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Supplementary material

1 Datasets details

1.1 Overall content description

The new datasets proposed in this paper consist in a total of 2601 independent scenes depicting
various numbers of object instances in bulk. Synthetic datasets are made of scenes representing
the inside of a bin, in which between 0 and n ∈ N

∗ object instances have been dropped randomly.
n is chosen empirically as a compromise between simulation duration and scene complexity such
as to produce plausible scenes of bulk (see table 1 for numerical values).

Real data consists similarly in scenes of various numbers of object instances (between 0 and
11) lying on a surface at various distances from the camera. Each instance was covered by 19
fiducial markers. We used two different background surfaces illustrated in figure 1: a planar
one (markers flat, 308 scenes), representative of the typical bottom of a bin; and a bumpy
surface (markers bump, 325 scenes), increasing the variability of poses and producing a pose
distribution more consistent with the scenario of many instances piled up. An additional dataset
of 46 scenes (markers clutter) targets the problem of object detection and pose estimation in a
cluttered environment.

The symmetry class considered for a rigid object depends on what static configurations of
the object we wish to distinguish, and this choice is not necessarily obvious. For example,
the gear object could be considered as an object with a cyclic symmetry of order 2 – i.e. an
invariance under rotation of 1/2 turn about a given axis – , a cyclic symmetry of order its
number of teeth, or a revolution symmetry depending on the level of details considered. We
considered this latter option in our experiments, and table 1 synthesize the choices of symmetry
classes we made.

1.2 Scene data description

We provide for each scene the following content, illustrated on figure 2:

Figure 1: Different backgrounds used for real data acquisition
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Table 1: Main properties of the datasets used.

Dataset Class of symmetry considered
Number
of scenes

Number of instances
per scene

R
ea
l
d
at
a markers bump no 325 0 - 11

markers clutter no 46 0 - 4
markers flat no 308 0 - 11
juice [1] no 60 5

coffee cup [1] revolution without rotoreflection invariance 56 19

S
y
n
th
et
ic

d
at
a

markers flat no 308 0 - 11
tless 22 no 202 0 - 100
bunny no 324 0-80
tless 20 cyclic 2 200 0 - 99
tless 29 cyclic 2 160 0 - 79
brick cyclic 2 302 0 - 150
gear revolution without rotoreflection invariance 122 0 - 60

candlestick revolution without rotoreflection invariance 122 0 - 60
pepper revolution without rotoreflection invariance 182 0 - 90

• An RGB or intensity image (figure 2a).

• Depth images, from the same viewpoint as the RGB data. In addition to the depth data
affected by stereo reconstruction noise considered in the paper (figure 2c), we propose an
ideal depth image of the scene, synthetically generated (figure 2b). Because we did not
model the bumpy background used in the case of the bunny dataset, it is not present in
the ideal data. We do not provide ideal data for the clutter dataset for similar reasons.

• A segmentation image of the different object instances present in the scene (figure 2d).
In the case of the clutter dataset, the segmentation label is only provided for pixels with
a defined depth, since occlusion due to clutter is difficult to assess automatically where
depth information is missing.

• Camera parameters, enabling to recover 3D coordinates from the RGBD data.

• Ground truth annotation, consisting in the pose, occlusion rate and segmentation label
of each object instance present in the scene.

2 Implementation details

2.1 PPF

We used the following parameters for the PPF method (see the original paper [2] for more
information):

• Sampling rate of τd = 0.05.

• Every sampled point of the scene is used as reference point.

• Angles are discretized into nangle = 30 bins.
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(a) RGB or intensity
image

(b) Ideal range image (c) Noisy range image (d) Instances segmen-
tation

Figure 2: Typical content of our dataset

2.2 LINEMOD+

For each object, LINEMOD templates are generated based on depth renderings of the 3D
object model, considering a virtual depth camera of identical properties to those of the depth
sensor considered in the dataset (focal length, width, height, principal point). As stated in the
paper, we ignore the potential symmetries of the object for templates generation, and assimilate
therefore poses to rigid transformations. The position of the templated poses is chosen along
the optical axis at a given distance from the virtual camera, which corresponds to the typical
distance of an object instance from the camera in the dataset (estimated as the average distance
between the near and far clipping planes of our depth images). The orientation of those poses
is sampled uniformly with a 10◦ step based on a Tait-Bryan angles parametrization, leading
to the generation of 22104 templates. We did not perform multiscale detection, because of
prohibitive computation times with the LINE3D implementation used.

During test, local maxima of 2D templates response maps are converted into pose hypot-
heses, by matching the average depth of a template with the one of its projected silhouette in
the range image.

2.3 Generating pose hypotheses

The modes finding step performed for the PPF method described in section 4.2 of the paper
consists in an adaptation of the Mean Shift algorithm for the proposed distance and is described
in [3]. The radius of the Mean Shift kernel used corresponds to half the typical thickness of
the object, and is estimated as min(λ1, λ2, λ3), where λ1, λ2, λ3 are the standard deviations
of the object’s surface along its principal axes. The same value is used as minimum distance
between two hypotheses for them to be considered as duplicates, in the duplicates filtering step
performed for both PPF and LINEMOD+ methods.
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2.4 Postprocessing

The post-processing step (PP) evoked in the paper is performed as follows. For each pose
hypothesis, we compare the depth values of a rendering of the object at the hypothesized pose
with the actual depth values of the data, and the contours of its silhouettes with contours
detected in the RGBD data. Hypotheses are sorted by decreasing consistency with the input
data, and pose hypotheses intersecting one another are filtered in a winner-takes-all approach.
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