Accurate Depth Map Estimation from Small Motions – Appendix 1

Hossein Javidnia National University of Ireland, Galway University Road, Galway, Ireland, H91 TK33 {h.javidnia1}@nuigalway.ie Peter Corcoran National University of Ireland, Galway University Road, Galway, Ireland, H91 TK33 {peter.corcoran}@nuigalway.ie

A: Narrow baseline motion (Extended version of Fig. 3 in the paper):

a. A frame from the sequence

Depth map computed by Kevin Karsch et al. [31]

Depth map computed by Hyowon Ha et al. [11]

Depth map computed by the proposed method.

Depth map computed by Kevin Karsch et al. [31]

Depth map computed by Kevin Karsch et al. [31]

Depth map computed by Hyowon Ha et al. [11]

Depth map computed by the proposed method.

Depth map computed by the proposed method.

c. A frame from the sequence

d. A frame from the sequence

e. A frame from the sequence

Depth map computed by Kevin Karsch et al. [31]

Depth map computed by Hyowon Ha *et al.* [11]

Depth map computed by the proposed method.

Depth map computed by the proposed method.

B: Wider baseline motion (Extended version of Fig. 5 in the paper):

b. Reference frame

Hyowon Ha et al. [11]

Our method

Ground truth

c. Reference frame

Kevin Karsch et al. [31]

Hyowon Ha et al. [11]

Our method

Ground truth

d. Reference frame

Kevin Karsch et al. [31]

Hyowon Ha et al. [11]

Our method

Ground truth

e. Reference frame

Kevin Karsch et al. [31]

Figure 2. Comparison with Kevin Karsch et al. [31] and Hyowon Ha et al. [11]based on Middlebury benchmark

Hyowon Ha et al. [11]

Our method

Ground truth

C: Extended numerical results of Table. 2 in the paper:

Table 1. Numerical comparison of the methods/stereo set (Colour coded)

a. PSNR values method/stereo set							
	Adirondack	ArtL	Motorcycle	Piano	Playtable	Recycle	Teddy
Ours	19.33	19.4	16.31	14.62	18.27	16.94	16.1
3DMST [32]	20.3976	17.8	20.2455	16.2395	18.6883	18.2445	16.6159
APAP-Stereo [33]	18.0996	21.2	19.2963	16.9351	19.3516	19.6014	16.6411

b. RMSE values method/stereo set

	Adirondack	ArtL	Motorcycle	Piano	Playtable	Recycle	Teddy
Ours	27.53	27.3	38.99	47.37	31.09	36.26	39.91
3DMST [32]	24.3591	29.2	24.7893	39.3156	29.6568	31.2116	31.2996
APAP-Stereo [33]	31.7366	19.6	27.6518	36.2897	27.4763	26.6974	31.2092

c. UQI values method/stereo set								
	Adirondack	ArtL	Motorcycle	Piano	Playtable	Recycle	Teddy	
Ours	0.95	0.89	0.89	0.85	0.9	0.84	0.77	
3DMST [32]	0.80332	0.97	0.97527	0.88361	0.88142	0.80165	0.96016	
APAP-Stereo [33]	0.94389	0.99	0.96679	0.94349	0.95932	0.9606	0.92711	

Adirondack ArtL Motorcycle Piano Playtable Recycle Teddy Ours 0.75 0.72 0.72 0.80 0.66 0.61 0.65 3DMST [32] 0.80994 0.87 0.82063 0.80362 0.79859 0.90701 0.77499 0.88369 0.88 0.81608 0.81688 0.83617 0.87918 0.87959 APAP-Stereo [33]

d. SSIM values method/stereo set