
Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor
– Supplemental Document –

Franziska Mueller1,2 Dushyant Mehta1,2 Oleksandr Sotnychenko1

Srinath Sridhar1 Dan Casas3 Christian Theobalt1
1Max Planck Institute for Informatics 2Saarland University 3Universidad Rey Juan Carlos

{frmueller, dmehta, osotnych, ssridhar, dcasas, theobalt}@mpi-inf.mpg.de

This document includes additional experiments (Sec-
tion 1), details about our new synthetic dataset SynthHands
(Section 2), and information about our custom CNN archi-
tecture and training procedure (Section 3). We also refer to
our supplemental video1 for more visual results.

1. Evaluation

In this section, we show additional experiments and
comparisons of our method.
Improvement by Combining 2D and 3D Predictions:
Figure 3 qualitative depicts the predicted joint locations by
each of the key components of our pipeline — 2D predic-
tions, 3D predictions, and final tracked skeleton — on the
test sequence Fruits. Note that the modes of failure for
the 2D and 3D predictions are not the same which leads to
accurate skeleton tracking even if one kind of prediction is
incorrect. Thus, the combination of 2D and 3D predictions
with the tracking framework consistently produces the best
results.
Comparisons to the State of the Art: We were unable to
quantitatively evaluate on the only other existing egocentric
hand dataset [7] due to a different sensor currently unsup-
ported by our approach. Using our method with the Senz3D
camera requires adaptation of intrinsic camera parameters
and noise characteristics for training. However, to provide
a visual comparison to evaluate our method, we recorded
sequences that mimic sequences used by Rogez et al. [7],
and show qualitative evaluation in Figure 4 and in the sup-
plementary video. Our method achieves significantly more
accurate hand tracking, while running in real time.

To show the completely different nature of our problem
which cannot be solved by employing state-of-the-art meth-
ods for hand tracking in free air, we applied the method of
Sridhar et al. [8] to our real test sequences from EgoDexter.
Figure 6 demonstrates catastrophic failures of the aforemen-
tioned approach. On the other hand, Figure 5 and the sup-

1http://handtracker.mpi-inf.mpg.de/projects/OccludedHands/

plemental video show how our method successfully tracks
sequences mimicked from the work of Sridhar et al. We
achieve comparable results, with improved stability of the
hand root position.

Performance on 3rd-Person Viewpoint: Even though
the machine learning components of our method were only
trained on our egocentric dataset SynthHands, Figure 7
demonstrates the generalizability to 3rd-person views. Note
that the hand localization step is robust to other skin-colored
parts, like faces, in the input.

Analysis of Failure Cases: Despite the demonstrated suc-
cess of our approach, we still suffer from limitations that
produce erroneous tracking results. Figure 8 depicts the re-
sults from several intermediate steps of our method in case
of failure. In particular, we show errors due to extreme self
occlusions, severe hand and object occlusions, and when the
hand is located out of the camera field of view.

Table 1: SynthHands Details

Mode of Variation Amount of Variation

Pose
63,530 frames of real hand motion,
sampled every 5th frame

Wrist+Arm
Rotation

wrist: sampled from 70 deg. range
arm: sampled from a 180 deg. range

Shape
x, y, z scale sampled uniformly in
[0.8, 1.2]; female + male mesh

Skin Color 2 x 6 hand textures (female/male)
Camera Viewpoints 5 egocentric viewpoints
Object Shapes 7 objects
Object Textures 145 textures

Background Clutter
10,000 real images, uniform random
u,v offset in [-100, 100]



2. SynthHands Dataset
Table 1 shows the modes of variation in the SynthHands

dataset. Representative frames are shown in Figure 2.

3. CNN Architecture and Training
In this section, we explain the network architecture used

for HALNet and JORNet and provide training details. Fur-
thermore, we present experiments which lead to our specific
design decisions.

3.1. Network Design

The ResNet[2] architecture has been successfully used
for full body pose estimation in previous work [6]. While
ResNet50 offers a good tradeoff between speed and ac-
curacy, hand motion is fast and exhibits rapid directional
changes. Further, the egocentric camera placement leads to
even faster relative motion in the scene. Therefore, we ex-
perimented based on recent investigations into the nature of
representations learned by ResNets [1] to get a faster archi-
tecture without significantly affecting the accuracy.
Core Architecture: Starting from ResNet50, we remove a
residual block from level 3, and keep only 4 residual blocks
at level 4. Level 5 is replaced with two 3 × 3 convolution
layers with 512 (conv4e) and 256 (conv4f) features and no
striding. Both of these layers also use batch normalization
[3]. From conv4f, A 3 × 3 convolutional stub followed by
bilinear upsampling produces the joint location heatmaps,
and a fully-connected layer with 200 nodes followed by an-
other fully-connected layer predict the joint location vector.
See Figure 9 for details.

The resulting architecture needs 10 ms for a forward pass
at resolution 320 x 240 (HALNet) and 6 ms at resolution 128
x 128 (JORNET) on a Nvidia Pascal Titan X GPU. This is
a significant speed-up compared to the ResNet50 version
which needs 18 ms and 11 ms, respectively. Evaluation
on the SynthHands test set shows that the drop in accuracy
is only marginal. ResNet50 trained on the hand localiza-
tion task achieves 2.1 px average error whereas HALNet
achieves 2.2 px.
Intermediate Supervision: For HALNet and JORNet, we
treat a subset of the feature maps at each of res3a, res4a
and conv4e in the networks as the predicted heatmaps, for
intermediate supervision [5]. For JORNet, we additionally
use the feature maps at the aforementioned stages to predict
joint positions for intermediate supervision (see Figure 9).
Auxiliary Task in HALNet: Predicting heatmaps for all
joints as auxiliary task helps HALNet to learn the structure
of the hand. This leads to a better performance compared
to a version only trained to regress the root heatmap. On
the SynthHands test set, regressing heatmaps for all joints
instead of only for the root improves the 2D pixel error by
6.4% (from 2.35 px to 2.2 px).

Wrist Thumb Index Middle Ring Little
0

10

20

30

40

50

A
ve

ra
ge

 3
D

 E
rr

or
 (

m
m

)

JORNet
JORNet light

Figure 1: Training JORNet to regress heatmaps and local
joint positions for all joints instead of only for fingertips
and the wrist (JORNet light) reduces the error on the Synth-
Hands test set.

Regressing All Joints in JORNet: Although fingertips and
wrist location alone provide a strong constraint for the pose
of the hand, training JORNet to regress the heatmaps and
local 3D positions for all joints improves the accuracy. Fig-
ure 1 shows the average error for the wrist and all fingertips
in 3D on the SynthHands test set. The full JORNet ver-
sion yields a significant increase in performance compared
to JORNet light which was only trained for wrist and fin-
gertips.

3.2. Training Details

We use the Caffe [4] framework for training our net-
works, using the AdaDelta scheme with momentum set to
0.9 and weight decay to 0.005. Both networks are trained
with an input batch size of 16. For HALNet, we use a base
learning rate of 0.05 and train for 45k iterations. The in-
put has a spatial resolution of 320x240 px, and the output
heatmaps have a resolution of 40x30 px. The main heatmap
loss has a loss weight of 1.0, and all intermediate heatmap
losses have loss weights of 0.5. For JORNet, the input has
a spatial resolution of 128x128 px. We train with a base
learning rate of 0.05, with main heatmap loss weight set at
1.0 and joint position loss weight at 2500. The interme-
diate heatmap losses have their loss weights set to 0.5 and
intermediate joint position loss weights set to 1250. After
45k iterations, the base learning rate is lowered to 0.01, the
intermediate heatmap loss weights lowered to 0.1 and the
intermediate joint position loss weights lowered to 250, and
trained for a further 15k iterations.



Figure 2: An example set of random samples taken from our SynthHands dataset. See Table 1 for description of dataset
variability.

Figure 3: 2D predictions (top row), 3D predictions (middle row) and tracked skeleton (bottom row) on our real annotated
sequence Fruits. The combination of 2D and 3D predictions in the tracking framework leads to better results than either
of the predictions in isolation.



(a) Pinch sponge (b) Grab Knife (c) Reach cupboard (d) Grab bottle (e) Write in notebook (f) Open book

Figure 4: Qualitative evaluation of our results (top) and Rogez et al. [7] (bottom). We mimic the motions originally used by
[7] because, due to sensor differences (i.e. lens intrinsics, etc.), we cannot directly run our trained CNNs on their data.

Figure 5: Qualitative evaluation of our results (top) and Sridhar et al. [8] (bottom).

Figure 6: Qualitative results produced by the approach of Sridhar et al. [8] on our benchmark dataset EgoDexter. The close
proximity of the arm to the camera and the interaction with objects and the environment leads to catastrophic failures.



Figure 7: Despite of being trained for egocentric views, our approach in fact generalizes to 3rd-person views. In addition, it
is robust to the presence of other skin-colored body parts.

Figure 8: The failure cases of our method can be caused by different intermediate steps. The first two columns show the
output from HALNet, a heatmap and its maximum location with corresponding confidence. Note that the root stabilization
step improved the location in the last row (from green to red) but did not succeed. The third, fourth and fifth column shows
2D predictions, 3D predictions, and the tracked kinematic skeleton, respectively.



Residual block (identity skip)

Residual block (convolution)

Convolution block, with ReLU

MAX pooling layer (kernel size, stride)

7
, 1

, 6
4

3
, 2

1
, 6

4
, 2

5
6

6
4

, 2
5

6

6
4

, 2
5

6

2
, 1

2
8

, 5
1

2

1
2

8
, 5

1
2

1
2

8
, 5

1
2

2
, 2

5
6

, 1
0

2
4

2
5

6
, 1

0
2

4

2
5

6
, 1

0
2

4

2
5

6
, 1

0
2

4

3
, 1

, 5
1

2

3
, 1

, 2
5

6

interm. loss

main loss

interm. loss interm. loss

re
s2

a

re
s2

b

re
s2

cco
n

v1

re
s3

a

re
s3

b

re
s3

c

re
s4

a

re
s4

b

re
s4

c

re
s4

d

co
n

v4
e

co
n

v4
f

Residual block (convolution)

f1
, f

2

=

1
, 1

, f
1

3
, 1

, f
1

1
, 1

, f
2

El
tw

is
e

SU
M

R
eL

U

R
eL

U

R
eL

U

Residual block (identity skip)

k,
 s

, f =

k,
 s

, f

B
at

ch
N

o
rm

Sc
al

e

Convolution layer (kernel size, 
stride, number of feature maps)

Convolution block

=

1
, s

, f
1

3
, 1

, f
1

1
, 1

, f
2

El
tw

is
e

SU
M

R
eL

U

R
eL

U

R
eL

U

s,
 f

1
, f

2

1
, s

, f
2

HALNet / JORNet – Intermediate heatmap loss

JORNet – Main loss (joint positions + heatmaps)HALNet – Main loss (heatmaps)

4
, 2

, #
h

e
at

m
ap

s

Eu
cl

id
e

an
Lo

ss

3
, 1

, #
h

e
at

m
ap

s

Eu
cl

id
e

an
Lo

ss

In
n

e
rP

ro
d

u
ct

(3
 x

 #
jo

in
ts

)

In
n

e
rP

ro
d

u
ct

(2
0

0
)

JORNet – Intermediate joint position loss

Eu
cl

id
ea

n
Lo

ss

In
n

e
rP

ro
d

u
ct

(3
 x

 #
jo

in
ts

)

Sl
ic

e 
(#

h
e

at
m

ap
s)

k,
 s

, #
h

e
at

m
ap

s

Eu
cl

id
ea

n
Lo

ss

Deconvolution layer 
(kernel size, stride, 
number of feature maps), 
fixed to bilinear weights

4
, 2

, #
h

e
at

m
ap

s

Eu
cl

id
e

an
Lo

ss

3
, 1

, 6
4

4
, 2

, #
h

e
at

m
ap

s

Deconvolution layer 
(kernel size, stride, 
number of feature maps)

Figure 9: Our network architecture.



References
[1] K. Greff, R. K. Srivastava, and J. Schmidhuber. Highway and

residual networks learn unrolled iterative estimation. In Inter-
national Conference on Learning Representations, 2016. 2

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016. 2

[3] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, 2015. 2

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the
22nd ACM International Conference on Multimedia, pages
675–678, 2014. 2

[5] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. In AISTATS, volume 2, page 6, 2015. 2

[6] D. Mehta, H. Rhodin, D. Casas, O. Sotnychenko, W. Xu,
and C. Theobalt. Monocular 3d human pose estimation us-
ing transfer learning and improved CNN supervision. arXiv
preprint arXiv:1611.09813v2, 2016. 2

[7] G. Rogez, J. S. Supancic, and D. Ramanan. First-person pose
recognition using egocentric workspaces. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4325–4333, 2015. 1, 4

[8] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt. Fast
and Robust Hand Tracking Using Detection-Guided Opti-
mization. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2015. 1, 4


