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Abstract

Speechreading is the task of inferring phonetic infor-

mation from visually observed articulatory facial move-

ments, and is a notoriously difficult task for humans to per-

form. In this paper we present an end-to-end model based

on a convolutional neural network (CNN) for generating

an intelligible and natural-sounding acoustic speech signal

from silent video frames of a speaking person. We train

our model on speakers from the GRID and TCD-TIMIT

datasets, and evaluate the quality and intelligibility of re-

constructed speech using common objective measurements.

We show that speech predictions from the proposed model

attain scores which indicate significantly improved quality

over existing models. In addition, we show promising re-

sults towards reconstructing speech from an unconstrained

dictionary.

1. Introduction

Human speech is inherently an articulatory-to-auditory

mapping in which mouth, vocal tract and facial move-

ments produce an audible acoustic signal containing pho-

netic units of speech (phonemes) which together comprise

words and sentences. Speechreading (commonly called

lipreading) is the task of inferring phonetic information

from these facial movements by visually observing them.

Considering the fact that speech is the primary method of

human communication, people who are deaf or have a hear-

ing loss find that speechreading can help overcome many of

the barriers when communicating with others [5]. However,

since several phonemes often correspond to a single viseme

(visual unit of speech), it is a notoriously difficult task for

humans to perform.

We believe that machine speechreading may be best ap-

proached using the same form of articulatory-to-acoustic

mapping that creates the natural audio signal, even though

not all relevant information is available visually (e.g. vo-

cal chord and most tongue movement). In addition to the

∗indicates equal contribution

Figure 1: Proposed two-tower CNN-based model converts

silent frames of a speaking person to intelligible and natural

sounding speech. The CNN generates multiple mel-scale

spectrograms which are converted by a post-processing

network to a longer range linear-scale spectrogram. The

frames-to-spectrogram model is trained end-to-end. Phase

reconstruction transforms the long-range spectrogram into

waveform.

perceptual sense this approach makes, modeling the task as

an acoustic regression problem has many advantages over

the visual-to-textual or classification modeling: (i) Acous-
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tic speech signal contains information which is often dif-

ficult or impossible to express in text, such as emotion,

prosody and word emphasis; (ii) This form of cross-modal

regression, in which one modality is used to generate an-

other modality, can be trained using “natural supervision”

[30] which leverages the natural synchronization in a video

of a talking person. Recorded video frames and recorded

sound do not require any segmentation or labeling; (iii) By

regressing very short units of speech, we can learn to re-

construct words comprised of these units which were not

“seen” during training. While this is also possible by classi-

fying short visual units into their corresponding phonemes

or characters, in practice generating labeled training data for

this task is difficult.

Several applications come to mind for automatic video-

to-speech systems: Enabling videoconferencing from

within a noisy environment; facilitating conversation at

a party with loud music between people having wear-

able cameras and earpieces; maybe even using surveillance

video as a long-range listening device. In another paper we

have successfully used the generated sound, together with

the original noisy sound, for speech enhancement and sep-

aration [13].

Our technical approach builds on recent work in neu-

ral networks for speechreading and speech synthesis, which

we extend to the problem of generating natural sounding

speech from silent video frames of a speaking person. To

the best of our knowledge, there has been relatively little

work for reconstructing high quality speech using an un-

constrained dictionary. Our work is also closely related to

efforts to extract textual information from a video of a per-

son speaking, i.e. the visual-to-textual problem, as the out-

put of our model can potentially also be used as input to a

speech-to-text model.

In this paper, we: (1) present and compare multi-

ple CNN-based encoder-decoder models that predict the

speech audio signal of a silent video of a person speaking,

and significantly improve both intelligibility and quality of

speech reconstructions of existing models; (2) show signifi-

cant progress towards reconstructing words from an uncon-

strained dictionary.

2. Related work

Much work has been done in the area of automat-

ing speechreading by computers [32, 29, 44]. There are

two main approaches to this task. The first, and the one

most widely attempted in the past, consists of modeling

speechreading as a visual-to-textual mapping. In this ap-

proach, the input video is manually segmented into short

clips which contain either whole words from a predefined

dictionary, or parts of words comprising phonemes, visemes

[4] or characters. Then, visual features are extracted from

the frames and fed to a classifier. Assael et al. [3], Chung et

al. [7] and others [42, 39, 33] have all recently showed state-

of-the-art word and sentence-level classification results us-

ing neural network-based models.

The second approach, and the one used in this work, is to

model speechreading as a visual-to-acoustic mapping prob-

lem in which the “label” of each short video segment is a

corresponding feature vector representing the audio signal.

Kello and Plaut [25] and Hueber and Bailly [20] attempted

this approach using various sensors to record mouth move-

ments, whereas Cornu and Milner [9] used active appear-

ance model (AAM) visual features as input to a recurrent

neural network.

Our approach is closely related to recent speaker-

dependent video-to-speech work by Ephrat and Peleg [11],

in which a convolutional neural network (CNN) is trained to

map raw pixels of a speaker’s face directly to audio features,

which are subsequently converted into intelligible wave-

form. The differences between our approach and the one

taken by [11] can by broken down into two parts: improve-

ment of the encoder and redesign of the decoder.

The goal of our encoder modification is to improve anal-

ysis of facial movements, and consists of a preprocessing

step which registers the face to a canonical pose, the ad-

dition of an optical flow branch, and swapping the VGG-

based architecture with a ResNet based one. Our decoder is

designed to remedy a major flaw in [11], namely the unnat-

ural sound of the reconstructed speech it produces. To this

end, we use the sound representation and post-processing

network of [43], which introduces longer-range dependency

into the final speech reconstruction, resulting in smoother,

higher quality speech. Section 4 expounds on the above

differences, and Section 6.1 contains a comparison of the

results of [11] to ours.

Our work also builds upon recent work in neural sound

synthesis using predicted spectrogram magnitude, including

Tacotron (Wang et al.) [43] for speech synthesis, and the

baseline model of NSynth (Engel et al.) for music synthesis.

While Tacotron focuses on building a single-speaker text-

to-speech (TTS) system, our paper focuses on building a

single-speaker video-to-speech system.

This work complements and improves upon previous ef-

forts in a number of ways: Firstly, we explore how to bet-

ter analyze the visual input, i.e. silent video frames, in or-

der to produce an encoding which can be subsequently de-

coded into speech features. Secondly, while prior work has

predicted only the output corresponding to a single video

frame, we jointly generate audio features for a sequence

of frames, as depicted in Figure 1, which improves the

smoothness of the resulting audio. Thirdly, [11] focused on

maximizing intelligibility at the expense of natural sound-

ing speech on a relatively limited-vocabulary dataset. We

aim to overcome the challenges of the more complex TCD-

TIMIT [16] dataset, while optimizing for both intelligibility
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Figure 2: This figure illustrates our model’s two-tower CNN-based encoder-decoder architecture. First, a face is detected

in the silent input video. The face undergoes in-plane registration, cropping and resizing. One tower inputs grayscale face

images, and the other inputs optical flow computed between frames. An embedding is created by concatenating the outputs

of each tower. It is subsequently fed into the decoder which consists of fully connected layers which output mel-scale

spectrogram, and a post-processing network which outputs linear-scale spectrogram.

and natural-sounding speech.

3. Data representation

3.1. Visual representation

Our goal is to reconstruct a single audio representation

vector Si which corresponds to the duration of a single

video frame Ii. However, instantaneous lip movements

such as those in isolated video frames can be significantly

disambiguated by using a temporal neighborhood as con-

text. Therefore, the encoder module of our model takes two

inputs: a clip of K consecutive grayscale video frames, and

a “clip” of (K − 1) consecutive dense optical flow fields

corresponding to the motion in (u, v) directions for pixels

of consecutive grayscale frames.

Each clip is registered to a canonical frame of reference.

We start by detecting 5 facial points (two eyes, nose, and

two tips of the mouth). We use the points on the eyes

to compute a similarity transform alignment between each

frame and the central frame of the clip. Following [11], we

then crop the speaker’s full face to a size of H ×W pixels,

and we use the entire face region rather than using only the

region of the mouth. This results in an input volume of size

H ×W ×K scalars. The second input, dense optical flow,

adds an additional volume of H ×W × (K − 1)× 2 scalar

inputs. It has been proven that optical flow can improve the

performance of neural networks when combined with raw

pixel values for a variety of applications [36, 12], and has

even been successfully used as a stand-alone network input

[34]. Optical flow is positively influential in this case as

well, as we show later.

3.2. Speech representation

The challenge of finding a suitable representation for an

acoustic speech signal which can be estimated by a neural

network on one hand, and synthesized back into intelligi-

ble audio on the other, is not trivial. Use of raw waveform

as network output was ruled out for lack of a suitable loss

function with which to train the network.

Line Spectrum Pairs (LSP) [22] are a representation of

Linear Predictive Coding (LPC) coefficients which are more

stable and robust to quantization and small deviations. LSPs

are therefore useful for speech coding and transmission over

a channel, and were used by [11] as output from their video-

to-speech model. However, without the original excitation,

the reconstruction using unvoiced excitation (random noise)

results in somewhat intelligible, albeit robotic and unnatural

sounding speech.

Given the above, we sought to use a representation which

retains speech information vital for an accurate reconstruc-

tion into waveform. We experiment with both spectrogram

magnitude and a reduced dimensionality mel-scale spectro-

gram as our regression target, which can subsequently be

transformed back into waveform by using a phase recon-

struction algorithm such as Giffin-Lim [15].

4. Model architecture

At a high-level, as shown in Figure 2, our model is a

comprised of an encoder-decoder architecture which takes

silent video frames of a speaking person as input, and out-

puts a sound representation corresponding to the speech

spoken during the duration of the input.

It is important to note that our proposed approach is

speaker-dependent, i.e. a new model needs to be trained for

each new speaker. Achieving speaker-independent speech

reconstruction is a non-trivial task, and is out of the scope

of this work.

4.1. Encoder

The encoder module of our model consists of a dual-

tower Residual neural network (ResNet[18]) which takes

the aforementioned video clip and its optical flow as inputs

and encodes them into a latent vector representing the vi-

sual features. Each of the inputs is processed with a col-
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umn of residual block stacks. Each tower comprises ten

consecutive conv1×1−BatchNormalization−Relu−

conv3×3−BatchNormalization−Relu− conv1×1−
BatchNormalization−Add−Relu blocks consisting of

128− 128− 128− 256− 256− 256− 256− 512− 512−
512 − 512 kernels. Following the last layer, a global spa-

tial average (5×4) is performed, after which the two towers

are concatenated into one 1024-neuron layer which is es-

sentially a latent representation of our visual features.

4.2. Decoder and postprocessing

The latent vector is fed into a series of two fully con-

nected layers with 1024 neurons each. The last layer of

our CNN is of size n × l, where l is the number of au-

dio windows predicted given a single video clip, and n
corresponds to the size of the sound representation vectors

we wish to predict. For example, an output of 80 coeffi-

cients of Mel frequency with hopsize = windowsize/4
and window size of 500, results in an 80 × 4 = 320 di-

mensional output vector. The output of our CNN is fed

into the post-processing network used by [43], consisting

of one CBHG module, which is described as a powerful

module for extracting representations from sequences. The

CBHG module comprises several convolutional, Highway

[38] and Bidirectional GRU [6] layers whose goal is to take

several consecutive sound representations as input and out-

put a higher temporal resolution version. The input clips are

then packed in mini-batches of T consecutive samples. As

in the implementation of [43], the post processing network

takes these consecutive mel-scale spectrogram vectors as in-

put, and outputs a T consecutive linear-scale spectrogram.

The entire model is trained end-to-end with a two-term loss,

one on the decoder output and one on the output of the post-

processing network. Although the model is trained end-to-

end, we keep all convolutional layers of the CNN frozen

during training of the second network.

4.3. Generating a waveform

We consider several methods for generating a waveform

from our model’s predicted mel and linear scale sound fea-

tures. The first is the spectrogram synthesis approach used

by [43, 10] in which the Griffin-Lim algorithm is used to

reconstruct the phase of the predicted linear-scale spectro-

gram. Inverse STFT is then used to convert the complex

spectrogram back into waveform. We found that the result

is intelligible and smooth, albeit somewhat unnatural and

robotic sounding.

Therefore, we also consider an example-based synthesis

method similar to the one used by [30], in which we re-

place predicted sound features with their closest exemplar

in the training set. We search for the nearest neighbor to

both mel-scale and linear-scale predicted features, as mea-

sured by L2 distance, and replace it with the neighbor’s cor-

responding linear-scale spectrogram feature. The full spec-

trogram is then converted into waveform using the proce-

dure described above. We find that in most cases, mel-scale

gives better results, which are more natural-sounding, but

less smooth than using the predicted linear spectrogram it-

self.

5. Model details

We use the method of [40], with the code provided from

their website, to detect facial features. The speaker’s face

is cropped to 160 × 128 pixels. Using K = 9 frames as

input worked best. This results in an input volume of size

160 × 128 × 9 scalars, from which we subtract the mean.

We use the method of [27] with python wrapper provided

by [31] to compute an optical flow vector (u, v) for every

image pixel. Optical flow is not normalized as its mean is

approximately zero, and its std is in the range of 0.5 − 1.5
pixels. [23, 31].

We use the code provided by [10] to compute log mag-

nitude of both linear and mel-scale spectrograms which are

peak normalized to be between 0 and 1. For videos with a

frame rate of 25 FPS we downsample the original audio to

16 kHz and use 40 ms windows with 10 ms frame shift. For

videos with a frame rate of 29.97 FPS we downsample the

original audio to 14985 Hz and use 33.3 ms windows with

8.3 ms frame shift.

Our network implementation is based on the Keras li-

brary [1] built on top of TensorFlow [2]. Network weights

are initialized using the initialization procedure suggested

by He et al. [17]. Before each activation layer Batch Nor-

malization [21] is performed. We use Leaky ReLU [28] as

the non-linear activation function in all layers but the last

two, in which we use the hyperbolic tangent (tanh) func-

tion. Adam optimizer [26] is used with an initial learning

rate of 0.001, which is reduced several times during train-

ing. Dropout [37] is used to prevent overfitting, with a rate

of 0.25 after convolutional layers and 0.5 after fully con-

nected ones. We use mini-batches of 16 training samples

each and stop training when the validation loss stops de-

creasing (around 100 epochs). The network is trained with

backpropagation using mean squared error (L2) loss for

both decoder and post-processing net outputs, which have

equal weights. To improve the temporal smoothness of the

output, after generating spectrogram coefficients for T con-

secutive frames (1...T ), we move one step forward and do

the same for (2...T+1), which creates an overlap of T − 1
frames, thus creating exactly T predictions for each frame.

We then calculate a weighted average over the predictions

for a given frame using a Gaussian.
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(a) Original (b) Ours

(c) Le Cornu et al. [9] (d) Vid2speech [11]

Figure 3: Visualization of original vs. reconstructed speech results on one GRID speaker S3 utterance. Original waveform and spectro-

gram are shown in (a). (b) shows the results of our reconstruction. The results of [9] and [11] are depicted in (c) and (d), respectively. Best

viewed on a color display.

6. Experiments

Datasets Previous works performed experiments with the

GRID audiovisual sentence corpus [8], a large dataset of au-

dio and video (facial) recordings of 1000 sentences spoken

by 34 talkers (18 male, 16 female). Each sentence consists

of a six word sequence of the form shown in Table 1, e.g.

“Place green at H 7 now”. Although this dataset contains

a fair volume of high quality speech videos, it has several

limitations, the most important being its extremely small

vocabulary. In order to compare our method with previous

ones, we too perform experiments on this dataset.

In order to better demonstrate the capability of our

model, we also perform experiments on the TCD-TIMIT

dataset [16]. This dataset consists of 60 volunteer speakers

with around 200 videos each, as well as three lipspeakers,

people specially trained to speak in a way that helps the deaf

understand their visual speech. The speakers are recorded

saying various sentences from the TIMIT dataset [14], and

are recorded using both front-facing and 30 degree cameras.
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Command Color Preposition Letter Digit Adverb

bin blue at A-Z 0-9 again

lay green by minus W now

place red in please

set white with soon

Table 1: GRID sentence grammar.

Evaluation We evaluated the quality and intelligibility of

the reconstructed speech using four well-known objective

scores: STOI [41] and ESTOI [24] for estimating the intel-

ligibility of the reconstructed speech and automatic mean

opinion score (MOS) tests PESQ [35] and VisQOL [19],

which indicate the quality of the speech. While all objective

scores have their faults, we found that these metrics corre-

late relatively well with our perceived audio quality, as well

as with our model’s loss function. However, we strongly

encourage readers to watch and listen to the supplementary

video on our project web page 1 which conclusively demon-

strates the superiority of our approach.

6.1. Sound prediction tasks

GRID For this task we trained our model on a random

80/20 train/test split of the 1000 videos of speakers S1− 3
(male) and S4 (female), and made sure that all 51 GRID

words were represented in each set. The resulting represen-

tation vectors were converted back into waveform using the

aforementioned mel-scale spectrogram example-based syn-

thesis (Mel-synth) and predicted linear spectrogram synthe-

sis (Lin-synth).

Table 2 shows the results of reconstructing the speech of

S1 − 4 and Table 3 shows a comparison of our best results

to the best results of [9]. Figure 3 shows a visualization of

our results on one S3 video, and compares it to the original,

and the results of [9, 11].

TCD-TIMIT For this task we trained our model on a ran-

dom 90/10 train/test split of the 254 videos of Lipspeak-

ers 1 − 3 (female). This results in less than 25 minutes

of video used for training, which only around 60% of the

amount of data used in the previous task. In this task, many

of the words in the test set do not appear in the training

set. We would like for our model to learn to reconstruct

these words based on the recognition of the combinations of

short visual segments which comprise the words. Here too,

the resulting audio vectors were converted back into wave-

form using mel-scale spectrogram example-based synthe-

sis (Mel-synth) and predicted linear spectrogram synthesis

1Examples of reconstructed speech can be found at

http://www.vision.huji.ac.il/vid2speech

STOI ESTOI PESQ ViSQOL

GRID S1

Mel-synth 0.442 0.26 1.782 3.108
Lin-synth 0.475 0.263 1.952 3.324

GRID S2

Mel-synth 0.631 0.434 2.107 3.07
Lin-synth 0.667 0.462 2.136 3.316

GRID S3

Mel-synth 0.666 0.398 1.974 3.164
Lin-synth 0.68 0.354 1.904 3.349

GRID S4

Mel-synth 0.644 0.429 1.809 3.092
Lin-synth 0.7 0.462 1.922 3.3

Table 2: Objective measurements of reconstructed speech

for model trained on GRID speakers S1 − 4. Mel-scale

spectrogram example-based synthesis (Mel-synth) and pre-

dicted linear spectrogram synthesis (Lin-synth) were used

to generate waveform from the predicted audio representa-

tions.

.

STOI ESTOI PESQ ViSQOL

GRID S3

Vid2speech [11] 0.638 − 1.875 3.13
Cornu et al. [9] − 0.437 2.055 −

Ours 0.68 0.398 1.974 3.349

GRID S4

Vid2speech [11] 0.584 − 1.19 2.691
Cornu et al. [9] − 0.434 1.686 −

Ours 0.7 0.462 1.922 3.3

Table 3: Comparison to [11] and [9] using objective mea-

surements.

(Lin-synth).

Table 4 holds the results of this difficult task. The re-

constructed speech is natural-sounding, albeit not entirely

intelligible. Given the limited amount of training data, we

believe our results are promising enough to indicate that

fully intelligible reconstructed speech from unconstrained

dictionaries is a feasible task.
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STOI ESTOI PESQ ViSQOL

Lipspeaker 1

Mel-synth 0.274 0.116 1.309 2.533
Lin-synth 0.318 0.171 1.384 2.943

Lipspeaker 2

Mel-synth 0.307 0.123 1.08 2.431
Lin-synth 0.357 0.157 1.158 2.931

Lipspeaker 3

Mel-synth 0.565 0.373 1.484 2.834
Lin-synth 0.63 0.447 1.612 3.201

Table 4: Objective measurements of reconstructed speech

for model trained on TCD-TIMIT Lipspeakers 1-3. Many

words in the testing set were not present in the training set,

which results in significantly worse results than those on

GRID dataset. The Lipspeaker 3 model performs best, by a

large margin.

.

STOI PESQ ViSQOL

Optical flow only 0.381 1.478 2.786
Pixels only 0.67 1.949 3.179
Pixels + optical flow 0.665 1.921 3.173
Pixels + OF + postnet 0.68 1.974 3.349

Table 5: Results of ablation analysis on GRID speaker S3.

Pixels provide most of the information needed, adding op-

tical flow and post-processing network gives slightly better

results

.

6.2. Ablation analysis

We conducted a few ablation studies on GRID speaker

S3 to understand the key components in our model. We

compare our full model with (i) a model using only an opti-

cal flow stream; (ii) a model using only a pixel stream; (iii)
a model with no post-processing network which outputs

mel-scale spectrogram. Table 5 shows the results of this

analysis. Our analysis shows that pixel intensities provide

most of the information needed for reconstructing speech,

while adding optical flow and a post-processing network

give slightly better results.

7. Concluding remarks

A two-tower CNN-based model is proposed for re-

constructing intelligible and natural-sounding speech from

silent video frames of a speaking person. The model is

trained end-to-end with a post-processing network which

fuses together multiple CNN outputs in order to obtain a

longer range speech representation. We have shown that

the proposed model obtains significantly higher quality re-

constructions than previous works, and even shows promise

towards reconstructing speech from an unconstrained dic-

tionary.

The work described in this paper can be improved upon

by increasing intelligibility of speech reconstruction from

an unconstrained dictionary, and extending an existing

model to unknown speakers. It can also be used as a basis

for various speech related tasks such as speaker separation

and enhancement.

We plan to use the visually reconstructed speech in order

to enhance speech recorded in a noisy environment, and to

separate mixed speech in scenarios like the “cocktail party”

where the face of the speaking person is visible [13].
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