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Abstract

Web videos are usually weakly annotated, i.e., a tag is

associated to a video once the corresponding concept ap-

pears in a frame of this video without indicating when and

where it occurs. These weakly annotated tags pose big trou-

bles to many Web video applications, e.g. search and recom-

mendation. In this paper, we present a new Web video an-

notation approach based on multi-instance learning (MIL)

with a learnable pooling function. By formulating the Web

video annotation as a MIL problem, we present an end-to-

end deep network framework to solve this problem in which

the frame (instance) level annotation is estimated from tags

given at the video (bag of instances) level via a convolu-

tional neural network (CNN). A learnable pooling function

is proposed to adaptively fuse the outputs of the CNN to de-

termine tags at the video level. We further propose a new

loss function that consists of both bag-level and instance-

level losses, which enables the penalty term to be aware

of the internal state of network rather than only an over-

all loss, thus makes the pooling function learned better and

faster. Experimental results demonstrate that our proposed

framework is able to not only enhance the accuracy of Web

video annotation by outperforming the state-of-the-art Web

video annotation methods on the large-scale video dataset

FCVID, but also help to infer the most relevant frames in

Web videos.

1. Introduction

Video annotation, also known as video tagging, is an es-

sential but challenging problem especially for Web videos.

It plays a crucial role in orgnizing and accessing large-

scale video collections [6]. However, Web videos are usu-

ally weakly annotated. They are often contributed by end

users and thus lack regular metadata and/or descriptive text.

Compared with many carefully annotated video datasets in
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which only a few representative tags are associated to each

short video, a tag can be assigned to a Web video as long as

a frame in this video reveals the related concept but where

and when the concept occurs is not provided.

Existing work on video annotation can be roughly clas-

sified into two categories, temporal-aware and frame-based

methods. Temporal-aware methods [14, 20, 37] exploit

temporal correlations among video frames to recognize

actions and events identifiable with motion information.

Frame-based methods, on the other hand, focus on contents

in individual frames since many important concepts can be

well determined by looking at individual frames of a video

without using temporal correlations. Examples include ob-

jects, scenes, and lots of actions like eat, sit, and so on.

Thus frame-based methods are proposed to annotate videos

based on concepts in individual frames (usually keyframes)

and achieve promising results at relatively lower computa-

tional cost [47]. In this paper, we focus on the frame-based

approach to annotate Web videos for both accuracy and ef-

ficiency.

Annotation related work has been investigated with re-

gard to the characteristics of Web videos. The vast quan-

tity of near-duplicated videos are explored for both video

tagging [41, 5] and retagging [6]. Tagging of foreground

moving object is designed in [44] for the uncontrolled Web

video. Another group of methods manages to take advan-

tage of resourceful complementary information to help Web

video annotation [54, 55, 5]. Also, semantic events besides

visual concepts are studied for detection [53] and summa-

rization [47] of long Web videos. However, to the best of

our knowledge, there is only a few work focusing on the an-

notation problem directly from the weakly annotated Web

videos, especially based on deep network frameworks.

In this paper, we present a new Web video annotation

method by formulating the annotation as a multi-instance

learning (MIL) problem since Web video is less temporal-

aware and its tags are coarsely grained. Inspired by the re-

cent advances of deep network models, we propose a deep

network framework to solve the MIL problem of frame-

based video annotation. The network accepts frames of a

video as inputs and processes each frame individually and
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identically by a convolutional neural networks(CNN)[24].

Later on, outputs at frame level are fused to determine

the relevant tags at the video level and further refine the

frame level prediction. The fusion is framed as pooling

in deep network models which essentially bridges the gap

between instance-level learning and bag-level supervision.

The refinement is executed internally through our proposed

bag+instance loss function.

We address the fusion problem in Web video annotation

by proposing a learnable pooling function that is introduced

as a new learnable pooling layer in deep networks for end-

to-end training. Moreover, a new loss function is presented

that consists of both bag-level and instance-level losses, and

the latter is estimated from instance-level outputs of the net-

work. The new loss function contributes not only to the

learning of pooling function, but also to the quick conver-

gence of the training. We show by experiments that our pro-

posed new pooling layer and new loss function together help

to improve the accuracy of Web video annotation and mean-

while are able to identify the most relevant frames. Our

proposed method outperforms the state-of-the-art annota-

tion methods (even with much more complex networks that

use temporal correlation and/or multimodal including audio

information on the large scale Web video dataset FCVID

[19].

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 presents the MIL

deep network for Web video annotation followed by the

learnable pooling and new bag+instance loss function. Sec-

tion 4 shows experimental results. At last, Section 5 con-

cludes this paper.

2. Related Work

In this section, related work on video annotation, MIL

deep networks, and pooling functions is discussed.

Video Annotation/Classification. Much progress has

been made on video annotation recently. Most of the

work follows a standard pipeline, i.e. kinds of features

are extracted from videos and then fed into classifiers to

generate tags. Depending on whether the extracted fea-

tures embed temporal correlations, existing methods can be

roughly categorized into temporal-aware and frame-based

ones. Temporal-aware methods often focus on the design of

temporal features, such as spatial-temporal interest points

(STIP) [25] and trajectory-based descriptors [45], whereas

frame-based methods explore visual features developed for

still images [47]. Recent work focuses more on deep net-

work models [20, 37] rather than the classic support vector

machine (SVM) based solutions [39, 34, 48]. Karpathy et

al. extend the connectivity of a CNN in time domain to take

advantage of local spatio-temporal information and suggest

a multi-resolution architecture for video classification [20].

Simonyan and Zisserman propose a two-stream CNN ap-

proach that extracts features from both static frames and

motion optical flow separately [37].

For Web video annotation, Sun et al. present consensus

foreground object templates for videos captured by freely-

moving cameras at low resolutionn [44]. Chen et al. intro-

duce a video retagging approach through both visual and

textual information [6]. Near-duplicated videos on the Web

are efficiently exploited in [41, 5]. Complementary infor-

mation, e.g. web images [54], user search behavior [55], or

knowledge engine [5], is also investigated to help annotate

Web videos. Yang et al. formulate face labeling in broad-

casting news video as a MIL problem and propose the ex-

clusive density method as the solution [52]. Different from

the previous methods, we propose a new video annotation

method that formulates the Web video annotation as a MIL

problem and solve it with a deep network framework.

MIL deep networks. MIL is first formulated by Diet-

terich et al. [7]. It then becomes a widely adopted paradigm

as many tasks can be cast as MIL problems. In earlier

work, MIL is combined with SVM [4], traditional back-

propagation (BP) network [35], or the AdaBoost method

[13]. Recently, MIL deep networks become increasingly

popular for weakly supervised tasks such as image classifi-

cation [31] and object detection [40]. However, few studies

investigate MIL deep networks for video annotation.

Max pooling has been widely adopted in existing MIL

deep networks to fuse instance-level outputs by applying a

maximum function [30, 31, 32]. Prior to the boom of deep

learning, several kinds of alternative pooling functions had

been presented, e.g. the generalized means, noisy-OR [57],

log-sum-exponention (LSE) [35], and the integrated seg-

mentation and recognition (ISR) model [21]. These func-

tions are then adopted in MIL deep networks as pooling

strategies [9, 33]. In [23], a comprehensive study is pro-

vided to evaluate several pooling strategies including noisy-

OR, LSE, ISR, and adaptive noisy-AND. In all of these ef-

forts, pooling functions are predefined before training rather

than learnable.

Pooling functions in Deep Networks. Pooling func-

tions also play important rules in deep networks. Mean,

max, average, and stochastic pooling functions are the most

well-known and widely used ones [1, 2, 56]. Moreover,

Gulcehre et al. propose the Learned-Norm Pooling that

uses the generalized mean, also known as the Lp norm, to

learn the order p in deep feedforward and recurrent neu-

ral networks [11]. They provide interesting interpretations

of the Lp norm by relating it to the maxout pooling func-

tion [10] and showing a geometrical insight. Generalized

pooling strategies proposed by Lee et al. bring learning and

“responsiveness” in the pooling operation [26] and use a

tree-structured fusion of learned pooling operations. Mali-

nowski and Fritz present a learnable spatial pooling func-

tion for visual recognition, where the function is fixed to
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Figure 1. Illustration of the deep network used for frame-based video annotation. The entire network is used for training, whereas only

the first two parts are used for online prediction. The colorful columns shown in Parts 1, 2, and 3 denote the predicted relevance values

corresponding to different tags at frame level or video level, respectively. Color encodes the relevance value. Given an input video, the

network processes all the frames separately and outputs predictions of each frame as in Part 1. Then those frame predictions are fed into

Part 2 and Part 3 to derive instance-level and bag-level losses, respectively. Finally the two losses are combined to output the LOSS in Part

4. Please refer to Section 3.1 for more details.

average or max pooling but the pooling regions are adaptive

[28]. Spatial pyramid pooling, which organizes pooling of

different sizes into a pyramid-like hierarchical architecture,

is proposed for images of varying size [12]. Jia et al. intro-

duce the receptive fields learning in the pooling operation

for image classification [15]. Different from the existing

pooling functions, our proposed learnable pooling is dedi-

cated for the MIL deep network that inherently has a seman-

tic gap between instance-level learning and bag-level super-

vision. To the best of our knowledge, it is the first work

investigating how to incorporate adaptive pooling function

into the MIL deep network for video annotation.

3. The Proposed MIL Deep Network

In this section, we first present the overview of our pro-

posed MIL deep network. Then we introduce the learnable

pooling with bag+instance loss function and show how they

enable end-to-end training of our MIL deep network.

3.1. Network Overview

Fig. 1 illustrates the overview of the proposed MIL deep

network for Web video annotation. It consists of four parts

as numbered in the figure. The first part contains a CNN

that processes each input frame independently and outputs

predicted relevance values (denoted by colors in columns)

of tags (denoted as the colored columns) of each frame. The

second part collects the outputs of all the frames of the same

video and fuses them by the learnable pooling layer, result-

ing in video-level relevance values that are then compared

with those of the ground-truth tags of the video. Mean-

while, the third part uses frame-level predictions to calcu-

late the instance-level loss. Finally, the fourth part jointly

minimizes the bag-level and instance-level losses.

Note that the network shown in Fig. 1 is used for training.

In the online prediction, only the first two parts are needed.

We use the trained CNN to process each frame inside an

input video and achieve the frame-level predictions. Then

these frame-level predictions are fused by the learned pool-

ing function to generate the predicted tags. The frame-level

predictions further enable us to localize the most relevant

frames to a specific tag in videos.

In the following sections, we will introduce the learnable

pooling function and the joint loss function.

3.2. Learnable Pooling

Formulation. We formulate the Web video annota-

tion as a MIL problem based on the assumption that tags

(classes) that can be inferred from individual frames (in-

stances) are labeled to a video (bag of instances). In other

words, a tag is associated with a video as long as it is iden-

tifiable from at least one frame inside the video. This is also

a basic assumption of MIL.

Mathmatically, let Vi denote a bag of instances and

Vij ∈ Vi, j = 1, . . . , Ni, denote j-th instance where Ni

is the number of instances of the bag. Let c ∈ {1, . . . , C}
denote a specific class where C is the number of possi-

ble classes. Assuming the classes are independent of each

other to simplify the discussion, the “ground-truth” of in-

stance Vij for class c is denoted by ycij ∈ {0, 1} and the

ground-truth of the entire bag Vi for class c is denoted by

yci ∈ {0, 1}. We then have
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yci = 1−

Ni
∏

j=1

(1− ycij), (1)

as a result of the MIL assumption. Note that yci is available

in the training data. Once yci = 0, we have ycij = 0 for

sure; but if yci = 1, the “ground-truth” of ycij is actually

not available in the training data. Thus, this is a weakly

supervised problem.

We aim to learn a classifier for the instances, e.g. a CNN

for static frames, and to predict the likelihood of Vij rele-

vant to class c, denoted by qcij ∈ [0, 1] hereafter. However,

as long as the instance-level labels ycij are not available, we

have to rely on the bag-level label yci . We then define a

fusing/pooling function Φc to predict the likelihood of Vi

being relevant to c as pci = Φc(q
c
i1, q

c
i2, . . . , q

c
iNi

).

Instantiation. The pooling function Φc shall mimic the

MIL basic assumption Eq. (1). Indeed, replacing ycij by qcij
in Eq. (1) has been used as a pooling function and termed

as noisy-OR [9, 57], which is however mathematically in-

tractable. We present a flexible yet simple pooling function

based on the generalized means [11], which can adapt itself

to different classes during training at a low computational

cost,

pci =

⎛

⎝

1

Ni

Ni
∑

j=1

(qcij)
r(t)
c

⎞

⎠

1

r
(t)
c

, (2)

where the exponent r
(t)
c (also denoted by r for short here-

after) is the learnable parameter. Note the subscript c stands

for different classes and the superscript t stands for differ-

ent training stages. On the one hand, the corresponding r

value can be small if a class is detectable in many instances;

otherwise the corresponding r value should be large. On

the other hand, the pooling strategy should be adaptive to

the evolving network. At earlier stages of training, the net-

work has little discriminative ability and its output is nearly

random. In this case, a smaller r value e.g. r = 1 (aver-

age pooling) is suitable to suppress random errors. As the

training goes on, the network is more and more tuned to the

given samples and thus the predictions become increasingly

reliable. A larger r value is then necessary to give more con-

fidence to more relevant (larger qcij) instances. Finally, if the

network is perfect in the sense that qcij = ycij , then r = ∞
(max pooling) would be used so that Eq. (2) is equivalent to

Eq. (1).

We would like to point out that the generalized means

have been studied as pooling functions for MIL as well as

for other deep networks. However, to the best of our knowl-

edge, we are the first to propose dynamically adjusting the

parameters of pooling to suit for the evolving network for

video annotation.

3.3. New Bag+Instance Loss Function

Formulation. We now turn to the learning of our pro-

posed pooling function, specifically, the learning of r
(t)
c

in Eq. (2). Please note that this parameter is learned for

training, albeit useful for prediction, whereas almost all the

other parameters in deep networks are learned for predic-

tion. This difference encourages us to develop a new loss

function to simultaneously learn the pooling function as

well as the instance-level classifier.

As in classic MIL problems, the bag-level supervision

should be taken into account in the loss function. For ex-

ample, we can adopt the well known cross entropy as the

bag-level loss function,

ℓci = −yci × log(pci )− (1− yci )× log(1− pci ). (3)

Moreover, as the pooling function is designed to collect

instance-level predictions to achieve bag-level prediction,

the optimal pooling parameter should be dependent on the

instance-level performance, which is evolving during the

training process. The instance-level loss can be estimated

by

R
c
ij = −uc

ij × log(qcij)− (1− uc
ij)× log(1− qcij), (4)

where uc
ij = 1(qcij ≥ 0.5) with 1(·) being an indicator

function. Indeed, the instance-level loss is a measure of

the uncertainty of qcij , which also represents the discrimina-

tive ability of the instance-level classifier. We then propose

to minimize the difference between bag-level and instance-

level losses, i.e.

dci = ‖ℓci −
1

Ni

Ni
∑

j=1

R
c
ij‖. (5)

Minimizing Eq. (5) requires the pooling, as the bridge be-

tween instance and bag, to be suitable for the current sta-

tus of the instance-level classifier. The pooling layer effec-

tively transfers the instance-level discriminative ability into

the bag-level classification ability. Within the context of er-

ror back propagation in network training, the bag-level loss

is the most faithfully back propagated to the instance-level

classifier through the pooling layer. In this sense, we regard

the learned pooling as optimal for training.

In summary, we propose the following loss function to

jointly minimize the bag-level loss and the difference be-

tween bag-level and instance-level losses,

Lc
i = ℓci + λ(dci )

2 = ℓci + λ

⎛

⎝ℓci −
1

Ni

Ni
∑

j=1

R
c
ij

⎞

⎠

2

, (6)

where λ is the Lagrangian multiplier (λ = 1 in all experi-

ments). We use the square of difference Eq. (5) for methe-

matical simplicity.
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Calculation. We follow the stochastic gradient descent

(SGD) approach to minimize the loss function for train-

ing the deep networks. In a mini-batch, the losses of dif-

ferent videos and different tags are calculated individually

and later summed up. Here losses of positive and negative

videos are calculated differently. For positive videos where

yci = 1, we adopt the loss function defined in Eq. (6). But

for negative videos where yci = 0, we have ycij = 0 surely

for any frame j, and thus directly use the instance-level loss,

Lc
i =

1

Ni

Ni
∑

j=1

R
c
ij , (7)

where Rc
ij is calculated by Eq. (4) with uc

ij set to 0. In other

words, the pooling from frames to video is not applicable to

negative videos, which then contribute none to the learning

of the pooling.

4. Experiments

4.1. Settings

Datasets. We evaluate the performance of our pro-

posed method on the large scale video dataset FCVID [19].

FCVID contains 91,223 videos crawled from YouTube, be-

ing one of the largest datasets of real-world Web videos.

Videos in FCVID are manually labeled with 239 prede-

fined categories, covering a wide range of topics like so-

cial events (e.g. tailgate party), procedural events (e.g. mak-

ing cake), objects (e.g. panda), scenes (e.g. beach), and so

on. Note that each video can be labeled with multiple an-

notations, and the manual labeling process had been care-

fully designed so that a fairly complete label set is achieved

for each video. In addition to raw videos and annotations,

the FCVID dataset provides several pre-computed features

including CNN-based, SIFT, dense trajectories, and audio

features, as well as other metadata. Since our research fo-

cuses on frame-based video annotation, we utilize only the

video frames and annotations in the FCVID dataset. The

train/test split follows that in [19], with 45,611 videos used

for training and 45,612 videos for test.

We also conduct experiments on another real-world web

video dataset CCV. CCV was collected with care to ensure

relevance to consumers’ interest without post-editing. The

dataset contains 9,317 unconstrained youtube videos over

20 semantic categories and each video is annotated manu-

ally. CCV dataset also provides extra audio and visual fea-

tures, however, we only use the raw videos and annotations

in our framework. The train/test split is kept the same with

the standard partition in CCV dataset.

In addition, we perform tests on the well-known UCF101

dataset [42], which contains 13,320 videos with 101 ac-

tion categories, to demonstrate how our proposed method

handle videos with high temporal correlation. We choose

UCF101 as it is one of the largest human action datasets

in terms of variety of categories, number of samples, and

number of baselines. Note that the categories in UCF101

are restricted to human actions and not as comprehensive as

those in FCVID or CCV. Thus, we train a different network

for each dataset. The train/test split follows that in [42].

Training Data. For each training video, we use only a

random subset of its frames to reduce the training workload.

The sample size is proportional to the number of frames of

each video. In our experiments, the samples vary from 5 to

41 frames as the video durations are between several sec-

onds to several minutes. We organize the sampled frames

into mini-batches, and carefully ensure that all the sampled

frames of the same video are included in the same mini-

batch. Moreover, each mini-batch contains video frames of

the same sample size, so that the pooling function is rela-

tively easy to implement. Then, the effective numbers of

videos in mini-batches are different since the mini-batch

size is fixed to a multiple of sample size not exceeding 60.

We perform random mirroring and cropping on the video

frames before CNN to help avoid over-fitting. The data are

shuffled only once before training and all the experiments

use the same shuffled data.

Training Process. We implement the proposed learn-

able pooling and bag+instance loss function in the frame-

work of Caffe [16] and modify the well-known VGG-19

model [38] as the basic CNN to process video frames. We

change the last full-connection layer of VGG-19 to 239-dim

for FCVID, 101-dim for UCF101 and 20-dim for CCV. We

also replace the softmax by sigmoid for FCVID because in

FCVID the annotations are not mutually exclusive. Except

for the modified full-connection layers that are randomly

initialized, the other layers of VGG-19 are initialized with

those parameters pretrained on ImageNet [38]. The pooling

parameters are all initialized with 1 (average pooling). As

for the parameters for training, the learning rate is fixed to

10−6, the momentum is 0.9, and the weight decay parame-

ter is 0.0005 (but 0 for pooling parameters).

Evaluation. For each test video, we also select only a

subset of its frames and use the trained CNN to predict the

frame-level annotations. Then we test two approaches to

predict the video annotations, using the learned pooling pa-

rameters or simply using max pooling. Finally, we report

the mean average precision (mAP) achieved on all the test

videos.

4.2. Performance Evaluation

FCVID. In order to verify the efficiency of our proposed

learnable pooling, we perform several comparative experi-

ments on FCVID with regard to the network with learnable

pooling (LearnP) and the network with fixed average pool-

ing (AveP) or max pooling (MaxP). We also evaluate the

performance of the new bag+instance loss (BIL) in compar-

ison with that of the traditional bag-level loss (BL), where
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Method mAP

SVM-MKL [22] 75.2%

M-DBM [43] 74.4%

rDNN-F [19] 75.4%

DASD [17] 72.8%

rDNN-C [19] 74.4%

rDNN [19] 76.0%

OSF Network [50] 76.5%

MIL (MaxP in test)

MaxP+BL 66.8%

AveP+BL 69.6%

LearnP+BL 76.1%

AveP+BIL 75.3%

LearnP+BIL 76.4%

LearnP+BIL (LearnP in test) 78.5%

Table 1. Performances of different methods on FCVID.

Method mAP

Nagel et al. [29] 71.7%

Jiang [19] 73.5%

Wu et al. [51](RGB-stream) 75.0%

Jiang et al. [18](RGB-stream) 77.9%

Chang et al. [3] 78.3%

Ours

MaxP+BL 72.8%

AveP+BL 74.3%

LearnP+BL 79.7%

AveP+BIL 79.3%

LearnP+BIL 80.2%

Table 2. Performances of different methods on CCV.

BL is equivalent to setting λ = 0 in Eq. (6).

Moreover, the annotation accuracy of our proposed

method is compared with the state-of-the-arts on the

FCVID dataset, including SVM plus multiple kernel learn-

ing (SVM-MKL) [22], multimodal deep Boltzmann ma-

chines (M-DBM) [43], domain adaptive semantic diffusion

(DASD) [17], a series of regularized deep network methods

(rDNN, rDNN-F, rDNN-C) [19], and object-scene seman-

tic fusion (OSF) network [50]. Please note that our method

uses only individual frames to perform video annotation.

But the other state-of-the-art results are achieved with mul-

timodal features, including frame-based features, motion

trajectory features, and audio features, and/or much more

complex networks that consider feature relations, class re-

lations, or both.

Table 1 summarizes the mAP results of different meth-

ods on FCVID. It demonstrates that our proposed learnable

pooling with the new bag+instance loss achieves the best

result. Though our method is frame-based, it outperforms

much more complex networks that use temporal correla-

tion and/or multimodal information. Therefore, the results

demonstrate the high potential of our proposed method in

Web video annotation.
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Figure 2. The highest 10% and lowest 10% per-tag mAP results

together with the corresponding tags in FCVID.

The canonical setting of MIL is to learn an instance-level

classifier given only bag-level supervision. For that pur-

pose, we perform experiments that adopt different training

strategies1 but always use max pooling in the test, as shown

in Table 1. Since max pooling is fixed, the final mAP is

solely dependent on the instance-level classification accu-

racy, but which is hard to measure due to lack of ground-

truth at frame level. We can observe that both the learnable

pooling and the new bag+instance loss (BIL) lead to bet-

ter training of the instance-level classifier. When using the

traditional bag-level loss (BL), learnable pooling provides

more than 6 (9) percents gain in mAP over average (max)

pooling. When using the proposed BIL, the gain provided

by learnable pooling is lower but still around 1 percent. The

gain in mAP provided by BIL is more than 5 percents for

average pooling and 0.3 percent for learnable pooling. It

is worth noting that even 0.5 percent improvement on mAP

could be notable according to previous state-of-the-art work

[50, 19]. These results verify the effectiveness of our pro-

posed learnable pooling and bag+instance loss function for

Web video annotation in the context of MIL.

We further calculate the mAP results separately for each

tag and plot the highest 10% and lowest 10% mAP results

together with the corresponding tags in Fig. 2. It can be

observed that the tags with higher mAP are often concepts

of scene (e.g. tornado, fireworks show), object (e.g. gorilla,

train), or action with specific scene or object (e.g. rowing,

diving). Tags with lower mAP are often actions, especially

of subtle motions (e.g. making pencil cases, making book-

mark) or events that with diverse behaviors (e.g. marriage

proposal, dinner at home). Note that our method is built

upon frame-level CNN without exploration of temporal cor-

relation in videos, and thus has difficulty in distinguishing

action-related concepts.

CCV. Table 2 presents the mAP of different methods in

comparison on CCV. It can be observed that our method

(learnable pooling + bag+instance loss + using the learned

pooling in the test) significantly boosts the performance on

the baselines and achieves the best results compared to other

work when only spatial information is used as input. Espe-

1We did not test the combination of max pooling and bag+instance loss

because if using max pooling, the bag-level loss is determined by the most

relevant instance and thus the second term of Eq. (6) is not meaningful.
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Figure 3. Example results of frame-level predictions of relevance values shown above the video frames. Each row shows frames selected

from one video. The tags from top to bottom are: Archery, High Jump, Long Jump, Javelin Throw, and Tennis Swing.

cially, our method outperforms the complex framework in

[3] that also focuses on pooling, which proposes the seman-

tic pooling by defining semantic salience for video event

analysis. Apparently, our method is more efficient in terms

of both performance and complexity.

UCF101. Table 3 presents the accuracy of different

methods on UCF101. It shows that our proposed method

significantly enhances the accuracy of annotation on actions

such as playing musical instruments (PM in Table 3) as

these actions are highly related to surrounding objects that

are identifiable from still frames. We can observe that our

scheme with simple CNN models outperforms the methods

that involve the spatial-temporal information and thus in-

troduce more complex models [8, 27]. Compared with the

state-of-the-art action recognition algorithms [36, 46], our

scheme achieves comparable accuracy, 83.4% in average,

based on the same CNN features. However, our scheme

is much more efficient with a quite simple CNN structure

while the others are using complicated LSTM with multi-

modal inputs [36, 8, 27] or much deeper CNN structures

[46].

4.3. Analyses

We first analyze the performance of the proposed learn-

able pooling along with the joint loss function in training

process. Fig. 4 plots the learning curves of different training

strategies for MIL. It shows that, at earlier stages of training,

the max pooling turns out to be inefficient while the average

pooling performs better as it suppresses random errors of

network. Our proposed learnable pooling achieves the high-

Method

Type
HO BM HH PM SP

A.K et al. [20] 55% 57% 68% 65% 79%

Our Method 71% 73% 84% 96% 87%

J.D et al. [8] 82.9%

Li et al. [27] 82.1%

S.S et al. [36] 84.5%
∗X.W et al. [49] 80.2%
+L.W et al. [46] 84.5%

Table 3. Performances of different methods on UCF101. The ac-

tion categories are divided into five types [42]: Human-Object In-

teraction (HO), Body-Motion Only (BM), Human-Human Inter-

action (HH), Playing Musical Instruments (PM), and Sports (SP).

Some references did not report per-type mAP. * refers to the results

that are reported in the settings where only spatial information is

used as input. ∗ and + indicate only RGB stream is used.

est speed of training. Using BIL also provides higher speed

of training, and the speedup is quite significant when com-

bining with average pooling. This result demonstrates the

feasibility of the learnable pooling in training MIL networks

as well as the effectiveness of our proposed bag+instance

loss.

We then discuss the learned pooling parameters r for dif-

ferent tags during the training, some of which are plotted in

Fig. 4. This figure shows that the parameter r is increasing

monotonically as training continues regardless of the types

of losses and tags. It exactly matches our conjecture that as

the training goes on, the discriminative ability of network is
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Figure 4. Left: The learning curves of different MIL methods.

Right: The learned pooling parameters for several different tags

(train, river, marriage proposal) during training.

increasing and r should be increased to weight more con-

fidence on more relevant instances. Another observation

is that the learned r is smaller when using BIL than that

when using BL, because the second term of Eq. (6) tends to

punish larger r that widens the gap between bag-level and

instance-level losses.

As different tags have different learned pooling param-

eters as shown in Fig. 4, we further analyze the relation

between the learned pooling parameter and the video char-

acteristics of each tag. Quantitatively, we calculate the aver-

age standard deviation of the predicted relevances for each

tag c, namely νc = 1
Nc

∑Nc

i=1 ν
c
i , where Nc is the number

of videos annotated with tag c in the training set, and

νci =

√

√

√

√

1

Ni

Ni
∑

j=1

(qcij − qci )
2, where qci =

1

Ni

Ni
∑

j=1

qcij . (8)

The scatter plot of νc and rc is shown in Fig. 5. Consider-

ing the average value νc is more reliable when Nc is large,

the plot distinguishes tags with different Nc’s. From Fig.

5, a clear positive correlation between νc and rc can be ob-

served especially when Nc is large. Such result reveals that,

if a tag’s relevances vary more significantly among different

frames of a video, then the corresponding r should be larger

so as to put more attention to the more relevant frames, and

vice versa. It also matches our intuition and demonstrates

the effectiveness of learning different pooling parameters

for different classes.

As we formulate the Web video annotation as a MIL

problem, we achieve a network which provides not only

video-level but also frame-level predictions. The related

frame-level predictions are visualized in Fig. 3. The pre-

dicted relevance values are consistent with human inference

that only a portion of frames have high relevance to a given

concept of the video and the frames with high relevance

values are statistically typical for representing the seman-

tic concept of the video. For instance, most videos with

0 0.1 0.2 0.3 0.4 0.5
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#videos >= 46

Figure 5. The scatter plot of learned pooling parameters and the

average standard deviations of predicted relevances.

concept “High Jump” contain some frames in which people

run up with his tilted body or cushion object exists around,

while videos of “Long Jump” usually contain frames with

sand pools. These frames are representative enough for the

concept and thus assigned with high relevance values, as

shown in Fig. 3. The rest frames, like people running up in

an ordinary pose, are given low relevance values as they are

ambiguous in terms of concepts. In this way, our proposed

video annotation method is inherently able to localize the

relevant frames to a concept in a video.

5. Conclusions

In this paper, we present a MIL deep network for tagging

the weakly annotated Web videos. Rather than using a pre-

defined pooling function, we introduce a learnable pooling

function that is dynamically adjusted to adapt to different

classes in the training process. Moreover, we propose a new

bag+instance loss function in conjunction with our learn-

able pooling function to simultaneously learn the instance-

level network and the optimal pooling in a much efficient

way. Experimental results and further analyses show that

the proposed learnable pooling and new loss function both

help to improve the final performance in video annotation,

leading to the best known results on FCVID. The results

on UCF101 indicate the proposed method has some lim-

itations on highly dynamic action-related videos that usu-

ally require temporal-aware methods for better annotation,

such as “Body-Motion” and “Human-Object Interaction”.

Nevertheless, our method is still promising on those action

videos that are more scene sensitive or contain some rep-

resentative body poses, e.g. “Sports” and “Human-Human

Interaction”. Our proposed method can also be extended to

enable training of deep network models to cope with more

kinds of MIL problems, which will be studied in the future.
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