Learning Across Tasks and Domains

Pierluigi Zama Ramirez, Alessio Tonioni, Samuele Salti, Luigi Di Stefano; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 8110-8119


Recent works have proven that many relevant visual tasks are closely related one to another. Yet, this connection is seldom deployed in practice due to the lack of practical methodologies to transfer learned concepts across different training processes. In this work, we introduce a novel adaptation framework that can operate across both task and domains. Our framework learns to transfer knowledge across tasks in a fully supervised domain (e.g., synthetic data) and use this knowledge on a different domain where we have only partial supervision (e.g., real data). Our proposal is complementary to existing domain adaptation techniques and extends them to cross tasks scenarios providing additional performance gains. We prove the effectiveness of our framework across two challenging tasks (i.e., monocular depth estimation and semantic segmentation) and four different domains (Synthia, Carla, Kitti, and Cityscapes).

Related Material

[pdf] [supp]
author = {Ramirez, Pierluigi Zama and Tonioni, Alessio and Salti, Samuele and Stefano, Luigi Di},
title = {Learning Across Tasks and Domains},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}