

can correctly detect all these logo instances with varying

context and appearance quality.

Table 4: Effects of incremental model self-training in SLST.

Iteration 0 1 2 3 4

mAP (%) 14.59 22.59 28.85 31.86 34.37

Gain (%) N/A 8.00 6.26 3.01 2.51

Mined Image 4,235 23,615 47,183 76,643 95,722

14.59%) and the per-iteration benefit dropping gradually.

This suggests that our model design is capable of effectively

addressing the notorious error propagation challenge thanks

to (1) a proper detection model initialisation by logo context

synthesising for providing a sufficient starting detection; (2)

a strict selection on self-evaluated detections for reducing

the amount of false positives, suppressing the likelihood of

error propagation; and (3) the cross-logo context enriched

synthetic training data augmentation and balancing for ad-

dressing the imbalanced data learning problem whilst en-

hancing the model robustness against diverse unconstrained

background clutters. We also observed that more images are

mined along the incremental data mining process, suggest-

ing that the SLST model improves over time in the capabil-

ity of tackling more complex context, although potentially

simultaneously leading to more false positives which can

cause lower model growing rates, as indicated in Fig. 8.

Effects of Synthetic Context Enhancement We evalu-

ated the impact of training data context enhancement (i.e.

the cross-class context enriched synthetic training data) on

the SLST model performance. Table 5 shows that context

augmentation brings in 4.87% (34.37%-29.50%) mAP im-

provement. This suggests the importance of context and

data balance in detection model learning, confirming our

model design intuition.

6. Conclusion

We present a scalable end-to-end logo detection solu-

tion including logo dataset establishment and multi-class

Figure 8: Randomly selected images self-discovered in the

(a) 1st and (b) 4th iteration for the logo class “Android”.

Red box: SLST model detection. Red cross: false detec-

tion. The images mined in the 1st iteration have clean logo

instances and background, whilst those discovered in the 4th

iteration have more varied and ambiguous logo instances in

more complex context. More false detections are produced

in the 4th self-discovery.

Table 5: Effects of training data Context Enhancement (CE)

on SLST self-training. Metric: mAP (%).

CE 0 1 2 3 4

✗ 14.59 17.44 24.34 27.81 29.50

✓ 14.59 22.59 28.85 31.86 34.37

logo detection model learning, realised by exploring the

webly data learning principle without the cost of manu-

ally labelling fine-grained logo annotations. Particularly,

we propose a new incremental learning method named Scal-

able Logo Self-Training (SLST) for enabling reliable self-

discovery and auto-labelling of new training images from

noisy web data to progressively improve the model detec-

tion capability in unconstrained in-the-wild images. More-

over, we construct a very large logo detection benchmark-

ing dataset WebLogo-2M by automatically collecting and

processing web stream data (Twitter) in a scalable manner,

therefore facilitating and motivating the further investiga-

tion of scalable logo detection in the near future. We have

validated the advantages and superiority of the proposed

SLST approach in comparisons to state-of-the-art alterna-

tive methods ranging from strongly- and weakly-supervised

detection models to webly data learning models through ex-

tensive comparative evaluations and analysis on the bene-

fits of incremental model training and context enhancement,

using the newly introduced WebLogo-2M logo benchmark

dataset.
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