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Abstract

This paper deals with the calibration of a visual system,

consisting of RGB cameras and 3D Light Detection And

Ranging (LiDAR) sensors. Registering two separate point

clouds coming from different modalities is always challeng-

ing. We propose a novel and accurate calibration method

using simple cardboard boxes with known sizes. Our ap-

proach is principally based on the detection of box planes

in LiDAR point clouds, thus it can calibrate different Li-

DAR equipments. Moreover, camera-LiDAR calibration

is also possible with minimal manual intervention. The

proposed algorithm is validated and compared to state-of-

the-art techniques both on synthesized data and real-world

measurements taken by a visual system consisting of LiDAR

sensors and RGB cameras.

1. Introduction

Nowadays it is more and more important to acquire in-

formation of our environment. This is a significant task es-

pecially in the case of autonomous cars and robots which

have to control themselves without any human interaction.

3D machine perception can be done in several ways, e.g.

with the help of cameras, microphones, radars, scanners,

just to mention a few possibilities.

One of the most favorite technology of today is the 3D

Light Detection And Ranging (LIDAR) which can measure

our surroundings by obtaining a sparse point cloud based

on the distances measured by light beams. The main benefit

of 3D LiDAR technology is the active illumination which

works independent of ambient light. It can be used in any

lighting conditions and LiDAR sensors can accurately map

the 3D world even at a long range. However, these devices

are still expensive, their resolution is limited, e.g. the popu-

lar Velodyne-64 LiDAR can only measure 64 channels and

has low refresh rate.

On the other hand, RGB cameras produce high resolu-

tion, color images, but they have to deal with the lighting

conditions, problems occur especially at night, moreover,

occlusion and shadow can yield problems for image pro-

cessing. Fortunately, most of the downsides of LiDAR sen-

sors can be compensated by cameras and vice versa, thus

the 3D LiDARs and cameras are often used together to de-

tect objects [5, 25, 26], reconstruct scenes [20, 31, 34] or

solve navigation tasks [21].

By 3D vision, one can make point clouds denser, how-

ever, registering two separate point clouds, obtained by dif-

ferent modalities, is a very challenging task. The extrinsic

calibration is necessary for these sensors to work together,

which means that their relative position and orientation need

to be known a priori. There exist some matching algorithms,

but their accuracy is not satisfying.

In case of robots and cars, the devices are fixed and their

location and orientation do not change during time. There-

fore the rigid body transformation between two instruments

can be calculated offline, before the application of the in-

struments. We show here that the calibration can be done

using an ordinary box.

Extrinsic Calibration. Several methods have been pro-

posed to calibrate a camera-LiDAR sensor pair. The early

work concentrates on 2D LiDAR devices like the one

overviewed in [35]. The list of methods for 3D LiDAR cal-

ibration can be divided into three groups. Some of them [9,

22] use planar chessboards, other algorithms [24, 32] ap-

ply different form of planar surfaces and there are meth-

ods [8, 23] using no calibration objects at all, however, the

accuracy of latter ones is far from the desired level. The

main problem with planar board based methods is that ac-

curate detection of its edges is hard in the LiDAR point

cloud. Especially if low resolution devices are used, e.g.

the very popular Velodyne-16, which has only 16 vertical

laser beams. More problems occur when traditional chess-

board patterns are used on planar boards. This pattern heav-

ily pollutes LiDAR point clouds due to its black and white

colors [27, 24]. In most of the cases, the camera needs to be

pre-calibrated, in other words, its intrinsic parameters are

known. The proposed method uses a spatial calibration ob-
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ject and assumes pre-calibrated cameras as well.

In [27], Rodriguez et al. use a black circle-based planar

board to avoid the large noise caused by chessboard pat-

terns. Their algorithm searches for the 3D coordinates of

the circle center and normal vector of the plane. At least

6 positions of the calibration object are needed, the initial

guess of the LiDAR-camera rigid transformation is refined

by the well-known Levenberg-Marquardt [17, 19] (LM) al-

gorithm.

Alismail et al. [2] published an automatic calibration

method which uses planar calibration object with a black

circular region on it and marked center. The center and nor-

mal of the circle is computed from a single view image and

a Random Sample Consensus [7] (RANSAC) based method

is applied for plane extraction. Finally, point-plane ICP [4]

is used with nonlinear optimization by LM to refine the ex-

trinsic parameters.

The method introduced by Park et al. [24] uses a white,

homogeneous, planar triangle or diamond shaped board for

calibration. They need to take more than one image of the

board from several positions or use at least three boards at

the same time. Another downside of their algorithm is that

the spatial coordinates of the planar board are estimated and

not measured. This fact influences the accuracy of the cali-

bration. The details of the method can be found in Section 3.

Gong et al. published a method in [10] that needs at least

two scans of the same trihedron object measured by both in-

struments for calibration. This produces significantly more

data to process. In their work it takes 20 seconds to cali-

brate using 9 observations. The main disadvantage of their

method is that the manufacturing of a trihedron calibrat-

ing object is not easy. Moreover, the calibration needs a

lot of human intervention, and the separation of the trihe-

dron points and selection of the related planes in the images

needs to be done manually.

The method proposed by Velas et al. in [32] uses an un-

common calibration object. They assume a white back-

ground and a planar object, containing four circular holes

inside, their method is based on the work of Levison and

Thrun [18]. The holes in both the 3D LiDAR point cloud

and the acquired image are detected automatically. How-

ever, we did not managed to reproduce this method with

our Velodyne HDL-16 LiDAR, because denser point cloud

is required for this algorithm.

Geiger et al. [9] introduced a method to calibrate a

LiDAR-camera pair taking only one measurement by the

LiDAR and a single image by the camera. The method is

fully automatic, however, it needs multiple chessboards and

at least 2 cameras to calibrate. The algorithm will be briefly

introduced in Section 3, where it will be compared against

the proposed method.

The goal of the paper is twofold: (i) to propose a

semi-automatic calibration process and (ii) to achieve ac-

curate camera-to-LiDAR calibration in real-world applica-

tions. The main contribution of this paper is that our algo-

rithm is accurate, and the calibration process requires only

a simple cardboard box. Another benefit of our approach

is that the extrinsic parameters of arbitrary number of cam-

eras and LiDAR sensors can be calibrated.

2. Proposed Calibration Method

As it was mentioned in the introduction, the goal of our

method is to accurately calibrate the extrinsic parameters of

a camera-LiDAR system. Ordinary boxes were selected to

archive this goal. The main benefit of these boxes is that

they are frequently used in weekdays, and no extraordinary

manufacturing or printing is required. Another reason for

boxes to be used is the fact that their sides are perpendicu-

lar to each other, therefore, the intersections of these planes

can be precisely calculated from the point cloud acquired

even from a low resolution LiDAR. Other methods which

use planar calibration objects are heavily affected by the in-

accurate measurement of the plane edges. The proposed

method uses only the location of the points and no other in-

formation from the LiDAR such as intensity, thus it can be

used with any type of LiDAR device.

The calibration process is demonstrated for one calibra-

tion object, however, the method can be easily extended for

the use of more boxes. This ability is important, because,

e.g. in autonomous driving, it is a common case to arrange

the cameras and LiDARs in a ring structure, thus some of

them may not have a joint view and more objects may be

needed for the calibration. Since the cameras are assumed

to be pre-calibrated – their intrinsic parameters are known

a priory –, the placement of the calibration box is almost

arbitrary, image distortion has no effect on the accuracy of

the calibration. The only requirement is that 3 sides of the

calibration box need to be clearly visible in the point cloud

and in the image as well.

The inputs for the method are as follows:

1. point cloud(s), acquired by the LiDAR device(s);

2. one image per camera;

3. intrinsic parameters for the cameras; and

4. the measured lengths of the box edges.

2.1. Point Cloud Clustering: Plane Detection

The main idea behind our calibration algorithm is that,

if seven corners – along the intersections of three planes

– of the calibration box are known, and the projections of

these corners are also known in the image, then the problem

is reduced to a simple Perspective-n-Point (PnP) problem

which can be effectively solved nowadays [12, 16, 30, 36].
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Thus the first goal is to accurately calculate these points in

the point cloud.

First of all, the rough area of the calibration box needs

to be cropped. It is done manually, however, it does not

need to be precise. As demonstrated later, the algorithm

can automatically separate the sides of the box from other

objects falling into this area. Then the algorithm searches

for planes in the point cloud. Because of the low number of

points located inside the area, a simple sequential RANSAC

algorithm [15, 33] is applied. It selects a plane which has

the most number of inliers, based on the Euclidean distance,

in each iteration. The points related to the most dominant

plane is removed from the set, and the robust fitting is re-

peated until planes can be detected. Then the visible sides

of the calibration box are detected. The planes, which are

perpendicular to each other, are selected. We apply the fol-

lowing error to be minimized for selecting the nearly per-

pendicular sides:

E(n1,n2,n3) = |n1
Tn2|+ |n1

Tn3|+ |n2
Tn3|, (1)

where nk is the normal of the k-th plane (k ∈ {1, 2, 3}).

Since the number of planes is usually low, the exhaustive

search among the plane candidates does not require a lot of

computation time. An example for the results of this step

can be seen in Fig. 1 left, where the box was placed on a

chair and the points located outside a radius were excluded.

Sequential RANSAC found 5 planes, then the red, green,

and yellow ones were selected as the 3 sides of the box, see

the right image of Fig. 1.

Figure 1. Left: five planes found by the sequential RANSAC. Each

plane is differently colored. Right: points clustered based on our

box model as inliers (green) and outliers (red).

2.2. Box Fitting and Outlier Removal

The following task of the proposed algorithm is the out-

lier removal. This is an important step, because LiDAR

point clouds can be heavily affected by noise, like range-

reflectivity bias caused by texture, as it is discussed in [24].

In this case, the outliers are the points, which belong to the

calibration box, but are under heavy noise effect. These

points are excluded from the remaining steps. Let us denote

the points of the planes, inherited from the previous step, by

L1, L2 and L3, the ordering does not matter.

Our algorithm uses RANSAC [7] again to determine the

outliers, but this time the model to be fit represents three

perpendicular planes. Note that in the previous step those

planes were selected which yield the lowest error by Eq. 1

and their orthogonality was not required. The model fitting

goes as follows: Three points are selected from L1 first,

these points determine a plane, then two more points are se-

lected from L2, these two points determine a plane which is

perpendicular to the first one and finally, one more point is

selected from L3 determining the third plane which is per-

pendicular to the first two. The model with the most number

of inliers is selected, while the outliers are excluded.

The double outlier filtering may seem to be redundant,

but it is not. The aim of the first one is the separation of

the calibration box from other objects, while this one deter-

mines the noisy box points.

2.3. Iterative Box Refinement

After the outliers are dropped from the point set, an it-

erative algorithm consisting of two steps refines the planes

of the box to the points. This refinement is responsible to

accurately fit three perpendicular planes to the point sets.

The first step rotates the box model, while the second one

translates that.

2.3.1 Rotation Step

In this step, two planes are selected and rotated along their

intersection line – the edge of the box. The rotation mini-

mizes the sum of the square errors between the points and

the planes.

Let p1
j , j ∈ {1, 2, ...m1}, p2

j , j ∈ {1, 2, ...m2}, and

p3
j , j ∈ {1, 2, ...m3} denote the points in L1, L2 and L3

respectively. Let qi denote a point lying on the i-th plane,

which does not need to be in the set pi
j. Let ni be the nor-

mals of the planes.

The fitting problem is equivalent to minimize the sum

of squared distances of the points with respect to the corre-

sponding plane. The least squares cost function is the sum

of all point-plane distances. It is defined as follows:

C =

3
∑

i=1

mi
∑

j=1

∣

∣

∣

(

pi
j − qi

)T
ni
∣

∣

∣

2

. (2)

Without loss of generality, the coordinate system of the

world is fixed to the intersection of box planes, the princi-

pal directions of the world equal to the edges of the cuboid.

Let us consider the rotation around the third axis by angle

γ. Then the rotation matrix is as follows:

RT
Z =





c −s 0
s c 0
0 0 1



 , (3)
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where c = cos γ and s = sin γ. The normal of the three

planes are [1 0 0]T , [0 1 0]T , and [0 0 1]T . The

rotation does not influence the fitting error of the points

of the third plane, therefore the minimization problem be-

comes

C
′′

=
∑

i=1,2

mi
∑

j=1

∣

∣

∣

∣

∣

∣

∣









c −s 0
s c 0
0 0 1



pi
j − qi





T

ni

∣

∣

∣

∣

∣

∣

∣

2

. (4)

After elementary modifications, the cost function is trans-

formed to the minimization of the norm |Ax| subject to

xTx = 1, where

A =





















x1

1
−y1

1

...
...

x1

m1
−y1m1

y2
1

x2

1

...
...

y2m2
x2

m2





















,x =

[

c
s

]

. (5)

The constants m1 and m2 denote the point numbers belong-

ing to the first and second plane, respectively. The optimal

solution for x is retrieved from the eigenvector of matrix

ATA corresponding to the smaller eigenvalue1. The angle

γ is calculated as γ = atan2(s, c).
The rotations around axes X and Z are similarly ob-

tained.

2.3.2 Translation Step

The translation of the box is run along the three normals of

the planes one by one. The advantage of the translation is

that only the point fitting error of the selected plane is being

changed if the translation of the box is parallel to its normal.

The cost function defined in Eq. 2 is modified as follows:

C
′′′

=

mi
∑

j=1

∣

∣

∣

(

pi
j − qi − αn

)T
ni
∣

∣

∣

2

, (6)

where α is the length of the translation. The translations

have to be calculated for the three perpendicular directions

one by one. However, the problem can be solved as well by

a single step. For this case, let us consider the translation

problem as minimization of the following cost function:

C
′′′′

=

3
∑

i=1

mi
∑

j=1

∣

∣

∣

(

pi
j − qi − t

)T
ni
∣

∣

∣

2

, (7)

where t is the optimal translation vector.

1Matrix A
T
A has always two non-negative real eigenvalues.

This problem can be written as a homogeneous linear

system of equations as Bt = c as follows:

B =



































n1T

...

n1T

n2T

...

n2T

n3T

...

n3T



































, c =



































n1T
(

p1
1 − q1

)

...

n1T
(

p1
m1

− q1
)

n2T
(

p2
1 − q2

)

...

n2T
(

p2
m2

− q2
)

n3T
(

p3
1 − q3

)

...

n3T
(

p3
m3

− q3
)



































, (8)

where row vector njT denotes the transpose of column vec-

tor nj. Each term of the cost function gives an equation to

the system. The solution is given by the well known for-

mula t =
(

BTB
)

−1

BTc. As the vectors n1, n2, and n3

are perpendicular to each other, matrix B is always non-

singular, thus the matrix inversion can be calculated.

2.4. Convergence

The rotation and translation steps explained above are

repeated until convergence. We experienced that less than

30 iterations are enough. The convergence of the proposed

method is tested so that the origin of the coordinate system,

where the planes were aligned with the axis, gave the initial

translation/rotation values and it was found that the iteration

always converged to an acceptable result.

2.5. Calculation of Extrinsic Parameters

After the iterative refinement of the box sides is done,

the corner points of the calibration box can be calculated,

because the sizes of the box are known. The colored points

in Fig. 3 indicate the corners of the box, the whole neigh-

borhood of the boxes was the input for the algorithm, after

it was cut from the original point clouds.

If the extrinsic parameters of a LiDAR-LiDAR pair need

to be known, the algorithm can find the corner points in

the LiDAR point clouds separately. Then the transforma-

tion between the two point clouds can be calculated from

the point correspondences of box corners by point registra-

tion [3, 13, 14].

The calibration method can be also used to calibrate

LiDAR-Camera systems. In this case the projections of the

calibration box corners need to be selected in the processed

image. Then the selected points are refined by Harris [11]

corner detector. The problem of finding the extrinsic param-

eters is then equal to a PnP problem as 3D-2D point-point

correspondences are known. We apply the Effective-PnP

(EPnP) algorithm [16] in our approach. Since the cameras

are already calibrated, the intrinsic parameters are taken into
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Figure 2. The block diagram for the calibration process. The box corners have to be detected in the spatial point cloud. The LiDAR-LIDAR

calibration is based on point registration, while the essence of LiDAR-camera calibration is the application of a PnP algorithm.

Figure 3. The algorithm finds corners even within the sparse point

cloud generated by VELODYNE-16.

consideration during the PnP, radial and tangential distor-

tion have no effect on the accuracy of the calibration.

3. Tests

The method is validated on both synthetic and real-world

test data. For the synthetic tests, Blender Sensor Simulator

(Blensor) [1] is used which is an open source simulation

package for the widely-used 3D modeling and rendering

software2. The real-world results consist of colored point

clouds and point cloud fusions coming from both high and

low resolution LiDAR devices.

3.1. Synthetic Tests

Blender is a free and open source software for 3D sim-

ulation, rendering, animation and modeling. It supports

the use of multiple cameras with a variety of parameters

to set, even photo-realistic images can be saved. Chess-

boards and a calibration box is modeled inside the synthetic

2www.blender.org

environment of Blender for simulating realistic test scenar-

ios. Blensor [1] is a sensor simulation package, which ex-

tends the capability of Blender with different kind of Li-

DAR and time-of-light devices. Velodyne-64 is used for

the synthetic tests with the default settings, however, it is

possible to set the scanning range, level of noise, rotation

speed. In our test, only the level of noise is varied. Gaus-

sian noise is added to the ground truth (GT) distance from

the sensor with zero mean and varying variance between 0
and 0.14. This means that the noisy points are located on

the rays casted by the range sensor.

An example of the virtual scene is visualized in Fig. 5,

which is created by Blensor [1] simulation package. It was

kept in mind during the construction of the scene that three

rival algorithms have to use the same camera-LiDAR sys-

tem setup, and every single one uses different object(s) for

the calibration.

The rival methods are as follows:

• The first algorithm introduced by Geiger et al. in [9]

uses chessboards,

• the second algorithm by Park et al. [24] uses polygonal

boards,

• while the proposed algorithm applies a virtual box in

order to determine the relative pose of the equipments

to be calibrated.

The algorithm by Geiger et al., labeled as ’kitti’ in charts,

needs at least two camera images of many chessboards

to calibrate. The fully automatic method reconstructs the

scene of the chessboards processing the camera images, and

then tries to merge the point cloud with the one acquired by

the LiDAR sensor. The last step can be problematic and

highly depends on the environment of the calibration. We

use the online demo3 at the website of the authors to get the

calibration data.

3www.cvlibs.net/datasets/kitti
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Figure 4. Re-projected points of 3 out of 6 clouds visualized in Fig. 3. Parameters of camera pose estimated by method of Geiger et al.

(left) and proposed one (right).

Figure 5. An example of the scenery created by Blensor [1]. The

left and right pyramids show the location of the camera and the

LiDAR, respectively.

The algorithm, labeled as ’polygonal’, is introduced by

Park et al. in [24]. In our tests the method is used with five

diamond-shaped planar boards, as the authors suggested.

The points of these boards need to be selected one by one

in the LiDAR point cloud manually. Then the planes of

the boards are estimated by RANSAC and virtual points

are calculated using the LiDAR scan lines. The virtual

points are applied to estimate the edges of each board and

the intersections of these edges result the corners of the

board. The projections of the intersections are selected

from FAST [28, 29] feature points. Finally, singular value

decomposition (SVD) and the Levenberg-Marquardt algo-

rithm [17, 19] are used to get the extrinsic parameters.

In our real life experiments, it is found that the noise

Figure 6. Point clouds of the scene taken by Blensor. Scene model

visualized in Fig. 5. Left: without noise. Right: Gaussian noise,

σ = 0.14.

level in the LiDAR spatial point cloud depends not only on

the texture and material of the object, but on the type of

the LiDAR sensor as well. Even LiDARs from the same

manufacturer can be different – the sparse point cloud of the

Velodyne-16 is more accurate than the denser point cloud

coming from its big model, the Velodyne-64.

The algorithms are tested w.r.t. Gaussian noise effecting

the LiDAR point cloud. The standard deviation (σ) is varied

between 0 to 0.14. In the synthetic tests, the LiDAR sensor

is placed at (4.72945,−5.24017, 8.76321), while the main

camera at (−5.5727,−6.98041, 3.55163), the distances are

measured in meters. Two more cameras and five chess-

boards are used for the method of Geiger et al., five square

board for the method by Park et al. [24], and only one cali-

bration box was placed for the proposed algorithm. The size

of the chessboards and planar boards is 2x2 meters, that of

the calibration box is 1x2x3 meters.

For the evaluation of the methods, we compare the ex-

trinsic parameters (rotation and translation) and the ground
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truth (GT) data. The translation error in the top plot of Fig. 7

is the Euclidean distance between the GT translation vector

and the estimated vector obtained by the algorithms.

The calculation of the rotation error is not trivial as a

rotation can be represented in several ways: using three an-

gles, an orthonormal matrix, an axis with an angle, etc. We

have compared several error metrics, the characteristics of

those for our test cases were the same. Due to its simplic-

ity, we have calculated the rotation angle of matrix RT
GTR

representing the error by the well-known formula [6] as fol-

lows:

α = cos−1
(

trace
(

RT
GTR

)

− 1
)

/2), (9)

where RGT is the GT rotation matrix, retrieved from

Blensor data, and R is the rotation matrix obtained by the

tested algorithms.

Fig. 7 shows the translation and rotation errors of the al-

gorithms. It seems to be clear that the method of Park et

al., labeled as ’polygonal’ in the figures, and ours, labeled

as ’proposed’, can calculate the rotation matrices very ac-

curately, their error do not exceed 1.5 degrees even in the

presence of high standard deviation Gaussian noise. This is

a good result, because even low error in the rotation matri-

ces can heavily effect the result of the colored point cloud,

especially if the object are located at a long distance. The

translation error of the algorithms is varying between 5 cen-

timeters to 0.5 meters, see the top plot of Fig. 7. It can be

seen that the proposed method is significantly more accu-

rate than the others, The differences are between 5 to 10
centimeters. Both rotation and translation errors are approx-

imately linear w.r.t. Gaussian noise.

3.2. Real World Tests

The testing scene consists of 3 calibration boxes and 4
chessboards. For the sake of comparison, we use the re-

projection of certain points of the LiDAR point cloud to

the camera image. The test is completed as follows: Three

cardboard boxes are put on the top of chairs first to be vis-

ible for the Velodyne-16 LiDAR. Five chessboards are in-

stalled in order to run the method of Geiger et al. [9]. An

image is taken at the original position of the camera, and an-

other one at a different location, because the method needs

at least two images for the calibration.

In Fig. 4 the re-projected points of the partial point

clouds are visualized, the processed scene is seen in Fig. 3.

On the left image, the extrinsic parameters resulted by

Geiger et al., on the right the extrinsic parameters of the

proposed algorithm are utilized for the reprojection. Re-

mark that the projected locations of the chessboard corners,

the top of the calibration boxes, and the points of the leg

of the green chair are incorrectly drifted. The drift rep-

resents the inaccuracy of the method. On the right, these

reprojected points align the corresponding image regions,

Figure 7. Translation (top) and rotation (bottom) error against

Gaussian noise.

Figure 8. A Velodyne-64, 2 Velodyne-16 and 2 cameras are

mounted on our autonomous car.

suggesting that the quality of the proposed method is sig-

nificantly higher.

The method is tested on real life data obtained by the

visual system of our autonomous car. One high resolution

and two low resolution LiDAR sensors, and two cameras

are mounted on the car, see Fig. 8. The calibration is done

in a backyard. Fig. 9 shows the result of the calibration

which is a point cloud fusion of the high and two low res-

olution LiDAR devices, and colored using intensity values
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Figure 9. Point cloud fusion of 3 LiDARs and colored by the left camera of the autonomous car. The Top-left and right images show the

camera image and the point cloud from a bird-view. The images at the bottom are taken from the viewpoint of the camera and from the

Velodyne-64 LiDAR, respectively. The occlusion caused by different LiDAR views was not considered during the point cloud coloring

process, white points are located outside of the camera view.

of the RGB cameras: locations in image space are obtained

by projecting the spatial points to the cameras using the ob-

tained extrinsic camera parameters by the proposed algo-

rithm.

4. Conclusion

In this paper, an offline algorithm for extrinsic calibra-

tion of LiDAR-camera system was introduced. The pro-

posed method requires only an ordinary calibration box

with known sizes and a pre-calibrated camera. The method

is capable to find the calibration object robustly, even in a

low resolution LiDAR point cloud. The core of the algo-

rithm is to locate accurately the box corners in the point

cloud. This is carried out by robust search across plane

candidates, then outlier extraction and a two-step iteration

method are executed which refines the box to the point

cloud. The algorithm can be used to calibrate camera-

LiDAR and LiDAR-LiDAR pairs as well. The proposed

method is compared with state-of-the-art algorithms in a

synthetic test environment. Another test was carried out:

real-world data obtained by complex visual system of our

autonomous car was applied to demonstrate the accuracy of

the proposed method.
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[33] E. Vincent and R. Laganiére. Detecting planar homographies

in an image pair. In ISISPA, 2001. 3

[34] J. Zhang and S. Singh. Visual-lidar odometry and map-

ping: Low-drift, robust, and fast. In Robotics and Automa-

tion (ICRA), 2015 IEEE International Conference on, pages

2174–2181. IEEE, 2015. 1

[35] Q. Zhang and R. Pless. Extrinsic calibration of a cam-

era and laser range finder (improves camera calibration).

In 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sendai, Japan, September 28 - October

2, 2004, pages 2301–2306, 2004. 1

[36] Y. Zheng, Y. Kuang, S. Sugimoto, K. Åström, and M. Oku-
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