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Abstract

We present a new quasi-affine reconstruction of a scene

and its application to camera self-calibration. We refer to

this reconstruction as QUARCH (QUasi-Affine Reconstruc-

tion with respect to Camera centers and the Hodographs

of horopters). A QUARCH can be obtained by solving

a semidefinite programming problem when, (i) the images

have been captured by a moving camera with constant

intrinsic parameters, and (ii) a vague knowledge of the

relative orientation (under or over 120◦) between cam-

era pairs is available. The resulting reconstruction comes

close enough to an affine one allowing thus an easy up-

grade of the QUARCH to its affine and metric counter-

parts. We also present a constrained Levenberg-Marquardt

method for nonlinear optimization subject to Linear Ma-

trix Inequality (LMI) constraints so as to ensure that the

QUARCH LMIs are satisfied during optimization. Exper-

iments with synthetic and real data show the benefits of

QUARCH in reliably obtaining a metric reconstruction.

1. Introduction

In multi-view computer vision, accurately locating the

plane at infinity (Π∞) is considered crucial for success-

fully lifting a projective structure and cameras to a metric

frame [20, 5]. Locating Π∞ reliably has proved challeng-

ing in camera self-calibration due to the nonlinearity of the

problem [11, 12]. Once it is located, the calibration param-

eters may be obtained by solving linear equations for the

(dual) image of the absolute conic. When camera parame-

ters are constant, a necessary condition on Π∞ is that the

eigenvalues of its inter-image homography matrices have

equal moduli. This so-called modulus constraint [20] leads

to quartic polynomial equations in the coordinates of Π∞

Metric
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QUARC + Scene points

Projective

QUARC

Figure 1: QUARCH is a specialization of the QUARC stra-

tum and is therefore one step closer to the affine stratum.

for which several solutions have been proposed [20, 8, 5].

Other methods [11, 9] locate Π∞ by first upgrading

a projective reconstruction to a quasi-affine one based

on Hartley’s cheirality theory [10]. In [11], the cheiral-

ity inequalities are used to obtain bounds on the coordi-

nates of Π∞, which is then located through an exhaustive

search within these bounds. The quasi-affine reconstruction

in [11, 9] is with respect to the set of camera centers and

that of scene points: the sets whose respective convex hulls

are preserved. Nistér [17] pointed out that scene points may

not be reliable and therefore sought a quasi-affine recon-

struction with respect to camera centers (QUARC) alone.

A QUARC is upgraded to a metric reconstruction through

nonlinear optimization of a geometrically meaningful cost

function derived from priors on the calibration parameters.

In this paper, we show the existence of a new quasi-

affine reconstruction stratum that we refer to as QUARCH:

QUasi-Affine Reconstruction with respect to Camera cen-

ters and the Hodographs of horopters. A QUARCH is a

specialization of a QUARC (see Figure 1) that addition-

ally satisfies a new set of relative camera orientation-based

convex constraints on Π∞. These constraints are formu-

lated as Linear Matrix Inequalities (LMIs) and they describe
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the relationship of Π∞ with the hodographs [21, 2] of the

horopters [24, 23] of camera pairs. A QUARCH can be

obtained when the calibration parameters are constant and

when the relative orientation angle between a set of camera

pairs is known to be either under or over 120◦.

We use QUARCH in a self-calibration algorithm as a

first step towards obtaining a metric reconstruction from

a projective one. To obtain a QUARCH, our assumption

is that the relative orientation angle between consecutive

views is under 120◦. This is a mild assumption that is often

implicitly verified when capturing images so as to ensure a

sufficient overlap for feature matching. Π∞ is then located

through nonlinear optimization of a suitable cost function,

such as using the modulus constraints. We also propose a

constrained Levenberg-Marquardt (LM) method for nonlin-

ear optimization subject to LMI constraints. This ensures

that the QUARCH LMIs are satisfied during the local opti-

mization. Our experiments show that a QUARCH plane is

an excellent starting plane for our algorithm to reliably con-

verge to Π∞ and that constraining the local optimization

to satisfy the QUARCH LMIs further improves the success

rate of locating it. The main contributions of this paper are:

• QUARCH: a new quasi-affine stratum along with an

algorithm for camera self-calibration based on it.

• Constrained LM method: an LM-type algorithm for

nonlinear optimization subject to LMI constraints.

Notation: We consider the scene embedded in the projec-

tive 3-space P
3. A point X and plane Π in P

3 are repre-

sented by 4-dimensional homogeneous column vectors, X

and Π, respectively. The plane at infinity is referred to as

Π∞ and its coordinates by Π∞. A perspective camera is

represented by its 3 × 4 projection matrix P. Finally, (·)k
refers to the k-th entry of its vector argument, In is the n×n
identity matrix, 0d the d-dimensional zero vector, sgn(·) the

sign function, and ≃ the equality up to scale.

2. Background

This section is a brief review of key results from the lit-

erature and of LMIs, which our work is based upon.

2.1. Modulus constraint and the horopter

Shaffalitzky [24] showed the connection between the

modulus constraint and the horopter curves. The horopter

H of a camera pair with identical calibration parameters

is the locus of points in P
3 that are imaged at the same

coordinates by both cameras. As such, a point X on the

horopter satisfies PiX ≃ PjX, and the locus of these points

is H(s, t) , N (sPi − tPj) for parameters s and t, where

N (·) is the algebraic nullspace operator defined in [24] as

det
([

P
T Π

])

= ΠTN (P) for any plane Π. The algebraic

nullspace defines the scale of the null vector N (P) from the

scale of the matrix P. The parametric form of the horopter

of the camera pair (i, j) is:

H(s, t) = s3 Ci − s2t Tij + st2 Tji − t3 Cj , (1)

where Ci = N (Pi) and Cj = N (Pj) are the two camera

centers, Tij = T (Pi, Pj), Tji = T (Pj , Pi), and operator T
is defined by this expansion. The horopter is a twisted cubic

in P
3 that passes through both camera centers and intersects

a plane (including Π∞) at three points. From [24], we have:

ΠT

∞ [Ci Tij Tji Cj ] = (λ3
i , λ

2
iλjaij , λiλ

2
jaij , λ

3
j ), (2)

where λi and λj are the scale factors of Pi and Pj , respec-

tively, and aij = 1 + 2 cos θij , with θij being the relative

orientation angle between the two cameras. Eliminating the

scalars from (2) leads to the modulus constraint:

Mij , ΠT

∞Ci(Π
T

∞Tji)
3 −ΠT

∞Cj(Π
T

∞Tij)
3 = 0, (3)

that is a quartic polynomial equation first derived in [20].

2.2. Sign­corrected cameras and QUARC

Scene points that appear in front of two cameras in the

true metric reconstruction may appear in front of one cam-

era but behind the other in a projective reconstruction. Such

a camera pair is said to be twisted by a projective transfor-

mation and untwisted otherwise. In a twisted camera pair,

Π∞ intersects the baseline of the two cameras. A QUARC

(QUasi-Affine Reconstruction with respect to Camera cen-

ters) [17] is a projective reconstruction that does not con-

tain any twisted pairs. A projective reconstruction may be

upgraded to a QUARC using the following two steps: (i)
correct the signs ζi ∈ {−1, 1} of the projection matrices,

P̃i = ζi Pi, such that all camera centers lie on one side with

respect to Π∞, so that ΠT

∞C̃i > 0 [17, Alg. 2], and (ii)
map to infinity a plane that carries the same signature as

Π∞ with respect to the camera centers, that is a plane that

satisfies ΠT
C̃i > 0. Such a QUARC plane can be found by

solving a Linear Programming (LP) problem [17, Sec. 8].

2.3. Linear Matrix Inequalities

A Linear Matrix Inequality (LMI) is a constraint on a

vector x = (x1, . . . , xm)
T ∈ R

m such that F (x) � 0,

where F (x) , F0 +
∑m

i=1 Fi xi is an affine function of

x involving symmetric matrices F0, . . . , Fm ∈ R
n×n. The

LMI F (x) � 0 means that F (x) is positive semidefinite.

The LMI may also be strict, in which case F (x) is positive

definite. Convex quadratic inequalities may be reformulated

into LMIs by using the Schur complement lemma [3]:

Lemma 2.1. Given a real symmetric block-partitioned ma-

trix D =
[

A B

BT C

]

and the Schur complement S = C −

BTA−1B of (the symmetric block) A in D,

(i) if A ≻ 0, then D � 0 if and only if S � 0.

(ii) D ≻ 0 if and only if A ≻ 0 and S ≻ 0.
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3. A new quasi-affine reconstruction stratum

In this section, we introduce the theory behind QUARCH

and present an algorithm for camera self-calibration based

on it. In Section 3.1, we characterize the relationship of

Π∞ with the hodographs of the horopter based on the rel-

ative orientation between a camera pair. From this charac-

terization, we derive a new set of LMI constraints on Π∞

in Section 3.2. In Section 3.3, these constraints are used to

obtain a QUARCH. Finally, in Section 3.4, we detail our

algorithm to upgrade QUARCH to a metric reconstruction.

3.1. Hodographs of the horopter

Definition 3.1 (Hodographs of the horopter). For a camera

pair (i, j) with attached horopter H, the hodographs Hs and

Ht of H are the curves traced out by the partial derivatives

of H in P
3. Let Hs(s, t) ,

∂ H(s,t)
∂ s

and Ht(s, t) ,
∂ H(s,t)

∂ t
,

the parametric forms of these curves are:

Hs(s, t) = 3s2 Ci − 2st Tij + t2 Tji,

Ht(s, t) = −3t2 Cj + 2st Tji − s2 Tij .
(4)

Observe that Hs(s, t) passes through the points Ci and

Tji, while Ht(s, t) passes through Cj and Tij . Hereafter,

we simply refer to the hodographs of the horopter as the

hodographs. We are now interested in characterizing the

relationship of Π∞ with the hodographs. To do so, we con-

sider sign-corrected projection matrices P̃i and P̃j . Their

associated horopter H is represented by H̃(s, t) = s3 C̃i −
s2t T̃ij + st2 T̃ji − t3 C̃j , obtained from the expansion of

H̃(s, t) , N (sP̃i − tP̃j). The corresponding hodographs

Hs and Ht are represented by H̃s(s, t) and H̃t(s, t). Given

this representation, we first characterize the relationship of

Π∞ with the points
(

T̃ij , T̃ji
)

through the following lemma.

Lemma 3.1. For a camera pair (i, j) with relative orienta-

tion angle θij and attached horopter H, the plane at infinity

Π∞ satisfies the following linear inequalities:

ΠT

∞T̃ij ≥ 0 and ΠT

∞T̃ji ≥ 0 if |θij | ≤ 120◦, (5a)

ΠT

∞T̃ij ≤ 0 and ΠT

∞T̃ji ≤ 0 if |θij | ≥ 120◦, (5b)

where the equality holds for |θij | = 120◦.

Proof. From (2), observe that ΠT

∞T̃ij and ΠT

∞T̃ji depend

on θij . For sign-corrected projection matrices, ΠT

∞C̃i > 0
and ΠT

∞C̃j > 0, hence λi and λj are positive. Thus,

sgn(ΠT

∞T̃ij) = sgn(ΠT

∞T̃ji) = sgn(aij) , where aij :

0 ≤ aij ≤ 3 if |θij | ≤ 120◦, (6a)

−1 ≤ aij ≤ 0 if |θij | ≥ 120◦, (6b)

and aij = 0 if |θij | = 120◦. �

The linear inequalities in (5) form a new set of relative

camera orientation-based constraints on Π∞. They signify

that the (virtual) points T̃ij and T̃ji lie on the same side as

the camera centers with respect to Π∞ when |θij | < 120◦,

whereas they lie on the opposite side when |θij | > 120◦.

Imposing these inequalities for a set of camera pairs in the

QUARC LP problem leads to a QUARC that is additionally

quasi-affine with respect to the corresponding set of points

(T̃ij , T̃ji). We now extend this incidence relationship of Π∞

with (T̃ij , T̃ji) to the hodographs that contain them.

Lemma 3.2. For a camera pair (i, j) with relative orienta-

tion angle θij and attached horopter H, the plane at infinity

Π∞ intersects the hodographs Hs and Ht in: (i) at most

one real point if |θij | ≤ 120◦, and (ii) at least one real

point if |θij | ≥ 120◦.

Proof. Consider the equations representing the intersection

of Π∞ with the hodographs:

ΠT

∞H̃s(s, t) = 3s2 ΠT

∞C̃i − 2stΠT

∞T̃ij + t2 ΠT

∞T̃ji,

ΠT

∞H̃t(s, t) = −3t2 ΠT

∞C̃j + 2stΠT

∞T̃ji − s2 ΠT

∞T̃ij .
(7)

These equations are quadratic in s and t, respectively.

Therefore, their discriminant functions ∆s and ∆t,

∆s = −4t2
(

3(ΠT

∞T̃ji)(Π
T

∞C̃i)− (ΠT

∞T̃ij)
2
)

,

∆t = −4s2
(

3(ΠT

∞T̃ij)(Π
T

∞C̃j)− (ΠT

∞T̃ji)
2
)

,
(8)

characterize the intersection. Recall that the discriminant is

negative for no real points of intersection, positive for two

real points of intersection, and zero for one real point of

intersection. Substituting the values from (2), we have that:

∆s = −4t2λ4
iλ

2
jaij(3− aij),

∆t = −4s2λ2
iλ

4
jaij(3− aij).

(9)

The discriminant functions ∆s and ∆t depend on aij and

thus on θij . From (6), we can deduce that:

∆s ≤ 0 and ∆t ≤ 0 if |θij | ≤ 120◦, (10a)

∆s ≥ 0 and ∆t ≥ 0 if |θij | ≥ 120◦, (10b)

where ∆s = 0 and ∆t = 0 for |θij | ∈ {0◦, 120◦}, since

aij = 0 if |θij | = 120◦, and aij = 3 if θij = 0◦. �

The incidence relationship of Π∞ with the hodographs

of a camera pair is thus determined by the relative orienta-

tion angle between the two cameras. Their intersection is

in at most one real point if |θij | ≤ 120◦, whereas it is in at

least one real point if |θij | ≥ 120◦. The hodographs thus

act as “virtual positioning objects” for Π∞.
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3.2. LMI constraints on the plane at infinity

We now derive necessary conditions on Π∞ based on its

relationship with the hodographs given in Lemma 3.2.

Proposition 3.3 (Case of |θij | ≤ 120◦). For a camera

pair (i, j) with relative orientation angle |θij | ≤ 120◦ and

horopter H, the plane at infinity Π∞ satisfies the two LMIs:
[

ΠT

∞C̃i ΠT

∞T̃ij

ΠT

∞T̃ij 3ΠT

∞T̃ji

]

� 0,

[

ΠT

∞C̃j ΠT

∞T̃ji

ΠT

∞T̃ji 3ΠT

∞T̃ij

]

� 0. (11)

Proof. From Lemma 3.2, when |θij | ≤ 120◦, Π∞ intersects

each hodograph in at most one real point. This implies that

the discriminants ∆s and ∆t ought to be nonpositive. The

proof herein boils down to showing that these discriminants

are so when (11) is true. To show this, consider the Schur

complements Sij(Π∞) and Sji(Π∞) of ΠT

∞C̃i and ΠT

∞C̃j ,

respectively, in the 1st and 2nd matrix of (11):

Sij(Π∞) , 3ΠT

∞T̃ji − (ΠT

∞T̃ij)
2(ΠT

∞C̃i)
−1, (12a)

Sji(Π∞) , 3ΠT

∞T̃ij − (ΠT

∞T̃ji)
2(ΠT

∞C̃j)
−1. (12b)

Rewriting the discriminant functions in (8) in terms of these

Schur complements, we have that:

∆s = −4t2ΠT

∞C̃iSij(Π∞),

∆t = −4s2ΠT

∞C̃jSji(Π∞).
(13)

Therefore, we can deduce that Sij(Π∞) ≥ 0 and

Sji(Π∞) ≥ 0 for ∆s and ∆t to be nonpositive, since

ΠT

∞C̃i > 0 and ΠT

∞C̃j > 0. From Lemma 2.1, (11) is true

if and only if Sij(Π∞) and Sji(Π∞) are nonnegative. �

The inequalities in (5a) are necessary conditions for aij
to be nonnegative when |θij | ≤ 120◦, whereas the LMIs

in (11) are necessary conditions to further bound aij , as in

(6a), such that 0 ≤ aij ≤ 3. To see this, by partially substi-

tuting (2) in (12), we have that:

Sij(Π∞) = ΠT

∞T̃ji(3− aij), (14a)

Sji(Π∞) = ΠT

∞T̃ij(3− aij). (14b)

Now consider the 1st LMI in (11), which imposes that

ΠT

∞T̃ji ≥ 0 and Sij(Π∞) ≥ 0. It follows from (14a)

that 3 − aij ≥ 0 and thus 0 ≤ aij ≤ 3. Note that this

constraint is neither enforced by the modulus constraint nor

by the QUARC inequalities. With a similar argument us-

ing (14b), the 2nd LMI in (11) can also be shown to be a

necessary condition for 0 ≤ aij ≤ 3. The following propo-

sition completes the set of LMI constraints on Π∞.

Proposition 3.4 (Case of |θij | ≥ 120◦). For a camera

pair (i, j) with relative orientation angle |θij | ≥ 120◦ and

horopter H, the plane at infinity Π∞ satisfies the two LMIs:
[

ΠT

∞C̃i ΠT

∞T̃ij

ΠT

∞T̃ij −ΠT

∞T̃ji

]

� 0,

[

ΠT

∞C̃j ΠT

∞T̃ji

ΠT

∞T̃ji −ΠT

∞T̃ij

]

� 0. (15)

Proof. From Lemma 3.2, when |θij | ≥ 120◦, Π∞ intersects

each hodograph in at least one real point, therefore the dis-

criminants ∆s and ∆t are nonnegative. From (13), we can

deduce that Sij(Π∞) ≤ 0 and Sji(Π∞) ≤ 0. For the LMIs

in (15) to be satisfied, the following inequalities must hold:

Sij(Π∞)−4ΠT

∞T̃ji ≥ 0, Sji(Π∞)−4ΠT

∞T̃ij ≥ 0. (16)

Note that the left-hand sides of these two inequalities are

the Schur complements of ΠT

∞C̃i and ΠT

∞C̃j , respectively,

in the 1st and 2nd matrix of (15). Using (14), they can be

rewritten as −ΠT

∞T̃ji(1 + aij) and −ΠT

∞T̃ij(1 + aij), re-

spectively. From (5b) and (6b), these Schur complements

are nonnegative when |θij | ≥ 120◦. Hence, the inequalities

in (16) hold and so do the LMIs in (15). �

The linear inequalities in (5b) alone ensure that ∆s ≥ 0
and ∆t ≥ 0, and hence that Π∞ intersects each hodograph

in at least one real point. The LMIs in (15) further charac-

terize the region of intersection. This region is dependent

on the discriminants, which, from (13), can be seen to be

constrained by (16) and hence by the LMIs in (15).

The LMIs in (11) and (15) are necessary conditions

on Π∞ to satisfy the incidence relationship with the

hodographs given in Lemma 3.2. In the following section,

we show how a vague knowledge of the relative orientation

θij between camera pairs (i.e. |θij | ≤ 120◦ or |θij | ≥ 120◦)

can be exploited with these LMI constraints to obtain a new

quasi-affine reconstruction of a scene: a QUARCH.

3.3. QUARCH

A QUARCH is a specialization of a QUARC that is ad-

ditionally quasi-affine with respect to the hodographs of a

set of camera pairs. A QUARCH can be obtained from

a projective reconstruction following the steps outlined for

QUARC in Section 2.2, but by locating a QUARCH plane

instead in the second step. A QUARCH plane is a QUARC

plane that additionally satisfies LMIs (11) and/or (15) for a

set of camera pairs. It can be computed by solving the fol-

lowing Semidefinite Programming (SDP) problem:

max
Π, δ

δ

s.t. ΠT
C̃l/
∥

∥C̃l

∥

∥ > δ, l = 1, . . . , n,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,
[

ΠT
C̃i ΠT

T̃ij

ΠT
T̃ij 3ΠT

T̃ji

]

� 0,

[

ΠT
C̃j ΠT

T̃ji

ΠT
T̃ji 3ΠT

T̃ij

]

� 0,

for all (i, j) : |θij | ≤ 120◦, i = 1, . . . , n− 1,

j = 2, . . . , n,
[

ΠT
C̃i ΠT

T̃ij

ΠT
T̃ij −ΠT

T̃ji

]

� 0,

[

ΠT
C̃j ΠT

T̃ji

ΠT
T̃ji −ΠT

T̃ij

]

� 0,

for all (i, j) : |θij | ≥ 120◦, i = 1, . . . , n− 1,

j = 2, . . . , n.

(17)
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Note that (17) without the LMI constraints reduces to the

QUARC LP problem. A QUARCH may be extended to

preserve the convex hull of the set of scene points (see Fig-

ure 1), by simply augmenting the SDP problem in (17) with

the corresponding linear inequalities for the scene points.

3.4. Camera self­calibration with QUARCH

As a specialization of a QUARC, a QUARCH comes one

step closer to an affine reconstruction. This forms the basis

of our camera self-calibration algorithm, where we use a

QUARCH plane as an initialization for local optimization

of a suitable cost function to locate Π∞. We propose using

a normalized version of the cost function in [20]:

F(Π∞) =

n−1
∑

i=1

n
∑

j=i+1

(

Mij
(

ΠT
∞C̃i

)2(
ΠT

∞C̃j

)2

)2

, (18)

where Mij is the modulus constraint polynomial in (3) and

the normalization eliminates the scale factors from the cost.

We optimize for the first three coordinates of Π∞, fixing the

fourth to 1. The calibration parameters are obtained after

linearly estimating the dual image of the absolute conic.

To compute a QUARCH plane, we assume that the rel-

ative orientation angle is under 120◦ between consecutive

views. This is a mild assumption in practice that is often

satisfied in image sequences acquired for the purpose of fea-

ture matching and 3D reconstruction. We solve the follow-

ing SDP problem to obtain a QUARCH plane ΠQ:

max
Π, Z

log det Z

s.t. Z � 0,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,
[

ΠT
C̃i ΠT

T̃ij

ΠT
T̃ij 3ΠT

T̃ji

]

� Z,

[

ΠT
C̃j ΠT

T̃ji

ΠT
T̃ji 3ΠT

T̃ij

]

� Z,

i = 1, . . . , n− 1, j = i+ 1.

(19)

Problem (19) can be efficiently solved using an interior-

point method. Maximizing log det Z prevents the terms

ΠT
T̃ij and ΠT

T̃ji from being arbitrarily close to zero, which

is the case for Π∞ as |θij | approaches 120◦. From our em-

pirical tests, a QUARCH plane from this SDP converges

more reliably to the sought Π∞ in our algorithm than one

from (17). Note that the QUARC inequalities are enforced

in (19) as all camera centers are covered by using all pairs

of consecutive views. Given a projective reconstruction

{Pi, Xj}, the steps of our self-calibration algorithm are:

(i) QUARCH: compute ΠQ using (19) and upgrade to

QUARCH as PQi = PiH
−1
Q , XQj = HQXj ,

(ii) Affine: locate Π∞ by minimizing (18) with H
−T

Q ΠQ

as initialization, and upgrade to affine as P
A
i =

P
Q

iH
−1
A , XAj = HAX

Q

j ,

(iii) Metric: compute calibration K as [12, Sect. 19.5.2] and

upgrade to metric as PMi = P
A
iH

−1
M , XMj = HMX

A
j , with

HQ =

[

P̃1

Π⊺

Q

]

, HA =

[

I3 03
ΠT

∞

]

, HM =

[

K
−1 03

0T3 1

]

.

4. Constrained Levenberg-Marquardt method

An unconstrained local optimization method to locate

Π∞ in step (ii) of our algorithm may converge to a non-

QUARCH plane, i.e. a plane that does not satisfy the LMIs

in (11) for consecutive views, and is therefore not the sought

Π∞. To ensure that these LMIs are satisfied during the lo-

cal optimization, we propose a constrained LM method for

nonlinear optimization subject to LMI constraints. Our ap-

proach is based on [13], where the optimization problem is:

min
d

‖F (xk) + Jk d‖
2
+ µk‖d‖

2
s.t. xk + d ∈ C, (20)

that allows to compute a step d such that the iterate xk+1 =
xk+d is in the convex set C, where F(x) = ‖F (x)‖2 is the

natural merit function corresponding to the mapping F (x),
Jk is the Jacobian of F (xk), and µk is a positive parameter

at iteration k. Note that the quadratic objective function

in (20) is strictly convex. This constrained LM method was

shown in [13] to be locally quadratically convergent under

a local error bound condition.

In our case, x0 is the QUARCH plane initialization

from (19), C is the subset of QUARCH planes, containing

planes that satisfy the LMIs in (11) for consecutive views,

and F(x) is the cost function used to locate Π∞ in (18). To

compute a step d such that the iterating plane xk remains in

the set C, first observe that ‖Fk + Jkd‖
2
+µk‖d‖

2
expands

as FT

k Fk +2FT

kJkd+ dT(JT

k Jk +µkI)d, where Fk is short

for F (xk). Hence, problem (20) is equivalent to:

min
d, δ

δ

s.t. xk + d ∈ C,

δ − FT

k Fk − 2FT

k Jkd− dT
(

JT

k Jk + µkI

)

d ≥ 0.

(21)

The inequality in (21) is quadratic in d and can be refor-

mulated into an LMI by applying Lemma 2.1. The step d
can then be computed by solving the following SDP prob-

lem:

min
d, δ

δ

s.t.

[

JT

k Jk + µkI3 (JT

k Jk + µkI3)d
dT(JT

k Jk + µkI3) δ − FT

k Fk − 2FT

k Jkd

]

� 0,

[

(xk + d)T C̃i (xk + d)T T̃ij
(xk + d)T T̃ij 3(xk + d)T T̃ji

]

� 0,

[

(xk + d)T C̃j (xk + d)T T̃ji
(xk + d)T T̃ji 3(xk + d)T T̃ij

]

� 0,

i = 1, . . . , n− 1, j = i+ 1.

(22)
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Note that the term JT

k Jk + µkI3 in the 1st LMI in (22) is

positive definite by construction. As with the unconstrained

optimization approach, we optimize for the first three coor-

dinates of Π∞, fixing the fourth to 1. Thus, we compute the

first three coordinates of the step d, the fourth being 0.

We use µk = µ‖F (xk)‖, rather than the squared norm,

following the choice of Yu [27]. Fan [6] showed that

the same quadratic convergence rate is obtained with this

choice. Our constrained LM method ensures that the iter-

ating plane remains in the subset of QUARCH planes to

which Π∞ belongs. Doing so prevents the iterating plane

from crossing the camera centers, which could be fatal for

the cost function in (18). As a local optimization method, it

remains susceptible to converge to a local minimum of the

cost function, albeit one that is also a QUARCH plane.

5. Experimental results

We tested our self-calibration algorithm on synthetic

data and real images using both unconstrained and con-

strained optimization. Projective reconstructions for the

synthetic data were obtained using the implementation

of [18] in [22], followed by a projective bundle adjustment.

For the real image sequences, they were obtained using

P2SfM [15] with COLMAP [25] for feature matching. Data

normalization was used throughout. We set µ = 0.5 and

used the update µk+1 = min {µk, µk‖F (xk+1)‖}. Our al-

gorithm is implemented in MATLAB R2017b with the con-

vex optimization problems modeled using YALMIP [14]

and solved using MOSEK [16]. All experiments were con-

ducted on an Intel Core i7 3.10GHz 32GB RAM system.

5.1. Synthetic data

Each synthetic scene consisted of 500 points scattered

randomly within the unit sphere and imaged by cameras

placed at a distance of 2.75–3.45 units from the sphere cen-

ter and facing towards it. The cameras were then perturbed

by a small random translation. The rotation angle θij be-

tween consecutive views was sampled randomly from the

range [20◦, 60◦] to satisfy the assumption |θij | ≤ 120◦.

All cameras had (in pixels) focal length fx = fy = 300,

zero skew i.e. γ = 0, and an image-centered principal point

i.e. (u0, v0) = (128, 128). Zero-mean Gaussian noise with

standard deviation in the [0, 2] pixel range was added to

pixel coordinates in increments of 0.5 pixels. The sequence

length was varied from 4 to 16 views, and 100 trials were

run for each sequence length and image noise level.

We conducted a series of reliability tests to examine

the benefits of the QUARCH LMIs in self-calibration. We

evaluated our results using the 3D RMS error between the

ground truth and the recovered metric point clouds (both

scaled to have a mean distance of 1 unit) aligned by a best-

fit similarity transformation in the least squares sense. In

this section, we show the distribution of 3D errors from the

metric upgrade using box plots (following MATLAB’s con-

vention). To aid in visualization, we compressed samples

beyond 0.02 3D error uniformly in a small region beyond

this limit (shown by a dashed line), while preserving their

relative order. We also scattered all points by a small ran-

dom amount to distinguish between the overlapping ones.

QUARCH vs. QUARC: We compared a QUARCH plane

initialization with a QUARC using an unconstrained min-

imization of (18), denoted as QUARCH-M and QUARC-

M, respectively (Figure 2). Considering 0.02 3D error as

a threshold for a successful metric upgrade, for 4–5 views

in Figure 2, the significant difference in the number of error

points beyond this limit shows that a QUARCH plane con-

verged to the true Π∞ more often than a QUARC and there-

fore retrieved a metric reconstruction more reliably. Conse-

quently, QUARCH-M led to a considerably smaller median

error, particularly for higher levels of pixel noise. As the

sequence length increased to 6 views, both QUARCH-M

and QUARC-M succeeded most of the time. We also show

results for both planes using Nistér’s cost function [17], de-

noted similarly as QUARCH-N and QUARC-N (Figure 3).

Here as well, a QUARCH plane led to a metric upgrade

more reliably, though the difference is less pronounced.

This is because Nistér’s cost function is based on strong

camera priors, such as zero skew, unit aspect ratio, and prin-

cipal point at the image center, properties that are fully sat-

isfied by our simulated cameras. Hence, both planes suc-

cessfully converged to the true Π∞ most of the time.

QUARCH* vs. QUARCH: We compared the results from

QUARCH-M with those from constrained optimization, de-

noted as QUARCH*M. In Figure 2, QUARCH*M success-

fully recovered the metric structure for several projective re-

constructions that had otherwise failed with unconstrained

optimization. Enforcing the QUARCH LMIs during opti-

mization led the QUARCH plane to reliably converge to the

true Π∞, while avoiding to succumb to a non-QUARCH lo-

cal minimum of the modulus constraints. QUARCH*M, on

average, required 5 iterations to converge and took < 1.2s

up to 16 views, of which < 0.2s was for computing the

QUARCH plane. The runtime scaled linearly in the number

of views as do the LMI constraints in our SDP problems

in (19) and (22). Beyond 6 views, QUARCH-M sufficed

for a successful metric upgrade and can be used instead for

a speedup. With Nistér’s cost in Figure 3, we observed that

only one additional projective reconstruction, for 6 views,

was successfully upgraded to metric using constrained opti-

mization, denoted as QUARCH*N. These results show the

benefits of enforcing the QUARCH LMIs during the local

optimization, particularly for short sequences and when us-

ing the modulus constraints.

QUARCH* vs. GO-DAQ and GO-Stratified: We com-

pared QUARCH*M and QUARCH*N with two globally

optimal methods: GO-DAQ [4] and GO-Stratified [5].
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Figure 2: Comparison among QUARC-M, QUARCH-M, and QUARCH*M. Experiments using 4 views (left) and 5 views

(middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

0  0.5 1  1.5 2  

Pixel noise

0

0.5

1

1.5

2

3
D

 e
rr

o
r

10
-2

0  0.5 1  1.5 2  

Pixel noise

0

0.5

1

1.5

2

3
D

 e
rr

o
r

10
-2

4 5 6 7

Number of views

0

0.5

1

1.5

2

3
D

 e
rr

o
r

10
-2

Figure 3: Comparison among QUARC-N, QUARCH-N, and QUARCH*N. Experiments using 5 views (left) and 6 views

(middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

For GO-Stratified, we computed the calibration for both

cheirality signs, and picked the resulting calibration clos-

est to the ground truth (the authors’ implementation was

used). For GO-DAQ, we fixed the relaxation order to 2,

and used MOSEK as the solver. In the results shown

in Figure 4, QUARCH*M consistently outperformed GO-

Stratified, both in terms of the median 3D error and suc-

cess rate. With 4–5 views, GO-Stratified failed frequently

for noise levels above 1 pixel. This is likely because the

modulus constraints admit multiple global solutions, and

with short sequences there are fewer constraints to isolate

the true Π∞. Also, this method relies on scene points to

compute bounds for Π∞, which may prove to be unreli-

able in the presence of noise. With more views, the ad-

ditional modulus constraints led to a more reliable calibra-

tion with GO-Stratified, but the median error was still larger

than with QUARCH*M. The two methods with geometric

cost functions (QUARCH*N and GO-DAQ) generally out-

performed the other two, however, GO-DAQ suffered from

a drastic increase in 3D error for high levels of pixel noise.

The likely explanation for this result is that our simulated

cameras approach a known “artificial” degenerate config-

uration for estimating the Dual Absolute Quadric (DAQ).

This degenerate configuration occurs when all optical axes

pass through a common point [7] and the rank of the DAQ

is not enforced. Our cameras approach such a configuration

in the presence of noise. GO-DAQ, because of scaling and

numerical tractability issues (cost and constraints are unnor-

malized), is then likely to fail as the rank-3 constraint on the

DAQ is not earnestly enforced. As the sequence length in-

creased, in Figure 4, all methods performed fairly reliably.

5.2. Real images

We present results on six real image sequences:

fountain-P11, Herz-Jesu-P8, and Herz-Jesu-P25 from [26],

Vercingetorix and Alcatraz water tower from [19], and

Cherub [1]. The first three provide the ground truth cali-

bration with focal lengths f t
x = 2759.48, f t

y = 2764.16,

principal point (ut
0, v

t
0) = (1520.69, 1006.81), and skew

γt = 0 pixels. For these three sequences, we computed

the following errors for a quantitative evaluation: focal

length error ∆f = |f t
x − fx| +

∣

∣f t
y − fy

∣

∣, principal point

error ∆uv = |ut
0 − u0| + |vt0 − v0|, and skew error ∆γ =

|γt − γ|. For the remaining three sequences, we analyzed

the recovered metric reconstructions qualitatively. Our ex-

periments also served to verify the practical applicability of

our assumption that |θij | ≤ 120◦ for consecutive views.

Quantitative evaluation: From the calibration errors re-

ported in Table 1, QUARC-M and GO-Stratified on the

Herz-Jesu-P8 sequence, and QUARC-N on the Herz-Jesu-

P25 sequence, led to an erroneous calibration. Upon

inspection, their corresponding reconstructions failed to

achieve a metric upgrade and remained projectively dis-

torted. Note that QUARCH*M succeeded on the Herz-Jesu-

P8 sequence, whereas the other two methods, also based

on the modulus constraints, failed. This confirms our re-
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Figure 4: Comparison of QUARCH*N and QUARCH*M with GO-Stratified and GO-DAQ. Experiments using 4 views (left)

and 5 views (middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

Figure 5: 3D reconstructions of (from left to right) Cherub,

Vercingetorix, and Alcatraz water tower obtained with

QUARCH*M. Sample images shown on the right.

sults with the synthetic data that the QUARCH LMIs aid

in reliably locating the true Π∞ and that GO-Stratified of-

ten fails for short sequences. Except for these failures, all

the methods otherwise led to a calibration close to ground

truth and thereby to a successful metric upgrade. The error

measurements are not completely indicative of the recon-

struction quality, which, from our observations, is primar-

ily influenced by the focal length and skew errors. From

the timing results in Table 1, the unconstrained local op-

timization methods are considerably faster than the oth-

ers. The constrained optimization method is slower than

the unconstrained one due to the more expensive SDP prob-

lem computation at each iteration. GO-DAQ took a similar

amount of time as QUARCH*M and QUARCH*N, but GO-

Stratified was significantly slower for all tested sequences.

Qualitative evaluation: We show the 3D reconstruction re-

sults obtained with QUARCH*M on three longer image se-

quences: Cherub, Vercingetorix, and Alcatraz water tower

in Figure 5. These sequences have 65, 69, and 173 im-

ages, respectively, and their corresponding projective recon-

structions contained 65, 63, and 66 cameras, respectively.

The recovered metric structures closely resemble the cap-

tured scenes. Similar metric reconstructions were obtained

using QUARCH*N. We observed that several points were

poorly estimated in these reconstructions. These led to fail-

ures with GO-Stratified as it relies on all scene points. Our

results also confirm the applicability of the assumption of

Sequence Method ∆f ∆uv ∆γ Time (s)

fountain-P11 QUARCH*M 1.91 4.01 0.99 2.71
QUARC-M 2.44 4.30 0.99 0.09

QUARCH*N 42.92 28.29 0.71 1.47
QUARC-N 43.73 28.61 0.69 0.10

GO-DAQ 76.15 31.92 0.10 1.27

GO-Stratified 12.64 9.75 1.17 449.47

Herz-Jesu-P8 QUARCH*M 53.49 78.68 1.56 1.32
QUARC-M 4114.66 101.16 586.29 0.07

QUARCH*N 83.61 33.93 1.24 1.90
QUARC-N 76.81 34.22 1.21 0.09

GO-DAQ 66.10 33.84 0.27 1.85

GO-Stratified 2552.62 1006.05 132.85 154.74

Herz-Jesu-P25 QUARCH*M 34.89 23.71 2.52 2.04
QUARC-M 34.75 23.70 2.55 0.45

QUARCH*N 59.04 31.44 1.40 2.08
QUARC-N 2812.61 185.73 21.86 0.46

GO-DAQ 4.40 33.90 0.60 1.60

GO-Stratified 52.94 32.16 1.69 893.76

Table 1: Self-calibration results on sequences from [26].

|θij | ≤ 120◦ for consecutive views. This assumption might

as well be extended to every other view in these sequences.

6. Conclusion

We presented a new quasi-affine reconstruction stratum,

QUARCH, as a specialization of QUARC. We showed that

Π∞ satisfies either of two sets of LMIs for a camera pair

depending on the relative orientation angle being under or

over 120◦. We also proposed a constrained LM method to

enforce the QUARCH LMIs during the local optimization

to locate Π∞. Our experiments showed the benefits of the

QUARCH LMIs in reliably locating Π∞ to obtain a metric

reconstruction from a projective one. Our constrained LM

method could also be useful in other computer vision prob-

lems for nonlinear refinement subject to LMI constraints.
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