
In Defense of Shallow Learned Spectral Reconstruction from RGB Images

Jonas Aeschbacher

Computer Vision Lab

D-ITET, ETH Zurich

aejonas@student.ethz.ch

Jiqing Wu

Computer Vision Lab

D-ITET, ETH Zurich

jwu@vision.ee.ethz.ch

Radu Timofte

CVL, D-ITET, ETH Zurich

Merantix GmbH

timofter@vision.ee.ethz.ch

Abstract

Very recent Galliani et al. [13] proposed a method using

a very deep CNN architecture for learned spectral recon-

struction and showed large improvements over the recent

sparse coding method of Arad et al. [6]. In this paper we

defend the shallow learned spectral reconstruction meth-

ods by: (i) first, reimplementing Arad and showing that it

can achieve significantly better results than those originally

reported; (ii) second, introducing a novel shallow method

based on A+ of Timofte et al. [33] from super-resolution

that substantially improves over Arad and, moreover, pro-

vides comparable performance to Galliani’s very deep CNN

method on three standard benchmarks (ICVL, CAVE, and

NUS); and (iii) finally, arguing that the train and runtime

efficiency as well as the clear relation between its parame-

ters and the achieved performance makes from our shallow

A+ a strong baseline for further research in learned spec-

tral reconstruction from RGB images. Moreover, our shal-

low A+ (as well as Arad) requires and uses significantly

smaller train data than Galliani (and generally the CNN

approaches), is robust to overfitting and is easily deploy-

able by fast training to newer cameras.

1. Introduction

Nowadays there is an ever-increasing variety of visual

sensors used for image analysis. This enables devices to

collect immense amounts of information from the environ-

ment. However, most cameras can only record a limited

amount of information from the visible spectrum, often con-

taining the standard RGB (red, green, blue) wavelength val-

ues matching the trichromaticity from the human visual sys-

tem. This is caused mainly by the need to keep the costs of

such sensors low and to achieve higher spatial resolution, in

contrast to the hyperspectral cameras. For a given budget

there is a trade-off between having high spectral and high

spatial resolution for the camera captured imagery.

Capturing visual data with a camera with higher spectral

resolution has been proven very useful in many areas, as for

example in medical diagnosis [29, 12, 25], image segmen-

tation [30, 10], modeling of computer generated imagery or

general remote sensing tasks [16, 14, 8, 20, 7]. Unfortu-

nately, there is often the decision whether to use a very high

spectral or spatial resolution and this generally boils down

to the (cheaper) latter one.

But since most of the resulting radiance of high spectral res-

olution images are a composition of the illumination and

reflectance of the occurring materials in the image, it is rea-

sonable to believe that only a small amount of different fac-

tors have an impact on a single pixel. This means that the

RGB values and their corresponding hyperspectral radiance

should be highly correlated [2, 11].

Only a reduced number of works (such as [21, 27, 39, 3,

1, 19, 22, 26, 35, 6, 13]) tried to infer a (full) hyperspec-

tral image from its RGB image(s). Among them, Arad et

al. [6] used high quality hyperspectral image priors to build

a sparse dictionary of corresponding high (full spectrum)

and low spectral (RGB) resolution pixels. In particular, the

orthogonal matching pursuit [24] is used to decompose the

input RGB pixels over the corresponding part of the dictio-

nary to impose the decomposition coefficients on the cor-

responding high spectral resolution part and reconstruct the

hyperspectral image. The assumed linearity between low

and high spectral resolution signals is thus leveraged. Sim-

ilar approaches can be found in prior super-resolution liter-

ature [32, 36, 38]. Very recently, Galliani et al. [13] pro-

posed a convolutional neural network (CNN) which used

best practices from the current super resolution and seg-

mentation literature [18, 17, 15, 28, 31] and achieved better

results than Arad et al. .

In this paper we reimplement and push the performance

of Arad et al. method and, furthermore, we propose a new

method to infer a hyperspectral image using a RGB image

motivated by A+, the color single image super resolution

method of Timofte et al. [33, 32, 34], and achieve top ac-

curacies without the need of neural networks. The super-

resolution problem usually works in the spatial domain of

the RGB image and aims at restoring rich details/high fre-

quencies. Clearly, it relates with our problem of recon-
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structing missing wavelengths from the spectrum based on

the known RGB. Of course, non-trivial adaptation to re-

produce a higher spectral resolution instead of recovering

more pixels per image is required in our case. We compute

a sparse dictionary containing the corresponding low and

high spectral resolution atoms, which act as anchor points

for the following computations. Then, for each anchor, we

leverage the local Euclidean linearity of the spectral spaces

to offline compute a projection matrix from RGB to hyper-

spectral image values, by using the nearest neighbors of the

anchor. At runtime, for each RGB pixel there is only a near-

est anchor search involved, followed by a projection to the

hyperspectral values using the corresponding stored matrix.

As shown in our experiments, in addition to the efficiency

and fast runtime, we reach higher accuracies than Arad et

al. [6], and comparable results to the very recent deep CNN

approach of Galliani et al. [13].

Our main contributions are threefold:

(i) we efficiently improve the approach of Arad et al. [6]

for better accuracy and runtime;

(ii) we propose a shallow A+ [33]-based method for spec-

tral reconstruction;

(iii) we make a stand in defense of the efficient shallow

models by achieving state-of-the-art performance.

This work sets strong shallow baselines for the future re-

search in learned spectral reconstruction from RGB images.

Deep end-to-end (CNN) models will likely benefit from the

increased availability of train data to further push the per-

formance, as happened in the super-resolution field [31].

The remainder of this paper is organized as follows. Sec-

tion 2 reviews related works focusing on Arad et al. [6].

Section 3 proposes a novel method for spectral reconstruc-

tion based on A+ super-resolution method of Timofte et al.

[33]. Section 4 describes the experiments, studies parame-

ters and design choices, and compares in accuracy and run-

time with the current state-of-the-art methods. Section 5

draws the conclusions.

2. Related Work

We briefly review the method of Arad et al. [6] (see

Fig. 1) based on the work of Zeyde et al. [38]. Arad et

al. use a collection of hyperspectral signatures as a train-

ing prior to build an overcomplete dictionary with m hyper-

spectral signature atoms hi via K-SVD [4]:

DH = {h1,h2, . . . ,hm}, hi ∈ R
q (1)

such that each training hyperspectral signature can be ap-

proximated by a sparse linear combination over the dic-

tionary atoms as obtained via orthogonal matching pursuit

(OMP) [24]. These atoms are then projected to the lower

Figure 1. Training and reconstruction phases of the multichannel

image restoration method by Arad et al. [6]

spectral resolution (LSR) space li ∈ R
p (i.e., the RGB

space), applying the appropriate camera sensitivity function

M(hi), such that it matches the sensors used to capture the

sample for reconstruction. To later map the RGB sample

to the higher spectral resolution (HSR) space, one needs to

keep the correspondence between both dictionary atoms.

DL = R ·DH = {l1, l2, . . . , lm}, li ∈ R
p (2)

With the trained dictionaries it is possible to estimate the hy-

perspectral intensities from an RGB image, by first linearly

decomposing each pixel pL = (ri, gi, bi) from RGB via

OMP over DL and then using the computed decomposition

coefficients w to approximately reconstruct the correspond-

ing HSR pixel pH :

DL ·w = pL ⇒ pH = DH ·w (3)

The mapping of RGB values to the whole spectral space

is severely underconstraint. Usually, there are a finite, low

number of spectral wavelengths of interest. Arad et al. [6]

consider 31 different wavelengths from the visible spectrum

for reconstruction. The frequency of relative metameric

pairs in this lower dimensional manifold needs to be low

as well, which is the case in the visible spectrum used here,

as further explained in [5, 23].

3. Proposed method

Our method (see Fig. 2) departs from the method of

Arad et al. [6] and builds upon the A+ method of Timo-

fte et al. [33, 32, 34] introduced for single image super-

resolution. In our case, a hyperspectral, overcomplete

sparse dictionary representation, trained with K-SVD and

using OMP coefficients, is employed. The dictionary is

then projected to a lower spectral resolution (RGB). In con-

trast to Arad’s method, the color matching function, used

for projecting the training HSR data to a LSR space, needs

to be determined at training time, since the matrices are

computed using both, RGB and hyperspectral atoms and not
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Figure 2. Training and reconstruction phases of our A+ multichan-

nel image restoration method.

only the latter. Most neighbor embedding methods [6, 32]

try to extract a linear combination of training samples to

represent the low spectral resolution signature, followed

by a reconstruction in the hyperspectral space, using the

same coefficients. This computation can be moved into

the training phase, as explained below. For each dictionary

atom/anchor li, we minimize the least squares error of the

linear combination of its nearest neighbors (NL) from all

available training data to yL:

argmin
α

||yL −NLα||22 + λ||α||22 (4)

where λ regularization stabilizes the closed form solution:

α = (NT
LNL + λI)−1NT

L · yL (5)

As a result of applying the same assumptions as described

in Section 2, it is possible to get a linearized projection ma-

trix for the neighborhood samples of each corresponding

dictionary atom from the LSR space (RGB) to a HSR with

the same coefficients α.

yH = NHα (6)

Pi = NH(NT
LNL + λI)−1NT

L (7)

yH = Pi · yL (8)

where NH are the corresponding HSR neighborhood sam-

ples to NL for an anchor li. After offline computing and

storing all the projection matrices Pi, at runtime the RGB

samples can be embedded into the hyperspectral space us-

ing the projection of the nearest dictionary atom. For a

more in-depth explanation we refer the interested reader

to [33, 32].

We keep the name A+ since our proposed approach can

be seen as the A+ method of Timofte et al. [33] adapted to

the spectral reconstruction domain. In contrast with Tim-

ofte et al. [33] we work directly with pixel values and

not with gradient responses (patch features) and residuals.

Moreover, we regress from RGB values to multiple spectral

values instead of regressing from low frequencies to high

frequencies patches. In contrast with Arad et al. [6], in-

stead of online computing OMP coefficients over the dic-

tionary to impose in the hyperspectral space reconstruction,

we learn offline anchored regressors from the low to the

high spectral spaces using the pool of train samples.

3.1. Implementation

For the proposed method, as shown in Fig. 2, we first

train an overcomplete dictionary with K-SVD (using OMP

decomposition coefficients) and the hyperspectral priors.

Then we obtain a normalized dictionary, containing the

atoms to represent the hyperspectral signal with a linear

combination of those anchor points. In the next step, the

collection of atoms and the training data are projected to

the desired lower dimensional spectral manifold. We use

the CIE 1964 color matching function, which embeds the

HSR sample into the RGB space. In Fig. 7 one can see the

qualitative plot for the weights used to imitate the camera’s

sensitivity function, to project the pixels to LSR space.

Having these projections, they are normalized and used

to extract the c nearest neighbors of the training signatures

for each dictionary atom. The next step is to take the un-

normalized neighbors for the atoms and use equation (7) to

compute the embedding matrices.

After that, the nearest dictionary atom is selected for

each RGB image pixel and we multiply it with the corre-

sponding stored projection matrix. The simplicity of the

reconstruction phase leads to a relatively efficient recon-

struction. As shown in Table 2, even with an unoptimized

Matlab implementation and using only an average proces-

sor core and no parallel implementation, the runtime is very

efficient compared to other methods.

4. Experiments

In this section we describe the experimental benchmark,

then analyze the major parameters of our methods 1 and

1Our codes, trained models, and results are available at:

http://www.vision.ee.ethz.ch/˜timofter/
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Figure 3. Visual comparison of Arad (our implementation) vs. our method based on A+ for three wavelengths on crops from an ICVL

image. For reference we show also the ground truth and vizualize the pixel errors. Best zoomed on screen.

their impact on the achieved performance. In the end, we

directly compare with current state-of-the-art methods.

4.1. Hyperspectral Image Databases

We evaluate our methods on three public benchmarks.

ICVL dataset [6] was recently released by Arad et al.

, together with their method for sparse recovery of hy-

perspectral signal from natural RGB images. The dataset

consists of 200 images collected by line scanner camera

(Specim PS Kappa DX4 hyperspectral), which captures pic-

tures at a spatial resolution of 1392×1300 over 519 spectral

bands/wavelengths between 400 and 1000 nm. To facilitate

the use of these pictures they were downsampled to a spec-

tral resolution of 31 channels from 400 to 700nm at 10nm

increments.

The amount of ICVL data is relatively large in compar-

ison with other databases [22, 37, 11, 9] and is therefore

well suited to analyze different parameters and techniques

for our method before cross validating the final approach on

other data sets.

To train a dictionary, a global training and test split was

prepared. For that, the images of all the different environ-

mental settings were evenly distributed into two sets to then

randomly sample a certain amount of pixels from every pic-

ture in the database. With these pixels one can train two

distinct dictionaries and later evaluate the performance by

using all images of the remaining set not used for dictionary

training. This is different to the original method of Arad et

al. as they took for each testing image 1000 samples from

each of the remaining images for training.

CAVE [37] database consists of 32 different images, with a

spatial resolution of 512 × 512 pixels, also at 31 different

spectral bands between 400 and 700nm, shot with a cooled

CCD camera (Apogee Alta U260). It is a diverse collec-

tion of objects, containing faces, fake and real fruits, candy,

paint, textiles and a lot more.

Because of the small number of pictures, we used a 4

fold crossvalidation, dividing the set into four groups. 24
images are then used to train the model, while the remaining

8 can be fed into the model to evaluate it. The different

scenes were distributed as evenly as possible.

NUS [22] dataset contains 66 spectral images and their cor-

responding illuminations between 400 to 700nm, and 10nm

increments. The pictures were taken with a Specim’s PFD-

CL-65-V10E spectral camera. Different illumination condi-

tions were used, considering natural sunlight, artificial wide

band lights using metal halide lamps and a commercial off-

the-shelf LED [22].

We used the default training-test split of the database,

with 25 images for testing and 41 for training.

4.2. Compared methods

Arad [6] method described in Section 2 uses a collection of

hyperspectral signatures as a training prior to build an over-

complete dictionary with K-SVD [4] and OMP [24]. Hav-

ing computed the atoms for the collection, it is projected to

the RGB space and used to represent low spectral resolution

samples with a linear combination of atoms. The sparse set

of OMP weights can be applied to the hyperspectral dictio-

nary atoms to reconstruct the final spectral signature.
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Figure 4. Visual comparison of Arad (our implementation) vs. our method based on A+ for three wavelengths on crops from a CAVE

image. For reference we show also the ground truth(GT) and vizualize the pixel errors. Best zoomed on screen.

Arad et al. proposed to use a dictionary size of m = 512
and a sparsity of k = 28. For each test image a new model

is trained using 1000 samples from each remaining image

of the dataset.

Galliani [13] approach used a deep convolutional neural

network as a model inspired by current semantic segmen-

tation architecture Tiramisu of Jegou et al. [18]. An end-

to-end mapping of the complete image from RGB to hy-

perspectral values is trained. The network first uses several

densely connected convolutional layers with max pooling

to subsequently scale the input down and extract important

information. To recover the whole HSR image from learned

features, subpixel upsampling is then used as proposed by

Shi et al. [28]. The layers are interconnected to speed up

the learning and reduce the vanishing gradient problem.

Nguyen [22] model is based on a learned mapping between

hyperspectral response and their corresponding RGB values

for a given camera sensitivity mapping. It uses a non-linear

mapping, applying a radial basis function network. Addi-

tionally, the input data is processed with a white balancing

step to reduce the effect of different illumination conditions

on the mapping from RGB to hyperspectral reflectance.

Arad (ours) Our implementation of Arad’s method has im-

proved results as shown in Table 1. This can be explained

by the fact that we used more training samples for the train-

ing of the dictionary and because we adopted a global train

and test split, instead of a split for every single image. This

resulted in 300000 training samples instead of only 200000.

Besides these changes, the remaining parameters stayed the

same.

A+ (ours) For our approach we use a pretrained overcom-

plete dictionary, not as proposed by Arad for a superposition

but as anchor points to perform a nearest neighbor search. A

projection matrix is (offline) computed for each anchor, us-

ing a collection of neighboring samples from the complete

training set to approximate a local mapping from RGB to

hyperspectral values. The method is described in Section 3.

4.3. Quantitative measures

Root-mean-square error (RMSE) is a standard quantita-

tive measure for accuracy. Arad et al. [6] and Galliani et

al. [13] used the absolute and relative RMSE and in order

to facilitate direct comparison we use them both.

RMSE The absolute RMSE is computed over 8 bit inten-

sity pixel values. Equation (9) shows the formula used by

Arad et al. , while equation (10) by Galliani et al. . I
(i)
E and

I
(i)
G represents the ith element of the estimated or ground

truth image and n are the number of pixels.

RMSE =
1

n

n
∑

i=1

√

(I
(i)
E − I

(i)
G )2 (9)

RMSEG =

√

√

√

√

1

n

n
∑

i=1

(I
(i)
E − I

(i)
G )2 (10)

rRMSE Arad et al. compute the relative RMSE by divid-

ing the luminance error by the ground truth luminance, thus

preventing a bias towards low errors in low luminance pix-
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Figure 5. (a) Influence of the cluster size c (used for the computation of the projection matrices) on the accuracy, using λ = 0.1, k = 28

(At the top left). (b) Influence of the dictionary size c (number of atoms) on the accuracy, using λ = 0.1, k = 28 (At the top right).

(c) Influence of the cluster size c and preprocessing on training image (no preprocessing or using bicubic interpolation) on the accuracy.

(λ = 0.1, k = 8). (d) Influence of λ on the accuracy, using k = 16, c = 4096, (At the bottom left). (e) Influence of the dictionary sparsity

k on the accuracy, using λ = 0.1, (At the bottom right). (f) Performance of a bigger patch size. Dashed lines represent trained models with

bicubic downsampled training samples, while the continuous line uses unprocessed input data for training.

els as shown in (11). Galliani et al. take the average of the

ground truth (ĪG) to get the relative RMSE, in (12).

rRMSE =
1

n

n
∑

i=1

(

√

(I
(i)
E − I

(i)
G )2/I

(i)
G ) (11)

rRMSEG =

√

√

√

√

1

n

n
∑

i=1

((I
(i)
E − I

(i)
G )/ĪG)2 (12)

4.4. Parameters

The main parameters of our method are: dictionary size

(m), cluster size (c), sparsity of the dictionary (k) and λ,

which regularizes the least squares solution for the A+ com-

putation.

To analyze the parameters, we were training our method

on one half of the ICVL images and testing it with the re-

maining ones and vise versa. While evaluating the param-

eters, the training set was built of 2000 randomly selected

samples (pixels) from each image, resulting in 200000 fea-

ture vectors, to train the dictionaries. To compute the pro-

jection matrices the same process was used, but with an in-

creased amount of sample pixels per image. This leads to

2000000 signatures. More samples does not increase the

matrix computation time as much as for the dictionary train-

ing, while significantly increasing the accuracy.

Neighborhood/cluster size (c) As shown in Fig. 5a the

cluster size c has a big influence on the performance of our

method. One can reduce the needed dictionary size for op-

timal results by using more neighbors for projection ma-

trix computation, which will finally shorten the reconstruc-

tion time which involves a search over the dictionary atoms.

Larger neighborhoods only increase training time.

regularization (λ ) stabilizes the solution and our method

is relatively robust to the selection of λ value as seen in

Fig. 5d. We set λ to 0.1.

Dictionary size (m) rRMSE improves with the number of

atoms m in the dictionary up to a saturation as shown in

Fig. 5b,c. m affects both training and reconstruction, while

the cluster size c only the training time. Therefore, it is

beneficial to use large neighborhoods (c) and medium to

small dictionaries (m).

Dictionary sparsity (k) The sparsity has low impact on the

rRMSE of our method (see Fig. 5e). However, it heavily

impacts the dictionary training as both K-SVD and OMP

employed techniques depend on sparsity.

For later tests, the values for λ = 0.1 and k = 8 are fixed.

Mining of samples The techniques of Arad et al. and Tim-

ofte et al. work mainly due to the (assumed) linearity of the

two spectral spaces in correspondence to each other. By rep-

resenting the space as linear combinations of atoms (Arad)

and as a linear projection in the case of A+ (Timofte), there

already occurs smoothing by a certain degree. Often when

linearizing a function, this can have a stabilizing effect on

the results. Thus, it is important to verify whether it is pos-

sible to reduce the impact of noise on the training data even
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Figure 6. Visual comparison of Arad (our implementation) vs. our method based on A+ for three wavelengths on crops from a NUS image.

For reference we show also the ground truth and vizualize the pixel errors. Best zoomed on screen.

further, by preprocessing the images used for training.

This is done by scaling down the images using bicubic in-

terpolation and, thus, removing some of the noise.

As shown in Fig. 5c, using training data which was

scaled down by different factors (0x - no downscaling, 1x

bicubic downscaling by a factor of 21, 2x - bicubic down-

scaling by a factor 22) , or even combinations of different

downscaled samples, reached higher accuracy scores than

the unprocessed one. A cluster size larger than 10000 leads

to an increased error for all the settings considered. This

is due to an overly linearized projection from LSR to HSR

signals in relation with the ratio between total number of

train samples and number of dictionary atoms/anchors. We

conclude that c = 8192, m = 1024, and 2x maximize the

accuracy and efficiency.

Patch vs. pixel support As seen in previous experiments

bicubic downscaling of train images helped to reduce pixel

noise and to improve the results. Therefore, we further in-

vestigate on using not only a pixel but a surrounding patch

as description of that pixel. We used patches of size 3 × 3
and larger. This way one can use adjacent pixel intensities

directly to infer additional information.

Fig. 5f shows that using patch support of size 3× 3 does

not benefit from training on downscaled (thus, less noisy)

train images. This is because at runtime the model can not

handle well the noise unseen in the training. The method

with 3 × 3 patch support achieves better performance than

the reference 1× 1 for 1024 dictionary size and further im-

proves with larger dictionaries (here 4096) and neighbor-

hoods (here above 4000). For the final evaluations both

settings are tested to have a good comparison, but for ef-

ficiency reasons, one would prefer the model trained with

only single pixel feature vectors to keep the time for train-

ing and testing as low as possible.

4.5. Performance evaluation

As reported in Fig. 5 and in the previous sections our

shallow method is well-behaved with respect to its main pa-

rameters, i.e. the accuracy improves with the increase of

dictionary and/or neighborhood / train pool of samples. In

the next, we report results for our method with two slightly

different settings. For the first ‘1 × 1’, the parameters are

set to k = 8, m = 1024, c = 8196, λ = 0.1 and the values

of a single pixel were used as input. The second ‘3× 3’ had

a bigger dictionary of size m = 4096 and a patch support

of 3×3 pixels. For both we used a total of 300′000 samples

to learn the dictionary and 3′000′000 to compute the pro-

jection matrices. At training for the single pixel setting we

used bicubic downscaled images (factor 22).

Quantitative evaluation The rRMSE of our A+ method at

different wavelengths is shown in Figure 7 on ICVL data.

Our method is very accurate at wavelengths corresponding

to the RGB values, whereas the average and variance of the

RMSE start to deviate more in between and at the edges of

the visual spectrum.

Table 1 reports the results of our methods in comparison

with those of Galliani, Arad, and Nguyen methods on three

benchmarks: ICVL, CAVE and NUS. Since two different

ways of calculating the relative and absolute RMSE were

proposed by Galliani et al. and Arad et al. , all of them
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Table 1. Quantitative comparison on ICVL, CAVE and NUS datasets. Best results are in bold.

ICVL dataset [6] CAVE dataset [37] NUS dataset [22]

Galliani Arad Arad A+ A+ Galliani Arad Arad A+ A+ Nguyen Galliani Arad A+ A+

[13] [6] (ours) 1x1 3x3 [13] [6] (ours) 1x1 3x3 [22] [13] (ours) 1x1 3x3

rRMSE - 0.0756 0.0507 0.0382 0.0344 - - 0.4998 0.4265 0.4443 0.2145 - 0.1904 0.1420 0.1466

rRMSEG 0.0587 - 0.0873 0.0599 0.0584 0.2804 - 0.7755 0.3034 0.3401 0.3026 0.234 0.3633 0.2242 0.2303

RMSE - 2.6 1.70 1.12 1.04 - 5.4 5.61 2.74 2.90 12.44 - 4.44 2.92 2.90

RMSEG 1.98 - 3.24 2.00 1.96 4.76 - 20.13 6.70 7.60 8.06 5.27 9.56 5.17 5.17

400 450 500 550 600 650 700
wavelength [nm]

0

0.2

0.4

0.6

0.8

1

rR
M

S
E

relative RMSE, A+ 1x1

relative RMSE, A+ 3x3

relative RMSE, Arad (ours)

RGB camera sensitivity functions

Figure 7. rRMSE at different wavelengths for our A+ and Arad

methods on ICVL. RGB sensitivity is provided for reference.

were computed.

On ICVL dataset our Arad reimplementation clearly im-

proves over the original method and reported results by

Arad et al. [6], moreover our shallow A+ methods signif-

icantly improve over Arad and are on par with or slightly

better than the deep CNN method of Galliani et al.

On CAVE data collection again our A+ results are better

than Arad and comparable to Galliani. Interestingly this

time the single pixel approach is better than the one us-

ing patches as input. Of course it could be that one has

to slightly adjust the parameters k,m, c, λ to adapt for dif-

ferent images to reach an optimal performance. Another

problem might be the fact, that the images contained a lot

of dark areas, which probably reduced the useful amount of

patches for the second approach, which usually needs more

samples to avoid over- and underfitting.

On the NUS collection, the anchored learned spectral re-

construction methods performed better than all other meth-

ods.

From the results in Table 1 we conclude that our shallow

method perform comparable or better than the very recent

deep CNN approach of Galliani et al. and significantly bet-

ter than the recent sparse coding method of Arad et al. and

the relatively older approach of Nguyen et al.

Visual assessment In Figs. 3, 4 & 6 we show reconstructed

intensity values by Arad (our implementation) and our A+

method (single pixel setting) in comparison with the ground

truth at different wavelengths of hyperspectral images from

ICVL, CAVE, and NUS dataset, respectively. The displayed

crops of interesting areas show that our A+ method provides

Table 2. Runtime measurement for spectral reconstruction of one

ICVL image of size 1300× 1392.

Arad[6] Arad (ours) A+ (ours) A+ (ours)

1x1 3x3

training (offline) - 2.8h 1.5h 5.7h

runtime 1.5h+100s 130s 30s 110s

smoother and more accurate results handling noisy images

better than Arad.

Runtime In table 2 one can see the time needed for train-

ing and also how long it takes to reconstruct an image from

the ICVL database. Our A+ has a runtime ×4.3 lower than

our efficient reimplementation of Arad’s method. Consider-

ing that these measurements were done with a CPU, imple-

mented on Matlab without any vast parallelism, the method

could easily be accelerated. The same goes for the training

time, which can be reduced by at least half with the single

pixel approach. Simply reducing the sparsity for the dictio-

nary to k = 1 would ensure a large speedup.

5. Conclusions

In this work we defended the shallow methods in com-

parison with the very recent Galliani et al. [13] proposed

very deep CNN-based method for learned spectral recon-

struction. For this, (i) first, we improved the recent sparse

coding shallow method of Arad et al. [6] and achieved sig-

nificantly better results than those originally reported; (ii)

second, we introduced a novel shallow method based on

A+ of Timofte et al. [33] from super-resolution that sub-

stantially improves over Arad and, moreover, provides com-

parable performance to Galliani on three standard bench-

marks (ICVL, CAVE, and NUS); and (iii) finally, we ar-

gued that the efficiency in training and at runtime as well as

the clear relation between its parameters and the achieved

performance makes from our shallow A+ a strong baseline

for further research in learned spectral reconstruction from

RGB images. Our A+ shallow method requires significantly

smaller train data than Galliani (and generally the CNN ap-

proaches), is robust to overfitting and can be easily deployed

to newer cameras by fast training.
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