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1. Additional analysis
1.1. Error analysis

Now, we provide examples of the error cases observed
from the face verification experiments on different datasets,
such as LFW [2], IJB-A [3], YouTube Faces [4] and CACD-
VS [1].

LFW [2]: Figure 1 provides the examples of the failure
cases on the LFW [2] benchmark. The ratio of false accept
vs reject is 1:1.56. Note that our method achieves 99.62%
accuracy on LFW. In Figure 1(b) three pairs are marked
with red colored rectangles. These pairs are erroneously la-
beled in the dataset, which means our method makes correct
judgment on them and hence the accuracy further increases
to 99.67% by considering them as correct match.

CACD-VS [1]: Figure 2 provides the examples of the fail-
ure cases on the CACD [2] dataset. The ratio of false accept
vs reject is 1:6. Note that our method achieves 99.13% ac-
curacy on CACD.

YTF [4]: Figure 3 provides few examples of the failure
cases on the YTF [4] dataset. The ratio of false accept vs
reject is 1:2.2. In Figure 3, we only show top three mistakes
(sorted based on their similarity score) in terms of false ac-
cept and reject. Note that our method achieves 96.24% ac-
curacy on YTF.

IJB-A [3]: Figure 4 provides few examples of the failure
cases on the IJB-A [3] dataset. The ratio of false accept
vs reject is 1:5.15. In Figure 4, we only show top three
mistakes (sorted based on their similarity score) in terms of
false accept and reject. Note that our method achieves fol-
lowing results on IJB-A: 0.887 at TAR@FAR=0.01% and

0.824 at TAR@FAR=0.001%. From the falsely rejected
template pairs, we observe that: (a) one pair has only one
image in the template; (b) the pre-processor fails to detect
face as well as landmarks and (c) the images in the tem-
plate have very high pose and large occlusion which causes
important face attributes to be absent.
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Figure 1: Illustration of the false accepted/rejected image pairs from the LFW [2] benchmark. (a) false accepted pairs and
(b) false rejected pairs. The red colored rectangles indicate the examples which were erroneously labeled in the dataset.
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Figure 2: Illustration of the false accepted/rejected image pairs from the CACD-VS [1] dataset. (a) false accepted pairs and
(b) false rejected pairs.
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Figure 3: Illustration of the false accepted/rejected video pairs from the YTF [4] dataset. (a) false accepted pairs and (b) false
rejected pairs.
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Figure 4: Illustration of the false accepted/rejected template pairs from the IJB-A [3] dataset. (a) false accepted pairs and (b)
false rejected pairs.


