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Abstract

Non-line-of-sight (NLOS) imaging aims to reconstruct

scenes outside the field of view of an imaging system. A

common approach is to measure the so-called light tran-

sients, which facilitates reconstructions through ellipsoidal

tomography that involves solving a linear least-squares.

Unfortunately, the corresponding linear operator is very

high-dimensional and lacks structures that facilitate fast

solvers, and so, the ensuing optimization is a computa-

tionally daunting task. We introduce a computationally

tractable framework for solving the ellipsoidal tomogra-

phy problem. Our main observation is that the Gram of

the ellipsoidal tomography operator is convolutional, ei-

ther exactly under certain idealized imaging conditions, or

approximately in practice. This, in turn, allows us to ob-

tain the ellipsoidal tomography solution by using efficient

deconvolution procedures to solve a linear least-squares

problem involving the Gram operator. The computational

tractability of our approach also facilitates the use of var-

ious regularizers during the deconvolution procedure. We

demonstrate the advantages of our framework in a variety

of simulated and real experiments.

1. Introduction

Recent advances in sensor technology have enabled

high-speed imaging at picosecond timescales [32, 60]. This

has facilitated non-line-of-sight (NLOS) imaging [32, 59],

the ability of an imaging system to “look around corners”

— a capability that finds application in assisted and au-

tonomous driving, endoscopy, and imaging in confined

spaces such as caves and debris.

The core ideas of NLOS imaging rely on measuring the

time of flight (ToF) and radiance of multi-bounce photons

that have interacted with the NLOS scene. The traditional

measurement pipeline is as follows: a pulsed laser illumi-

nates a LOS scene point and the ToF of photons arriving

at a second LOS point is measured using a time-resolved

sensor; these photons are assumed to have bounced off the

NLOS scene via the LOS scene points. Binning the arriving

photons based on their ToF provides a measurement of the

light transport transient associated with the specific pair of

LOS points. Repeating this process across multiple illumi-

nation and sensing points results in the measurement of the

so-called 5D light transport transient [43, 49]. The 5D light

transient provides a rich encoding of the geometry of the

NLOS scene, thereby facilitating the recover of its shape.

Algorithmically, the reconstruction of the NLOS scene,

modeled as a volumetric albedo map, from the 5D light

transient requires the solution to an ellipsoidal tomography

problem, which is usually computationally prohibitive to

solve. The high computational cost can be attributed to two

factors: first, the high-dimensionality of both the measure-

ments and the NLOS scene voxelization; and second, the

lack of structures in the measurement operator that facilitate

fast implementations. Solving the linear inverse problem

to recover a volumetric albedo from the 5D light transient

measurements, with or without priors, is intractable.

Many existing methods avoid solving the inverse prob-

lem by relying on a pipeline adapted from computed to-

mography [28] called filtered backprojection. First, the

backprojection operator is applied to the measured tran-

sients [2, 10, 18, 35, 59]; this operator projects each light

transient measurement onto the voxels in the NLOS scene

that could have contributed to it. Next, the Laplacian opera-

tor is applied to mitigate the enhancement of low-frequency

components endemic to the backprojected result [10, 59].

Yet, this version of filtered backprojection as used in NLOS

imaging is a heuristic reconstruction procedure, as it does

not solve any specific formulation of the inverse problem.

Contributions. Our main technical result is to show that,

under certain assumptions on the imaging geometry, the

Gram1 of the NLOS measurement operator is a convolution

operator, as illustrated in Figure 1. This result advances

NLOS imaging in three important ways. First, it allows us

to efficiently obtain the ellipsoidal tomography reconstruc-

tion by solving an equivalent linear least-squares involving

1The Gram of the matrix A is A⊤
A.
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Figure 1. Overview of our convolutional model for NLOS imaging. (a) We capture transient measurements of light interacting with the

NLOS scene through reflections on a relay LOS surface. (b) The measurement model A maps the volumetric albedo ρ of the NLOS scene

to 5D light transients, and the backprojection operation A
⊤ maps 5D light transients to the backprojected albedo. We enable efficient and

robust NLOS imaging by showing that the end-to-end mapping, modeled as the Gram operator A⊤
A, is approximately convolutional.

the Gram operator: As the Gram operator is convolutional,

this problem can be solved using computationally-efficient

deconvolution algorithms. Second, it provides a theoretical

justification for the filtered backprojection algorithm: We

can show that filtered backprojection corresponds to using

an approximate deconvolution filter to solve the problem in-

volving the Gram operator. Third, it facilitates the use of a

wide range of priors to regularize the NLOS reconstruction

problem: The convolutional property of the Gram operator

implies that the corresponding regularized least squares re-

main computationally tractable. We verify the benefits of

this result using both simulated and real data.

2. Related Work

Non-line-of-sight imaging. Starting with the work of Kir-

mani et al. [31, 32], the past decade has seen a proliferation

of works that explore different aspects of the non-line-of-

sight (NLOS) imaging problem. We can broadly distinguish

between two categories: Passive methods rely on environ-

ment illumination to localize or estimate rough motion and

structure in the NLOS scene [4,5,7,8,13,52,55,56,63]. Ac-

tive methods controllably inject light into the NLOS scene

through a relay surface, which allows obtaining higher-

fidelity information about it. For instance, even using only

intensity cameras with coherent [6, 29, 30, 54] or incoher-

ent illumination [11, 34] can enable accurate tracking and

reconstruction of images of NLOS objects.

Our focus is on active methods that use light tran-

sients, that is, time-resolved radiometric measurements of

the light reflected back by the NLOS scene [24]. These

transients can be acquired using a variety of imaging tech-

nologies, including streak cameras [60], photonic mixer de-

vices (PMD) [19,25,26,43], single-photon avalanche diodes

(SPADs) [15], or interferometry [16]. For macroscopic

scenes, SPADs have recently become the sensor of choice,

providing time resolutions in tens of picoseconds [42, 53].

The technique closest to this work are those that recover

discretized approximations of the NLOS scene by solving a

problem of ellipsoidal tomography [10,20,21,27,35,44,45,

59]. Our paper serves to provide theoretical justification and

computational acceleration for techniques commonly used

within this framework. Alternative approaches for NLOS

reconstruction from transient measurements use geometric

algorithms based on Fermat’s principle [57,62], wave-based

models [37, 39, 50, 51], and inverse rendering [23, 47, 58].

These approaches provide different trade-offs in terms of

reconstruction detail, reflectance invariance, and robustness

to noise. Finally, some of these techniques have been ex-

tended to NLOS imaging with non-optical signals, includ-

ing acoustic [36] and thermal [40].

Computed tomography (CT). NLOS imaging techniques

based on ellipsoidal tomography are closely related to CT

techniques [28]. In both settings, reconstruction can be re-

duced to solving a linear system, involving a measurement

operator corresponding to different light trajectories inside

an invisible volume: straight lines in the case of CT, and

ellipsoidal shells in NLOS imaging. Because of this sim-

ilarity, a lot of concepts from CT have found direct analo-

gies in NLOS imaging, including the filtered backprojection

algorithm [59] and analysis using the elliptic Radon trans-

form [38]. Despite these analogies, our theoretical under-

standing of these concepts is often much more developed

in the case of CT than in ellipsoidal tomography. The con-

tributions of this paper help close this gap, for example by

deriving the optimal filter to be used for filtered backpro-

jection in the ellipsoidal case, analogous to the well-known

Ram-Lak filter [28] in the linear case. This result is also of

general interest for other problems where ellipsoidal tomog-

raphy finds applications, for instance seismic imaging [41]

and ultrasound imaging [3].

3. Problem Setup and Background

We begin by introducing the NLOS imaging problem,

defining basic notation, and reviewing reconstruction proce-

dures based on ellipsoidal tomography. We assume that we

collect measurements through a Lambertian line-of-sight

(LOS) surface L. We use an impulse source (e.g., pulsed

laser) to illuminate a point l on L. We then use a sensor
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Table 1. Comparison of NLOS imaging algorithms. A: Measurement operator. i: 5D light transient. L: Laplacian filter. ic: Confocal

light transient (⊂ i). kc: 3D convolution kernel [44], f : 3D convolution kernel (ours). m2: Number of illumination (sensing) points. nt:

Number of time bins. n: Voxel resolution for each axis. Time complexity listed for iterative methods represent the cost per iteration.

Method Formulation Speed Priors Scanning pattern Note Complexity per iteration

Full linear reconstruction argmin
ρ
‖i−Aρ‖ Slow X No requirement Intractable O(min(m4n3,m4n2nt))

Backprojection A
⊤
i Fast × No requirement Approximate n.a.

Filtered backprojection LA
⊤
i Fast × No requirement Approximate n.a.

Light-cone transform [44] argmin
ρ
‖ic − kc ∗ ρ‖ Very fast X Confocal Limited res. O(m2nt lognt)

Ours argmin
ρ
‖A⊤

i− f ∗ (ρ/z4)‖ Fast X No requirement Exact O(n3 logn)

(e.g., SPAD) to image a second point s on L, and measure

the light transient, i.e., time-resolved intensity, i(t; l, s).
The set of light transients at all pairs l and s on the LOS

surface L is called the 5D light transient [43, 49]:

I(L) ≡ {i(t; l, s) | ∀ l, s ∈ L}. (1)

Measurement model. To relate the 5D transient to the

NLOS scene, we follow previous work [10, 18, 21, 32, 44,

59], and model the NLOS scene as a volumetric albedo

function ρ(x), where x = (x, y, z) ∈ Ωx and Ωx ⊂ R
3

is the NLOS volume including the objects we are interested

in recovering. Implicit in this model are the following as-

sumptions: (1) each light path only interacts with a single

NLOS scene point (three-bounce paths); (2) all NLOS scene

points are visible from the LOS surface; and, (3) shading ef-

fects due to reflectance and normals are ignored, i.e., light

scatters isotropically at each NLOS scene point. For sim-

plicity, we omit the portions of light paths contained in the

LOS scene, i.e., light travel to/from the illumination and

sensing points to the imaging system. With these assump-

tions, we can define a measurement operator mapping the

NLOS albedo ρ(x) to light transient i(t; l, s) as

i(t; l, s) =

˚

Ωx

ρ(x)
δ(‖x− l‖+ ‖x− s‖ − ct)

‖x− l‖2‖x− s‖2
dx, (2)

where c is the speed of light. Because of the Dirac delta

term δ(·) in the integrand, the points in Ωx that contribute

to the light transient i at a specific time instant t must satisfy

‖x− l‖+ ‖x− s‖ − ct = 0. (3)

We recognize this as the definition of a 3D ellipsoid with

foci l, s, and major axis length ct [46]. Because each mea-

surement accumulates information about the scene along an

ellipsoid, inverting this measurement operator is referred to

as a problem of ellipsoidal tomography [59]. Discretizing

the measurement operator of Equation (2), we obtain

i = Aρ, (4)

where: i ∈ R
nlnsnt

+ is the vectorized representation of

light transient, with nl, ns, and nt being the number of

illumination points, sensing points, and time bins, respec-

tively; ρ ∈ R
nxnynz

+ is the vectorized representation of

the NLOS volumetric albedo, with nx, ny , and nz be-

ing the number of voxels along each coordinate axis; and

A ∈ R
nlnsnt×nxnynz

+ is a matrix corresponding to the dis-

cretization of integrand terms in Equation (2) other than the

albedo ρ. We refer to A as the measurement matrix.

Reconstructing the NLOS scene can be done by solving

the linear system of Equation (4), e.g., in the least-squares

sense, for the NLOS volumetric albedo ρ. Unfortunately,

this is generally not computationally tractable, because of

the prohibitively large size of A as well as the lack of spe-

cific structures that facilitate fast implementations. (We de-

fer a detailed comparison of the computational complexity

of various reconstruction algorithms to Section 4.)

Backprojection. To circumvent this computational burden,

an estimate of the NLOS volumetric albedo can be instead

formed using the adjoint of the measurement operator of

Equation (2), often referred to as the backprojection oper-

ator in analogy with computed tomography. Given the 5D

light transients, the backprojection operator is written as

ρbp(x)=

˙

Ωl,s,t

i(t; l, s)
δ(‖x−l‖+‖x−s‖−ct)

‖x− l‖2‖x− s‖2
dt ds dl. (5)

The backprojection operator projects each light transient

i(t; l, s) onto the points x satisfying the ellipsoidal con-

straint of Equation (3). Then, the backprojected volumetric

albedo ρbp(x) at x is the weighted accumulation of these

projections, with weights corresponding to light fall-off.

Upon discretization, Equation (5) becomes

ρbp = A
⊤
i, (6)

where ρbp ∈ R
nxnynz

+ is the vectorization of the backpro-

jected volumetric albedo, and the backprojection matrix is

simply the transpose of the measurement matrix A.

There are many variants of the backprojection operator

that have appeared in the NLOS imaging literature [10]. We

will be making use of a version that omits the light fall-off

terms in the integrand of Equation (5). In the discretized

setting, this alternative operator can be expressed as

ρbp,alt = (A > 0)⊤i = (A > 0)⊤Aρ, (7)

7891



where (A > 0) is a binary matrix that equals one at the

support of A, and zero elsewhere. Our theoretical and al-

gorithmic results will extend to this alternative definition as

well. It is also worth noting that this alternative backpro-

jection has important connections time-delay focusing [45]

and it can be shown that the operator (A > 0)⊤A is the

imaging operator associated with that approach.

Filtered backprojection. Given that the backprojection of

Equation (6) is simply the transpose to the measurement op-

erator, the backprojected volumetric albedo ρbp is different

from the solution of a linear least-squares problem based

on Equation (4). Empirically, the backprojected volumetric

albedo often resembles a low-frequency approximation of

the true albedo ρ. Therefore, it has been common practice

to use a high-frequency filter as post-processing, to sharpen

the backprojection results [10, 18, 59]. The most widely-

used filter is the Laplacian,

ρfbp(x) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ρbp(x). (8)

Even though filtered backprojection works well in prac-

tice, it raises two important concerns. First, there is no for-

mal justification for the use of the Laplacian filter. Second,

there is no principled way to incorporate priors in the re-

construction pipeline. In many ways, our main contribu-

tions are to alleviate these concerns through mathematical

analysis of the measurement and backprojection operators

underlying NLOS imaging.

Confocal scanning. Before introducing our technical re-

sults, it is worth discussing a particular acquisition set-

ting that has been termed confocal scanning by O’Toole et

al. [44]. This corresponds to the case where only a three-

dimensional subset of the 5D light transient is available,

namely, the measurements corresponding to collocated il-

lumination and sensing points, l = s. Then, O’Toole et

al. [44] used the light cone transform (LCT) to show that

the forward model of Equation (4) simplifies to:

ic = kLCT ∗ ρ, (9)

where ic is the vectorized representation of the confocal 3D

light transient, and kLCT is a 3D convolution kernel2.

Reducing the measurement matrix A to a convolution

enables recovering the volumetric albedo ρ by inverting

(in the least-squares sense) Equation (9), , circumventing

the need to use the heuristical filtered backprojection esti-

mate. Further, the convolutional property makes it possible

to regularize this inverse problem with priors such as non-

negativity, sparsity and smoothness, without sacrificing ef-

ficiency. Inspired by this work, we aim to explore similar

convolutional structure in the general non-confocal NLOS

imaging scenario.

2The LCT also involves a non-linear reparameterization of all quanti-

ties along the z direction. We omit this for notational simplicity.

4. Convolutional Approximations

We are now ready to present our main theoretical and

algorithmic results. For this, we begin with the following

observation: The measurement model of Equation (4) sug-

gests that we can recover the NLOS volumetric albedo ρ by

solving the linear-least squares problem3:

(P1) ρ̂ = argmin
ρ

‖i−Aρ‖2.

Provided A
⊤
A is invertible, it is straightforward to show

that ρ̂ is also the solution to the problem:

(P2) ρ̂ = argmin
ρ

‖A⊤
i︸︷︷︸

ρbp

−A
⊤
Aρ‖2,

where we recognize the first term in the square loss as the

result of applying the backprojection matrix to the 5D tran-

sients (Equation (6)). In the rest of this section, we study the

Gram operator A⊤
A, and show that it can be well approx-

imated as a convolutional operator. In turn, this facilitates

the efficient solution of problem (P2).

4.1. The NLOS Gram operator

We first derive an expression for the continuous form of

the Gram operator A⊤
A. Note that the Gram operator maps

an albedo volume ρ to the backprojected volume ρbp,

ρbp = A
⊤
Aρ.

Substituting Equation (2) into Equation (5), we obtain:

ρbp(x
′)=

˚

Ωx

ρ(x) k(x,x′) dx, (10)

where k(x,x′) is a spatially-varying kernel that equals
˙

Ωl,s

δ(‖x′−l‖+‖x′−s‖−‖x−l‖−‖x−s‖)

‖x− l‖2‖x− s‖2‖x′ − l‖2‖x′ − s‖2
ds dl. (11)

Gram operator as spatially-invariant blurring. We now

state one of our main results, namely, that under certain as-

sumptions on the LOS scene L, the spatially-varying blur

k(x,x′) can be expressed as k(x′ − x). Then, the Gram

operator is a convolution on the volumetric albedo.

Assumption 1 — Infinite planar LOS surface. Our first as-

sumption is that the LOS scene L on which the illumination

and sensing points lie is a planar surface of infinite spatial

extent. In practice, this assumption holds approximately, so

long as the NLOS scene, when projected orthographically

on the LOS surface, is much smaller than the LOS surface.

We discuss this in more detail later in this section.

3The use of square loss implies that our measurements have additive

Gaussian noise. In practice, SPAD measurements are characterized by

Poisson noise [22,48]. As we show in experiments, our algorithms remain

robust to this mismatch.
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Figure 2. Spatial invariance of kernel k. (a) Maximum intensity

projection (MIP) of normalized (×z
4) kernel intensity at 5 × 5

points. (b) 3D visualization and 1D slices of (a) at different depths.

The kernels become spatially invariant after normalization.

Assumption 2 — Illumination and sensing points. Our sec-

ond assumption is that the sensing and illumination points

are continuously sampled on the LOS surface surface L. In

practice, a sampling density that allows for the integrals in

Equation (11) to be well approximated would suffice.

Proposition 1 (Convolutional Gram operator) Under

Assumptions 1 and 2, the kernel k(x,x′) defined in

Equation (11) can be written as

k(x,x′) =
1

z4
f(x′ − x), (12)

where x = (x, y, z), and x
′ is in close vicinity to x. The

function f(·) is the kernel after normalization by z4.

We provide the proof and analytical expression for f(·) in

the supplement. Our proof uses the fact that, for an infi-

nite LOS surface, every NLOS point has its corresponding

set of illumination and sensing points where the ellipsoids

have the same tangent planes. Thus, the kernel, which is

the weighted superposition of ellipsoids, becomes spatially

invariant after normalization by the 1/z4 term. This term

is due to inverse-square light fall-off and we can absorb it

inside ρ(x) in Equation (10). Since we expect most of the

energy of the kernel to be concentrated around x, the ker-

nel is largely spatially-invariant (see Figure 2). We can then

rewrite Equation (10) as a 3D convolution:

ρbp(x
′) =

˚

Ωx

(
1

z4
ρ(x)

)
f(x′ − x)dx. (13)

Extension to alternative backprojection. Proposition 1

generalizes to the case when we use the alternative defini-

tion of backprojection in Equation (7) to define the Gram,

ρbp, alt = (A > 0)⊤Aρ. (14)

In this case, the kernel is as in Equation (12) but without the

1/z4 term. We provide the proof in the supplement.
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Figure 3. Comparison of inverse kernel and Laplacian filter.

The plots show 1D slices of kernel values along each axis crossing

through the center of the full 3D kernel.

Accommodating a finite LOS surface. When Assumption

1 is violated, that is, the LOS surface is finite, the blur ker-

nel k of Equation (11) is spatially-varying, and therefore

the Gram operator is not convolutional. However, when the

NLOS scene is relatively small compared to the LOS sur-

face, we expect that the spatially-varying kernel can still

be well-approximated by a single convolutional operator.

This is a common setting for all demonstrated NLOS imag-

ing systems, which generally require LOS surfaces of much

larger extent than the corresponding NLOS scenes.

We have verified empirically that, for typical NLOS

scene and LOS surface sizes, the Gram matrix can be well

approximated as a matrix of rank one. Additionally, we can

use the top eigenvector of the matrix as a spatially-invariant

kernel that better matches the non-ideal imaging geometry

than the kernel k of Equation (12). We demonstrate this in

the supplement, and we use this eigenvector-based kernel in

all experiments in Section 5. In practice, this procedure can

be used as a calibration step that has to be performed only

once for each realization of the NLOS imaging geometry.

Inverse kernel. Figure 3 shows the inverse of kernel k,

computed using Wiener deconvolution [61]. We observe

that the inverse kernel closely resembles a Laplacian fil-

ter. This similarity lends theoretical support to the common

choice of the Laplacian filter for post-processing in filtered

backprojection [18, 59]. However, we must highlight two

important differences. First, the discrete Laplacian filter is

bereft of spatial scale. As a consequence, the result of tra-

ditional filtered backprojection is expected to change when

we voxelize the NLOS scene at different resolutions. Our

derived kernel and its inverse have no such adverse proper-

ties. Second, the inverse kernel in Figure 3 was derived un-

der the two assumptions required for Proposition 1. When

these assumptions do not hold, we can use eigendecompo-

sition as discussed above to derive an approximate inverse

kernel that can be significantly different from the Laplacian

filter. Unlike filtered backprojection, our approach naturally

accommodates for this by using the correct inverse filter.
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4.2. Reconstruction with priors

Proposition 1 suggests a two-stage procedure for re-

constructing the volumetric albedo ρ: First, use backpro-

jection to compute the backprojected volumetric albedo,

ρbp = A
⊤
i. Second, use deconvolution to solve the least-

squares problem (P2) involving the Gram operator.

Proposition 1 additionally facilitates the solution of a

more general version of problem (P2), namely,

(P3) ρ̂ = argmin
ρ

‖A⊤
i︸︷︷︸

ρbp

−A
⊤
Aρ‖2 + Γ(ρ),

where the term Γ(ρ) indicates a signal prior. Typical priors

in NLOS imaging are positivity and sparsity both canoni-

cally as well as in spatial gradients (total variation) of the

volumetric albedo ρ [20, 21]. State-of-the-art algorithms

for solving regularized linear least-squares problems, such

as alternating direction method of multipliers (ADMM) [9],

are typically iterative, and thus require multiple forward

and adjoint evaluations of the corresponding matrix—in the

case of (P3), the Gram matrix A
⊤
A. These evaluations

tend to dominate the cost of the algorithm. Therefore, the

convolutional form of the Gram matrix offers a significant

computational advantage, by turning forward and adjoint

operations into simple convolutions. In the supplement, we

derive the algorithmic details of using ADMM to solve (P3)

with typical priors used for NLOS imaging.

Computational complexity. We can break down the cost

of solving problems (P2) and (P3) into two parts. The first

part is using backprojection to compute the backprojected

volumetric albedo ρbp = A
⊤
i. The time complexity of

implementing A
⊤ (as well as A) can be determined by

the number of elements of the sparse matrix A
⊤, which

is nlnsnxnynz = m4n3 assuming nl = ns = m2 and

nx = ny = nz = n. An alternative approach is to imple-

ment the operator by rendering ellipsoids corresponding to

each time bin; the time complexity becomes O(m4n2nt).
Thus, the time complexity of both the measurement opera-

tor and the backprojection is O(min(m4n3,m4n2nt)).
The second part involves either one (for (P2)) or multiple

(for (P3)) evaluations of the Gram operator A⊤
A and its ad-

joint. Using the convolutional approximation of the Gram

operator, each such evaluation has complexity O(n3 log n)
using the 3D fast Fourier transform. Importantly, during the

second part we do not need to perform any additional back-

projection operations. In practice, the second part has negli-

gible additional cost compared to the first part. Therefore, at

a cost only marginally greater than filtered backprojection,

our technique provides solutions to the full linear inverse

problem, while also permiting the use of regularization.

By contrast, solving the linear inverse problem with or

without priors using implementations of A and A
⊤ has per-

iteration cost of O(min(m4n3,m4n2nt)) [35], far greater

than the combined cost of the two parts of our reconstruc-

tion procedure. Even though implementations of these op-

erators can be accelerated using GPU implementations [23],

our convolutional model reduces the inherent platform-

independent computational complexity of the reconstruc-

tion procedure, enabling even more efficient implementa-

tions on an equivalent platform. Table 1 provides a sum-

mary of relative complexity of the various algorithms.

4.3. The confocal case

We prove in the supplement a version of Proposition 1

specifically for the case of confocal scanning, in which case

the kernel of Equation (11) becomes

kc(x,x
′) =

1

z6
fc(x

′ − x). (15)

It is worth comparing the application of our approach to the

confocal case with the LCT [44]. The two appear superfi-

cially similar, as they are both convolutional formulations

for NLOS imaging. However, there is an important distinc-

tion: The LCT shows that (a non-linear reparameterization

of) the measurement matrix A is convolutional, whereas our

result shows the same for the Gram of the measurement ma-

trix A
⊤
A. We discuss some implications of this difference.

Lateral resolution. The derivation of the LCT requires

that the lateral (x and y) resolution of the NLOS volume

be the same as the lateral resolution of collocated illumi-

nation/sensing points on the LOS surface; that is, n = m.

Consequently, when the lateral scanning resolution is low,

the lateral resolution of LCT results is necessarily poor. On

the other hand, our method decouples NLOS volume reso-

lution from the scanning resolution (n 6= m). Therefore,

we can recover NLOS volumes at a lateral resolution that is

often higher than the scanning resolution. The key here is to

exploit the time resolution of light transients, which is often

significantly higher than the lateral scanning resolution.

Computational complexity. Assuming equal volume lat-

eral resolution and scanning resolution (n = m), LCT

and our approach have the same computational complexity

O(m2nt log nt) for evaluations of their corresponding op-

erators (measurement and Gram, respectively), where m2nt

is the number of elements in the confocal 3D transient.

However, we note an important disadvantage of our

method: As discussed above, solving problem (P2) or (P3)

requires performing a single backprojection operator, which

has complexity (in the confocal case) O(m4nt). The LCT,

on the other hand, operates directly on the light transients

ic, and therefore has no such requirement.

Scanning pattern. The LCT can only be used if light

transients are measured in a confocal scanning pattern.

The confocal light transient provides rich information for

NLOS imaging, and has advantages in terms of calibration
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backprojection

Full linear
reconstruction

[68.15s][67.55s][4894.93s] [0.04s]

LCT

Filtered backprojection Ours (w/o priors)Target object

(a)

(b)

(c)

Figure 4. Comparison under simulated 5D light transient. Note

that the thicker red lines in LCT indicates a lower resolution of the

result caused by the inherent limit of the method.

and signal-to-noise ratio when measuring retroreflective ob-

jects [44]. However, confocal measurements can be cor-

rupted by pile-up and after-pulsing effects [12, 17, 22, 48],

due to the strong direct reflection from the LOS surface. By

contrast, our approach is flexibly applicable to any scanning

pattern, be it 3D non-confocal or 5D light transients.

5. Experiments

We compare our algorithm against full linear reconstruc-

tion, filtered backprojection, and LCT, on simulated and

real transients. Although the convolutional model applies

to both A
⊤
A and (A > 0)⊤A, the 1/z4 term in the former

causes numerical instability. Hence, we show results using

the alternative backprojection. We provide implementation

details and additional results in the supplement. Our imple-

mentation and data are available on our project page [1].

5.1. Simulated results

Rendering setup. For the simulation of light transient,

we used light transients from the public NLOS imaging

dataset [14,33] as well as an implementation of a physically

accurate renderer from [58]. The geometric parameters for

each NLOS scene are provided in the supplement.

Comparisons with full linear reconstruction. Figure 4(a)

compares our method and full linear reconstruction on

scene consisting of an S-shape. Our method has faster run-

LCT
(1.12 cm / 0.39 cm / 2.42 cm)

0 cm

5 cm

Ours (w/o priors)
(0.99 cm / 0.30 cm / 2.33 cm)

Filtered backprojection
(1.01 cm / 0.31 cm / 2.38 cm)

Figure 5. Quantitative evaluation under simulated 5D light

transient. Error maps are shown with three error metrics (mean

absolute error / median absolute error / root mean square error).

Target object
Ours (w/o priors)

[72.73s]

Ours ℝ" + $ %&

[87.79s]

Ours (ℝ" + $ ()

[88.05s]

Ours ℝ" + $ (,%&

[88.05s]

Filtered backprojection

[65.89s]

Figure 6. Reconstruction with priors under real confocal light

transient. MIPs of recovered albedos when using priors. The pri-

ors enforce positivity, total variation, and sparsity of the volume.

time (70×), while providing similar reconstruction quality.

Comparison with filtered backprojection. Figures 4(a)

and 4(b) show comparisons between our method and filtered

backprojection. Even without the use of priors, our method

performs better, as it uses the exact inverse filter whereas

filtered backprojection behaves as a heuristic inverse filter.

Comparison with LCT. Figure 4(c) shows the reconstruc-

tion under rendered confocal light transient. Here, while the

temporal resolution of the light transient is 8 ps, the coarse

scanning of illumination points corresponds to 26 ps (i.e.,

64 × 64 samples on the LOS wall of size 0.5m × 0.5m).

Thus, even though the temporal resolution of the light tran-

sient is enough to reconstruct the letters on the soap, it is

not reconstructed well in LCT [44] due to the poor lateral

resolution. On the other hand, we can recover significantly

higher detail by running the same confocal measurements

through our computational pipeline even without any prior.

Also, as shown in Figure 4(a), where LCT result is ob-

tained from the confocal subset of the 5D light transient,

LCT even cannot fully make use of the scanning resolution

when the object is small compared to the LOS wall because

the field of view is also tied to the range of LOS wall.
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OursFiltered backprojectionLCTTarget object

Figure 7. Comparisons under real confocal light transients. Our method produces reconstructions of higher detail and fewer artifacts

than the alternatives. In our experiment, we cover the digits in the first row with white paper, to increase SNR.

Quantitative evaluation. Figure 5 shows point-wise differ-

ences between reconstructed MIP surface and the ground-

truth surface along depth axis with three error metrics. We

use 64 × 64 simulated confocal light transient for a scene

of a Lambertian Stanford bunny. The temporal resolution

of the measurements is 8 ps, and the voxel resolution is

0.78 cm for LCT (inherent limit of the method) and 0.24 cm
for FBP and our approach. We observe that our approach

(without priors) performs the best on all error metrics.

5.2. Real scenes

Acquisition system. Our imaging system consists of a pi-

cosecond pulsed laser synced with a SPAD sensor. Details

about the hardware prototype, calibration and acquisition

procedures are in the supplement. Note that, although our

method can be applied to the general 5D light transients

as shown in Section 5.1, here we use confocal light tran-

sients because of their shorter acquisition time (1.5 hours

for 51 × 51 points in 3D confocal, versus 11 hours for

12× 12× 12× 12 points in 5D) and ease of calibration.

Reconstruction with priors. Figure 6 shows the effect of

using different priors. We show results with a mixed prior

that enforces positivity, total variation (i.e., sparse gradi-

ents), as well as canonical sparsity enforced via ℓ1 norm.

We observe that, our method produces improvements over

filtered backprojection even without priors, and that the use

of priors further improves the reconstructions.

Comparisons. Figure 7 shows the comparisons with

LCT and filtered backprojection under confocal light tran-

sients measured for various NLOS objects. We observe

that our method provides higher reconstruction detail than

LCT [44], by exploiting the high temporal resolution of

transients, and fewer artifacts than filtered backprojection,

by incorporating accurate inverse kernels and priors.

6. Conclusion

We presented convolutional approximations to the

NLOS imaging operator by studying its Gram. This pro-

vides a pathway for applying priors of various kinds to reg-

ularize the inverse problem without a steep computational

cost. Our method does not require a specific scanning pat-

tern on LOS wall and can be adapted to exploit any specific

subset of the 5D light transients. But above all, we believe

that the insights we provide on the nature of the measure-

ment operator for ellipsoidal tomography will have applica-

tions and impact on a range of problems, for instance seis-

mic imaging, tissue imaging, and ultrasound imaging.

Acknowledgements. We thank Kiriakos Kutulakos and

Srinivasa Narasimhan for helpful discussions. This work

was supported by DARPA REVEAL (HR0011-16-C-0025,

HR0011- 16-C-0028) and NSF Expeditions (CCF-1730574,

CCF-1730147) grants. B. Ahn is supported by the Korea

Foundation for Advanced Studies.

7896



References

[1] Project page: Convolutional approximations to the

general non-line-of-sight imaging operator. http://

imaging.cs.cmu.edu/conv_nlos/, 2019. 7

[2] Victor Arellano, Diego Gutierrez, and Adrian Jarabo. Fast

back-projection for non-line of sight reconstruction. Optics

Express, 25(10):11574–11583, 2017. 1

[3] R Martin Arthur and Steven R Broadstone. Imaging via in-

version of ellipsoidal projections of solutions to the linear

acoustic wave equation. IEEE transactions on medical imag-

ing, 8(1):89–95, 1989. 2

[4] Manel Baradad, Vickie Ye, Adam B Yedidia, Frédo Durand,
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