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Abstract

Though blind image quality assessment (BIQA) is highly

demanded for many image processing systems, it is ex-

tremely difficult for BIQA to accurately predict the qual-

ity without the guide of the reference image. In this paper,

we introduce a novel BIQA method with hierarchical fea-

ture degradation (HFD). Since the human brain presents

hierarchical procedure for visual recognition, we suggest

that different levels of distortion generate different degra-

dations on hierarchical features, and propose to consider

the degradations on both the low and high level features

for quality assessment. Inspired by the orientation selec-

tivity (OS) mechanism in the primary visual cortex, an OS

based local visual structure is designed for low-level visual

content extraction. Meanwhile, according to the feature in-

tegration function of deep neural networks, the deep seman-

tics is extracted with the residual network for high-level vi-

sual content representation. Next, by analyzing the degra-

dation on both the local structure and the deep semantics, a

HFD based memory (prior knowledge) is learned to repre-

sent the generalized quality degradation. Finally, with the

guidance of the HFD based memory, a novel HFD-BIQA

model is built. Experimental results on the publicly avail-

able databases demonstrate the quality prediction accuracy

of the proposed HFD-BIQA, and verify that the HFD-BIQA

performs highly consistent with the subjective perception1.

1. Introduction

With the tremendously increase of digital photographs

in our daily life, it is highly desired to faithfully evaluate

the qualities in many signal processing systems, e.g., digi-

tal signal acquisition, compression, transmission, and so on.

1This work was supported by the National Natural Science Foundation

of China (Nos. 61401325, 61472301, 61632019, 61621005).

Thus, a reliable objective image quality assessment (IQA)

method, which performs consistently with the subjective

perception, is greatly demanded.

During the past decade, a large amount of IQA meth-

ods have been proposed. The largest number of these IQA

methods are full-reference and reduced-reference, which re-

quire the whole reference image or part of the reference in-

formation for quality prediction. However, the reference in-

formation is always unavailable for most situations. Thus,

the no-reference/blind IQA (BIQA), which do not need any

reference information for IQA, is required, and BIQA has

became a popular research topic in the recent years. In this

work, we focus on designing a novel BIQA method.

Since we know nothing about the reference image, it is

extremely difficult for BIQA to accurately evaluate the qual-

ities of images. At the early state, most BIQA methods usu-

ally employed the prior knowledge of the distortion type

for quality prediction, which are called distortion-specified

BIQA, e.g., sharpness for blur [1], blockiness for JPEG [2],

ringing for JPEG2000 [3], and so on. These distortion-

specified BIQAs only work for their corresponding types

of distortion, and have a limited application scope.

Recently, researches focus on the non-distortion-specific

BIQA methods [4]. The most popular type of BIQA meth-

ods are the natural scene statistical (NSS) based, which

follow the assumption that the low-level features if nature

scenes present some kind of statistical distributions, and

the distortions will degrade such distributions. For exam-

ple, Moorthy et al. [5] suggested to learn the NSS with the

generalized Gaussian distribution (GGD) in the wavelet do-

main, and measured the image quality as the change on

the GGD coefficients (i.e., DIIVINE method). Following

this work, Saad et al. analyzed the NSS characteristic on

the DCT coefficients of images, and introduced a BLIINDS

method in [6]. Moreover, Mittal et al. extended the NSS

work in the spatial domain, and introduced the BRISQUE

in [7]. Recently, Zhang et al. further extended the NSS work

and integrated a large set of NSS features in several domains
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BIQA (i.e., the IL-NIQE method) [8]. Besides these NSS

methods, Ye and Doermann [9] proposed to measure the

quality with the guide of a trained codebook, and Zhang et

al. [10] introduced to learn a local quantized pattern based

visual codebook to guide the BIQA. These low-level feature

based BIQA methods still have a large gap from the human

perception.

In order to design a novel BIQA method which performs

more consistently with the human perception, we tune to in-

vestigate the visual perception of the HVS. Researches on

the neuroscience indicate that the HVS can be modeled as

a hierarchy for visual feature extraction and visual recog-

nition, i.e., from low-level feature (e.g., local structure) to

comprehensive high-level feature (e.g., semantics informa-

tion) [11, 12]. Inspired by this, we suggest that different

levels of distortion generate different degradations on hier-

archical features, and propose to consider the degradations

on both the low and high features for quality assessment.

The HVS presents obvious orientation selectivity (OS)

mechanism in the primary visual cortex for low-level fea-

ture (e.g., local edge) extraction [13–15]. Inspired by the

OS mechanism, the OS based local structure is introduced

for low-level feature extraction. Meanwhile, with multiple

layers to learn hierarchical representations of the visual in-

put, the later layers of deep neural network can efficiently

extract the high-level features of visual contents [16]. As

one of the most powerful deeper network architectures, the

residual network (ResNet) [17] is adopted for high-level

feature extraction. Next, the degradations on both low and

high features are analyzed for memory creation. By learn-

ing the correlation between the subjective quality (e.g., the

mean opinion score (MOS) from subjective IQA test) and

the degraded features with support vector regression (SVR),

the prior knowledge database (i.e., memory) about quality

degradation is created. Finally, under the guidance of the

degradation memory, a novel hierarchical feature degrada-

tion (HFD) based BIQA (i.e., HFD-BIQA) method is pro-

posed. With both the low and high level features for quality

prediction, the proposed HFD-BIQA outperforms the exist-

ing BIQA methods (experimental results have demonstrated

that the proposed HFD-BIQA has a remarkable improve-

ment against these existing methods).

2. Hierarchical Quality Degradation Measure-

ment

In this section, the hierarchical subjective perception on

visual quality degradation is firstly briefly analyzed. Then,

inspired by the OS mechanism, the OS based local struc-

ture is introduced for low-level feature extraction. Next,

according to the ResNet, the high-level feature from the lat-

est layer is extracted for deep semantics representation. Fi-

nally, the degradation on both low and high level features

are analyzed to create the HFD based memory for BIQA.

Figure 1: The architecture of the HFD-BIQA method.

The architecture of the proposed BIQA model is shown in

Fig. 1.

2.1. Hierarchical Quality Degradation

Researches on cognitive neuroscience indicate that the

HVS is a hierarchy of cortical areas, in which the input

visual signal is hierarchically processed with increasingly

sophisticated representation (from low to high level fea-

tures) [11, 12]. For the input visual image, the primary vi-

sual areas (V1 and V2) are adapted to extract simply lo-

cal features. e.g., edge and orientation. The successive

areas (V3, V4, and medial-temporal area) integrate these

local features and generalize some global representations,

e.g., contour and shape. By further integrating the output of

these global representations, the high-level visual areas (in-

ferotemporal and prefrontal areas) finally generate the high-

level semantics, e.g., abstract and categories.

Different levels of noise will generate hierarchical dis-

tortions on visual contents, and cause individual degrada-

tions on visual qualities. As shown in Fig. 2, the Hats im-

age is distorted by three different levels of Gaussian blur

noise (WBN). A weak noise level (PSNR=36.71dB) in

Fig. 2 (a) has slightly blurred the local edge, while has little

effect on the shape of the hats. With the increase of noise

level, the local edge in Fig. 2 (b) (with PSNR=26.37dB)

is obviously distorted, while the concept can still be clearly

extracted (i.e., precisely understanding this is an image with

three hats). Under a strong noise level (PSNR=20.93dB),

the local edge and shape in Fig. 2 (c) is seriously distorted,

and it is impossible to extract the accurate concept informa-

tion (hats or air balloon or something else) from this im-

age. Due to the hierarchical perception model in the HVS,

we need consider the degradations on multi-levels of fea-

tures (e.g., low and high levels of features) for BIQA mod-
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(a) PSNR=36.71dB (b) PSNR=26.37dB (c) PSNR=20.93dB

Figure 2: Hierarchical visual quality degradation under different noise levels.

eling.

2.2. Local Visual Structure Extraction

It is well known that the HVS is highly adapted to ex-

tract the local structure for visual perception, and thus the

structural degradation is widely used for quality assess-

ment [18, 19]. Researches on neuroscience demonstrate that

neurons on the primary visual cortex present substantial OS

for low-level structure extraction [13]. Moreover, the OS

arises from the intracortical responses (i.e., excitatory and

inhibitory interactions) among neurons in a local receptive

field [20]. Inspired by the OS mechanism, we suggest to

represent the local structure (Fl) with both response inten-

sity (Ir) and response pattern (Pr) in a local region.

The HVS is extremely sensitive to luminance changes,

and the response intensity is directly related to the

change/difference on luminance. Thus, for a given image

I , the intensity of the local structure for each pixel can be

represented as its luminance change, and is calculated as the

gradient magnitude,

Ir(x) =
√

(Gh(x))2 + (Gv(x))2, (1)

where Gh and Gv are the horizontal and vertical gradient

maps, which can be acquired with Prewitt filters.

As an invariant feature of image, visual patterns have

been widely used in many visual recognition work [21, 22].

The response pattern Pr of a local receptive field is decided

by the arrangement of intracortical responses (i.e., excita-

tory and inhibitory interactions). Moreover, neighbor neu-

rons with similar preferred orientations always present ex-

citatory interactions, and these dissimilar ones present in-

hibitory interactions [23]. Thus, the pattern form Pr(x) that

each pixel presented is described as the arrangement of in-

teractions between the central pixel x and pixels in its local

neighborhood (R(x)={x1, x2, · · · , xn}) [24],

Pr(x) = A(I(x|x1), I(x|x2), · · · , I(x|xn)), (2)

where I(x|xi) is the interaction type between x and xi,

I(x|xi) =

{

1 if |θ(x)− θ(xi)| < T

0 else
, (3)

θ(x) = arctan
Gv(x)

Gh(x)
, (4)

where ‘1’ represents excitatory interaction, and ‘0’ repre-

sents inhibitory interaction. The judging threshold T deter-

mines the interaction type, and is set as T =6◦ according to

the subjective viewing test on visual masking [24].

With Eq. (2) we can see that the number of pattern type

is growing exponentially with the pixel number in R(x) (2n

different types). For example, a 5×5 local region possesses

more than 10 million (224) different types of pattern form,

which is too many for efficient visual pattern representa-

tion. With further analysis, we have found that not all of

these patterns are equally appeared (some types of patterns

are more frequently appeared, e.g., patterns which repre-

sent smooth and edge regions). Moreover, some patterns

have similar format and represent homogeneous visual con-

tents. Therefore, we can select these representative patterns

for visual structure representation. And in this work, the

K-Means clustering algorithm is adopted for representative

pattern selection,

{P̂k

r
, k = 1, 2, · · ·,K} = arg min

K
∑

k=1

M
∑

m=1

||wm·(Pm

r
−P̂k

r
)||2,

(5)

where K is the number of representative patterns, P̂k
r

rep-

resents the nth clustering centroid, and we set K=1000 in

this work (to make sure that the numbers of the low and

high level features are the same). wm is the weight factor

and is computed as the appearance probability of Pm
r

.

With Eqs. (1) and (5), the response intensity (Ir) and

response pattern (P̂r) for each pixel are calculated for its

local structure representation. And the low-level visual con-
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Figure 3: Architecture of the 50-layer ResNet for deep se-

mantics extraction (the latest layer with 1×1000 features).

tent of an image can be mapped into a structure based his-

togram (Fl),

Fl(k) =
N
∑

x=1

Ir(x) · δ(P̂
x

r
, P̂k

r
) (6)

δ(P̂x

r
, P̂k

r
) =

{

1 if P̂x
r
= P̂k

r

0 else
, (7)

where N is the number of pixels in an image.

2.3. Deep Visual Semantics Extraction

As the highest visual area of the HVS, the inferotemporal

cortex (IT) integrates the former outputs and generate the

high-level visual information (e.g., abstract) for objective

recognition [25]. Thus, the high-level visual information

plays a key role in visual perception, and distortion on it

will severely degrade the quality of image.

Deep learning network can efficiently extract high-level

feature for visual recognition. With the inspiration of the

hierarchy in the HVS for visual perception, deep learning

network uses multiple processing layers to learn and inte-

grate representations, and assemble high-level feature (i.e.,

deep semantics) in the later layers [16]. Moreover, with the

increase of stacked layer number (i.e., the depth of the net-

work), more complex and enrich semantic information can

be acquired in the later layers. Therefore, we try to adopt

the deep learning network for deep semantics extraction.

As a powerful and deeper neural network, the pretrained

ResNet [17] is adopted for deep semantics extraction in this

work. Considering the efficiency and computational com-

plexity, a 50-layer ResNet is chosen, whose architecture is

shown in Fig. 3. And the output of the latest layer (with

1×1000 features) is used as the deep semantics informa-

tion (i.e., Fh ∈ R1×1000).

2.4. Blind Quality Assessment

With the help of the prior knowledge/memory, the hu-

man can accurately predict the quality of an input image.

Inspired by this, we try to create a memory database about

the hierarchical feature degradation to guide the BIQA. The

low/high level features are firstly normalized for fusion,

F̂i(j) =
Fi(j)

√
∑

n
(Fi(n))2

, (8)

where Fi represents the local structure (Fl) or the deep se-

mantics (Fh), and F̂i(n) is the n-th normalized feature.

Next, the two types of features are combined and the

hierarchical feature set (i.e., F={F̂l, F̂h}) is acquire for

quality degradation analysis. The correlations between

the hierarchical feature sets (F) and the subjective quality

scores (Q, i.e., MOS or DMOS) of distorted images are an-

alyzed for degradation memory creation. As an efficient

regression procedure from a high dimension to a lower one,

the classical support vector regression (SVR) is adopted to

learn the mapping relationship between F and Q. In this

work, the LIBSVM [26] is used to acquire the degradation

memory (Md),

Md = SVRlearn(F ,Q). (9)

With the guidance of the degradation memory, the qual-

ity of an image I can be predicted with its hierarchical fea-

ture degradation,

Q̂(I) = SVRpredict(F(I),Md), (10)

where F(I) is the hierarchical feature set of the input image

I , and Q̂ is the predicted quality score

3. Experimental Result Analysis

In this section, the efficiency of the hierarchical feature

degradation is firstly illustrated. Then, the prediction accu-

racy of the HFD-BIQA method is demonstrated by compar-

ing with the existing state-of-the-art BIQA methods on the

public available databases.

Three large-scale public IQA databases are chosen

for experimental result analysis, which are CSIQ [27],

LIVE [28], and TID2013 [29]. The CSIQ database con-

sists of 30 original scenes, and each scene is degraded by

6 types of distortions under 5 different noise levels. The

LIVE database contains 29 original scenes, and each scene

is degraded by 5 types of distortions. The TID2013 pos-

sesses 25 original scenes, and each is degraded by 24 types

of distortions under 5 levels.

Meanwhile, three classical metrics for the IQA perfor-

mance measurement are adopted, which are the Spear-

man rank order correlation coefficient (SRCC), the Pear-

son linear correlation coefficient (PLCC), and the root

mean squared error (RMSE). The SRCC represents the pre-

diction monotonicity, and a better IQA method returns a

larger SRCC value. The PLCC measures the prediction

accuracy (the higher PLCC the better performance), and

the RMSE represents the prediction deviation (the smaller

PMSE the better performance).

3.1. Analysis on Hierarchical Degradation

The HVS hierarchically processes the input visual con-

tent, and different levels of distortion generate different
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(a) Lady-Face with weak noise (b) Lady-Face with strong noise

(c) Green-House with weak noise (d) Green-House with strong noise

Figure 4: An example of hierarchical degradation on two different scenes distorted by JPEG noise under two different levels.

degradations on the hierarchical visual features. An exam-

ple is shown in Fig. 4, in which two different scenes (i.e.,

Lady-Face and Green-House from TID2013 [29]) are dis-

torted by JPEG noise under different levels, and the corre-

sponding index values are listed in Tab. 1.

Weak noise mainly degrade the local structure, and has

limited influence on the deep semantics. As shown in Fig. 4

(a) and (c), the two images are distorted by weak JPEG

noise (with PSNR 28.23 dB and 28.68 dB). As can be seen,

though there are obvious degradations on the local struc-

tures (e.g., the facial contour in Fig. 4 (a) and the edge of

barriers in Fig. 4 (c)), we can still easily extract the primary

visual contents of the two images for understanding (i.e.,

can still understand that Fig. 4 (a) contains a lady face,

and Fig. 4 (b) is a green house). Meanwhile, the measure-

ment with local structure can accurately represent the per-

ceptual qualities of the two images. As listed in Tab. 1,

Fig.4 (a) (with MOS=3.26) has worse subjective percep-

tual quality (smaller MOS value) than that of Fig.4 (c) (with

MOS=4.64). And the measurement results with local struc-

ture is 3.27 and 4.64 for them, which are consistent with

the subjective perception (MOS). However, the deep seman-

tics returns an opposite result for the two images (3.61 and

3.20 for them, which means Fig.4 (a) has better quality than

Fig.4 (b)).

Strong noise severely degrade the local structure, and di-

rectly destroy the deep semantics. As a result, the qual-

ity mainly relates to the degradation on the deep semantics,

and has little relationship with the degradation on the local

structure. As shown in Fig. 4 (b) and (d), the two images

are distorted by strong JPEG noise (with PSNR 22.88 dB

and 21.61 dB). As a result, we can hardly extract complete

information from the two images, e.g., the nose from Fig. 4

(b) or the roof from Fig. 4 (c). Though the local structure is

severely distorted, its distortion degree cannot represent the

perceptual quality anymore. As shown in Tab. 1, the mea-
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Table 1: An example of hierarchical degradation on two

different scenes

Fig.4 (a) (c) (b) (d)

MOS 3.26 4.86 2.19 1.66

PSNR 28.23 28.68 22.88 21.61

Local Structure 3.27 4.64 2.41 2.53

Deep Semantics 3.61 3.20 2.11 1.92

HFD-BIQA 3.61 3.63 2.35 1.87

Table 2: Comprehensive analysis of hierarchical degrada-

tion on the CSIQ Database

Crit. Local Structure Deep Semantics HFD-BIQA

PLCC 0.847 0.832 0.890

SRCC 0.790 0.762 0.842

RMSE 0.136 0.147 0.120

surement from the local structure returns an opposite result

(Fig. 4 (b) has worse quality (2.41) than Fig. 4 (d) (2.53))

against the subjective perception (the MOS for Fig. 4 (b)

and (d) are 2.19 and 1.66, respectively). The quality predic-

tions on the two with the deep semantics shows that Fig. 4

(b) (with 2.11) has better quality than that of Fig. 4 (d) (with

1.92), which is consistent with the subjective perception.

The proposed HFD-BIQA can accurately represent the

quality degradations on the four images in Fig. 4. By fus-

ing both the low and high features for quality prediction,

the proposed HFD-BIQA contains a hierarchical degrada-

tion measurement, which can efficiently measure the qual-

ity degradation by weak or strong noise. As shown in

Tab. 1, the predicted quality for Fig. 4 (a)-(d) are 3.61, 3.63,

2.35, and 1.87, respective. The prediction results shows that

Fig. 4 (c) has the best quality, Fig. 4 (a) is the second best,

and Fig. 4 (d) is the worst one, which is consistent with the

subjective perception.

In order to give a comprehensive analysis on hierarchical

feature degradation, the performances of the local structure,

the deep semantics, and the proposed HFD-BIQA on the

whole CSIQ database [27] are compared, and the compar-

ison results are listed in Tab. 2. By fusing the local struc-

ture and the deep semantics, the proposed HFD-BIQA has

the highest PLCC and SRCC values, and the lowest RMSE

value, which demonstrate that the measurement on the hier-

archical feature degradation is more consistent with the sub-

jective perception than that on only one type of feature (i.e.,

the local structure or the deep semantics).

3.2. IQA Performance Comparison

In order to demonstrate the performance, the proposed

HFD-BIQA is compared with 7 state-of-the-art BIQA

methods (i.e., IMNSS [10], IL-NIQE [8], NIQE [30],

BRISQUE [7], and DIIVINE [5]) and two classical FR-IQA

methods (PSNR and MS-SSIM [18]) on the three large IQA

databases.

Firstly, the performance of these IQA methods on the

individual distortion type of LIVE database is illustrated.

There are five different distortion types in LIVE database,

namely, JPEG compression noise (JPG), JPEG2000 com-

pression noise (J2K), white Gaussian noise (WGN), Gaus-

sian blur noise (GBN), and fastfading noise (FFN). When

building the hierarchical structure degradation memory for

the proposed HFD-BIQA, a training procedure is required

in the regression module. Similar to the training procedure

in these existing BIQA methods (e.g., in [4, 10]), we ran-

domly divide the images that a database contained into two

subsets (training and testing subsets). To make sure that

there is no overlap between the two subsets, 80% original

scenes are randomly selected, and their corresponding dis-

torted images are used for training; the left 20% distorted

images are used for testing. Moreover, in order to eliminate

the performance bias (not governed by a specific training re-

sult), the 80% training - 20% testing procedure is repeated

for 1000 times. The median performance across the 1000

times is calculated as the final result.

The performances of these IQA methods on each dis-

tortion type of LIVE database are listed in Tab. 3. It is

apparent that the HFD-BIQA performs highly consistent

with the subjective perception (the SRCC value is larger

than 0.9 in all of these distortion types). More concretely,

the HFD-BIQA performs the best on two types of distor-

tion (i.e., J2K and FFN) among these BIQA methods, and

performs slightly worse than the best one on the other three

types. Moreover, by comparing with the FR-IQA methods,

the HFD-BIQA outperforms the benchmark PSNR on all of

the five distortion types, and performs almost similar with

the classic MS-SSIM.

Besides the performance on individual distortion type,

the overall performance on the whole database is further

analyzed. The overall performances of these IQA meth-

ods on the LIVE, CSIQ, and TID2013 databases are listed

in Tab. 4. As can be seen, the prediction accuracy of

the HFD-BIQA is completely higher than the other BIQA

methods (with higher SRCC and PLCC values, and lower

RMSE values). Especially for the TID2013 (the largest IQA

database which contains 24 different types of distortion, and

the existing IQA methods usually perform no good enough

on it), the HFD-BIQA achieves a remarkable improvement

against these existing BIQA (the SRCC of the HFD-BIQA

VS. the second best: 0.764 – 0.643).

Moreover, though BIQA methods are usually hardly
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Table 3: Performances (SRCC) comparison on individual distortion type of LIVE database

Distion
NR FR

HFD-BIQA IMNSS IL-NIQE NIQE BRISQUE CBIQ DIIVINE PSNR MS-SSIM

J2K 0.943 0.934 0.905 0.914 0.914 0.903 0.937 0.904 0.940

JPG 0.951 0.933 0.950 0.937 0.965 0.942 0.910 0.891 0.949

WGN 0.972 0.986 0.980 0.967 0.979 0.932 0.984 0.984 0.966

GBN 0.919 0.949 0.923 0.931 0.951 0.935 0.921 0.797 0.913

FFN 0.905 0.8946 0.851 0.861 0.877 0.856 0.863 0.902 0.942

Table 4: Performance Comparison on the whole database (LIVE, CSIQ and TID2013)

DB Crit.
NR FR

HFD-BIQA IMNSS IL-NIQE NIQE BRISQUE CORNIA DIIVINE PSNR MS-SSIM

LIVE

PLCC 0.951 0.943 0.905 0.908 0.929 0.937 0.892 0.872 0.945

SRCC 0.948 0.944 0.902 0.908 0.920 0.938 0.882 0.876 0.948

RMSE 8.437 8.705 11.622 11.423 10.421 9.645 12.330 13.360 8.950

CSIQ

PLCC 0.890 0.835 0.863 0.726 0.812 0.750 0.804 0.751 0.876

SRCC 0.842 0.789 0.822 0.629 0.748 0.676 0.776 0.806 0.861

RMSE 0.120 0.142 0.130 0.179 0.154 0.172 0.154 0.173 0.133

TID2013

PLCC 0.764 0.598 0.641 0.421 0.626 0.552 0.643 0.678 0.790

SRCC 0.681 0.522 0.518 0.330 0.571 0.434 0.567 0.586 0.742

RMSE 0.797 0.997 0.955 1.130 0.931 1.035 0.952 0.911 0.761

matchable with FR-IQA (with the help of the whole ref-

erence information, and returns high prediction accuracy),

the HFD-BIQA performs better than the benchmark PSNR

on all of these databases, and is comparable with the classic

MS-SSIM (performs slightly better on LIVE and CSIQ, and

a little worse on TID2013).

4. Conclusion

In this paper, we have introduced a novel BIQA method

based on hierarchical feature degradation. With the inspi-

ration of hierarchical visual signal processing in the HVS,

we have suggested that different levels of distortion gener-

ate different degradations on hierarchical features. For ex-

ample, weak distortion mainly degrades the low-level fea-

ture (local structure), and strong distortion directly destroys

the high-level feature (deep semantics). Therefore, we pro-

posed to considering both the degradations on the local

structure and the deep semantics for quality assessment.

According to the orientation selectivity mechanism, the

local visual structure has been extracted for low-level vi-

sual content representation. At the meantime, by using the

ResNet, the deep semantics has been extracted for high-

level visual content representation. By analyzing the degra-

dation on both the local structure and the deep seman-

tics, a hierarchical feature degradation based memory has

been learned to guide the BIQA, and the novel HFD-BIQA

has been proposed. Experimental results on the large IQA

databases have demonstrated that the proposed HFD-BIQA

performs highly consistent with the subjective perception.
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